Arithmetically located cuts

Content created by Louis Wasserman.

Created on 2025-02-02.
Last modified on 2025-02-03.

{-# OPTIONS --lossy-unification #-}

module real-numbers.arithmetically-located-cuts where
Imports
open import elementary-number-theory.addition-rational-numbers
open import elementary-number-theory.additive-group-of-rational-numbers
open import elementary-number-theory.difference-rational-numbers
open import elementary-number-theory.inequality-rational-numbers
open import elementary-number-theory.positive-rational-numbers
open import elementary-number-theory.rational-numbers
open import elementary-number-theory.strict-inequality-rational-numbers

open import foundation.cartesian-product-types
open import foundation.conjunction
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.disjunction
open import foundation.existential-quantification
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.raising-universe-levels
open import foundation.subtypes
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import group-theory.abelian-groups

Definition

A Dedekind cut (L, U) is arithmetically located if for any positive rational number ε : ℚ, there exist p, q : ℚ such that 0 < q - p < ε, p ∈ L, and q ∈ U. Intuitively, when L , U represent the Dedekind cuts of a real number x, p and q are rational approximations of x to within ε. This follows parts of Section 11 in [BT09].

module _
  {l : Level}
  (L : subtype l )
  (U : subtype l )
  where

  is-arithmetically-located : UU l
  is-arithmetically-located =
    (ε : ) 
    is-positive-ℚ ε 
    exists
      (  × )
      ( λ (p , q)  le-ℚ-Prop p q  le-ℚ-Prop q (p +ℚ ε)  L p  U q)

Arithmetically located cuts are located

If a cut is arithmetically located and closed under strict inequality on the rational numbers, it is also located.

module _
  {l : Level}
  (L : subtype l )
  (U : subtype l )
  where

  abstract
    arithmetically-located-and-closed-located :
      is-arithmetically-located L U 
      ((p q : )  le-ℚ p q  is-in-subtype L q  is-in-subtype L p) 
      ((p q : )  le-ℚ p q  is-in-subtype U p  is-in-subtype U q) 
      (p q : )  le-ℚ p q  type-disjunction-Prop (L p) (U q)
    arithmetically-located-and-closed-located
      arithmetically-located lower-closed upper-closed p q p<q =
      elim-exists
        (L p  U q)
         (p' , q') (p'<q' , q'<p'+ε , p'-in-l , q'-in-u) 
          rec-coproduct
             p<p'  inl-disjunction (lower-closed p p' p<p' p'-in-l))
             p'≤p  inr-disjunction
              ( upper-closed
                ( q')
                ( q)
                ( concatenate-le-leq-ℚ
                  ( q')
                  ( p' +ℚ (q -ℚ p))
                  ( q)
                  ( q'<p'+ε)
                  ( tr
                    ( leq-ℚ (p' +ℚ q -ℚ p))
                    ( equational-reasoning
                      p +ℚ (q -ℚ p)
                       (p +ℚ q) -ℚ p
                        by inv (associative-add-ℚ p q (neg-ℚ p))
                       q
                        by is-identity-conjugation-Ab abelian-group-add-ℚ p q)
                    ( backward-implication
                      ( iff-translate-right-leq-ℚ (q -ℚ p) p' p)
                      ( p'≤p))))
                ( q'-in-u)))
            (decide-le-leq-ℚ p p'))
        ( arithmetically-located
          ( q -ℚ p)
          ( is-positive-le-zero-ℚ
            ( q -ℚ p)
            ( backward-implication (iff-translate-diff-le-zero-ℚ p q) p<q)))

References

[BT09]
Andrej Bauer and Paul Taylor. The Dedekind reals in abstract Stone duality. Mathematical Structures in Computer Science, 19:757–838, 2009. URL: PaulTaylor.EU/ASD/dedras/, doi:10.1017/S0960129509007695.

Recent changes