Arithmetically located cuts
Content created by Louis Wasserman.
Created on 2025-02-02.
Last modified on 2025-02-03.
{-# OPTIONS --lossy-unification #-} module real-numbers.arithmetically-located-cuts where
Imports
open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.difference-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.cartesian-product-types open import foundation.conjunction open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.existential-quantification open import foundation.identity-types open import foundation.logical-equivalences open import foundation.raising-universe-levels open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import group-theory.abelian-groups
Definition
A Dedekind cut (L, U)
is
arithmetically located¶
if for any positive
rational number ε : ℚ
, there
exist p, q : ℚ
such that 0 < q - p < ε
, p ∈ L
, and q ∈ U
. Intuitively,
when L , U
represent the Dedekind cuts of a real number x
, p
and q
are
rational approximations of x
to within ε
. This follows parts of Section 11
in [BT09].
module _ {l : Level} (L : subtype l ℚ) (U : subtype l ℚ) where is-arithmetically-located : UU l is-arithmetically-located = (ε : ℚ) → is-positive-ℚ ε → exists ( ℚ × ℚ) ( λ (p , q) → le-ℚ-Prop p q ∧ le-ℚ-Prop q (p +ℚ ε) ∧ L p ∧ U q)
Arithmetically located cuts are located
If a cut is arithmetically located and closed under strict inequality on the rational numbers, it is also located.
module _ {l : Level} (L : subtype l ℚ) (U : subtype l ℚ) where abstract arithmetically-located-and-closed-located : is-arithmetically-located L U → ((p q : ℚ) → le-ℚ p q → is-in-subtype L q → is-in-subtype L p) → ((p q : ℚ) → le-ℚ p q → is-in-subtype U p → is-in-subtype U q) → (p q : ℚ) → le-ℚ p q → type-disjunction-Prop (L p) (U q) arithmetically-located-and-closed-located arithmetically-located lower-closed upper-closed p q p<q = elim-exists (L p ∨ U q) (λ (p' , q') (p'<q' , q'<p'+ε , p'-in-l , q'-in-u) → rec-coproduct (λ p<p' → inl-disjunction (lower-closed p p' p<p' p'-in-l)) (λ p'≤p → inr-disjunction ( upper-closed ( q') ( q) ( concatenate-le-leq-ℚ ( q') ( p' +ℚ (q -ℚ p)) ( q) ( q'<p'+ε) ( tr ( leq-ℚ (p' +ℚ q -ℚ p)) ( equational-reasoning p +ℚ (q -ℚ p) = (p +ℚ q) -ℚ p by inv (associative-add-ℚ p q (neg-ℚ p)) = q by is-identity-conjugation-Ab abelian-group-add-ℚ p q) ( backward-implication ( iff-translate-right-leq-ℚ (q -ℚ p) p' p) ( p'≤p)))) ( q'-in-u))) (decide-le-leq-ℚ p p')) ( arithmetically-located ( q -ℚ p) ( is-positive-le-zero-ℚ ( q -ℚ p) ( backward-implication (iff-translate-diff-le-zero-ℚ p q) p<q)))
References
- [BT09]
- Andrej Bauer and Paul Taylor. The Dedekind reals in abstract Stone duality. Mathematical Structures in Computer Science, 19:757–838, 2009. URL: PaulTaylor.EU/ASD/dedras/, doi:10.1017/S0960129509007695.
Recent changes
- 2025-02-03. Louis Wasserman. Lossy unification on arithmetically located cuts (#1263).
- 2025-02-02. Louis Wasserman. Arithmetically located Dedekind cuts (#1257).