Maps between noncoherent large wild higher precategories
Content created by Egbert Rijke, Fredrik Bakke and Vojtěch Štěpančík.
Created on 2024-06-16.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module wild-category-theory.maps-noncoherent-large-wild-higher-precategories where
Imports
open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels open import globular-types.globular-maps open import globular-types.globular-types open import globular-types.large-globular-maps open import globular-types.large-globular-types open import wild-category-theory.maps-noncoherent-wild-higher-precategories open import wild-category-theory.noncoherent-large-wild-higher-precategories open import wild-category-theory.noncoherent-wild-higher-precategories
Idea
A
map¶
f
between
noncoherent large wild higher precategories
𝒜
and ℬ
is a large globular map
between their underlying
large globular types. More
specifically, maps between noncoherent large wild higher precategories consist
of a map on objects F₀ : obj 𝒜 → obj ℬ
, and for every pair of -morphisms
f
and g
, a map of -morphisms
Fₙ₊₁ : (𝑛+1)-hom 𝒞 f g → (𝑛+1)-hom 𝒟 (Fₙ f) (Fₙ g).
A map between noncoherent large wild higher precategories does not have to preserve the identities or composition in any shape or form, and is the least structured notion of a “morphism” between noncoherent wild higher precategories. For a notion of “morphism” between noncoherent large wild higher precategories that in one sense preserves this additional structure, see colax functors between noncoherent large wild higher precategories.
Definitions
Maps between noncoherent large wild higher precategories
map-Noncoherent-Large-Wild-Higher-Precategory : {α1 α2 : Level → Level} {β1 β2 : Level → Level → Level} (δ : Level → Level) (𝒜 : Noncoherent-Large-Wild-Higher-Precategory α1 β1) (ℬ : Noncoherent-Large-Wild-Higher-Precategory α2 β2) → UUω map-Noncoherent-Large-Wild-Higher-Precategory δ 𝒜 ℬ = large-globular-map δ ( large-globular-type-Noncoherent-Large-Wild-Higher-Precategory 𝒜) ( large-globular-type-Noncoherent-Large-Wild-Higher-Precategory ℬ) module _ {α1 α2 : Level → Level} {β1 β2 : Level → Level → Level} {δ : Level → Level} (𝒜 : Noncoherent-Large-Wild-Higher-Precategory α1 β1) (ℬ : Noncoherent-Large-Wild-Higher-Precategory α2 β2) (F : map-Noncoherent-Large-Wild-Higher-Precategory δ 𝒜 ℬ) where obj-map-Noncoherent-Large-Wild-Higher-Precategory : {l : Level} → obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l → obj-Noncoherent-Large-Wild-Higher-Precategory ℬ (δ l) obj-map-Noncoherent-Large-Wild-Higher-Precategory = 0-cell-large-globular-map F hom-globular-map-map-Noncoherent-Large-Wild-Higher-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l1} {y : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l2} → globular-map ( hom-globular-type-Noncoherent-Large-Wild-Higher-Precategory 𝒜 x y) ( hom-globular-type-Noncoherent-Large-Wild-Higher-Precategory ℬ ( obj-map-Noncoherent-Large-Wild-Higher-Precategory x) ( obj-map-Noncoherent-Large-Wild-Higher-Precategory y)) hom-globular-map-map-Noncoherent-Large-Wild-Higher-Precategory = 1-cell-globular-map-large-globular-map F hom-map-Noncoherent-Large-Wild-Higher-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l1} {y : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l2} → hom-Noncoherent-Large-Wild-Higher-Precategory 𝒜 x y → hom-Noncoherent-Large-Wild-Higher-Precategory ℬ ( obj-map-Noncoherent-Large-Wild-Higher-Precategory x) ( obj-map-Noncoherent-Large-Wild-Higher-Precategory y) hom-map-Noncoherent-Large-Wild-Higher-Precategory = 1-cell-large-globular-map F 2-hom-map-Noncoherent-Large-Wild-Higher-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l1} {y : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l2} {f g : hom-Noncoherent-Large-Wild-Higher-Precategory 𝒜 x y} → 2-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒜 f g → 2-hom-Noncoherent-Large-Wild-Higher-Precategory ℬ ( hom-map-Noncoherent-Large-Wild-Higher-Precategory f) ( hom-map-Noncoherent-Large-Wild-Higher-Precategory g) 2-hom-map-Noncoherent-Large-Wild-Higher-Precategory = 2-cell-large-globular-map F hom-noncoherent-wild-higher-precategory-map-Noncoherent-Large-Wild-Higher-Precategory : {l1 l2 : Level} (x : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l1) (y : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l2) → map-Noncoherent-Wild-Higher-Precategory ( hom-noncoherent-wild-higher-precategory-Noncoherent-Large-Wild-Higher-Precategory ( 𝒜) ( x) ( y)) ( hom-noncoherent-wild-higher-precategory-Noncoherent-Large-Wild-Higher-Precategory ( ℬ) ( obj-map-Noncoherent-Large-Wild-Higher-Precategory x) ( obj-map-Noncoherent-Large-Wild-Higher-Precategory y)) hom-noncoherent-wild-higher-precategory-map-Noncoherent-Large-Wild-Higher-Precategory _ _ = 1-cell-globular-map-large-globular-map F
The identity map on a noncoherent large wild higher precategory
module _ {α : Level → Level} {β : Level → Level → Level} (𝒜 : Noncoherent-Large-Wild-Higher-Precategory α β) where id-map-Noncoherent-Large-Wild-Higher-Precategory : map-Noncoherent-Large-Wild-Higher-Precategory (λ l → l) 𝒜 𝒜 id-map-Noncoherent-Large-Wild-Higher-Precategory = id-large-globular-map _
Composition of maps of noncoherent large wild higher precategories
module _ {α1 α2 α3 : Level → Level} {β1 β2 β3 : Level → Level → Level} {δ1 δ2 : Level → Level} (𝒜 : Noncoherent-Large-Wild-Higher-Precategory α1 β1) (ℬ : Noncoherent-Large-Wild-Higher-Precategory α2 β2) (𝒞 : Noncoherent-Large-Wild-Higher-Precategory α3 β3) (G : map-Noncoherent-Large-Wild-Higher-Precategory δ2 ℬ 𝒞) (F : map-Noncoherent-Large-Wild-Higher-Precategory δ1 𝒜 ℬ) where comp-map-Noncoherent-Large-Wild-Higher-Precategory : map-Noncoherent-Large-Wild-Higher-Precategory (λ l → δ2 (δ1 l)) 𝒜 𝒞 comp-map-Noncoherent-Large-Wild-Higher-Precategory = comp-large-globular-map G F
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).
- 2024-11-17. Egbert Rijke. chore: Moving files about globular types to a new namespace (#1223).
- 2024-06-16. Fredrik Bakke and Vojtěch Štěpančík. Noncoherent wild higher precategories (#1099).