Maps between noncoherent large wild higher precategories

Content created by Fredrik Bakke and Vojtěch Štěpančík.

Created on 2024-06-16.
Last modified on 2024-11-17.

{-# OPTIONS --guardedness #-}

module wild-category-theory.maps-noncoherent-large-wild-higher-precategories where
Imports
open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.identity-types
open import foundation.universe-levels

open import globular-types.globular-maps
open import globular-types.globular-types
open import globular-types.large-globular-maps
open import globular-types.large-globular-types

open import wild-category-theory.maps-noncoherent-wild-higher-precategories
open import wild-category-theory.noncoherent-large-wild-higher-precategories
open import wild-category-theory.noncoherent-wild-higher-precategories

Idea

A map f between noncoherent large wild higher precategories 𝒜 and consists of a map on objects F₀ : obj 𝒜 → obj ℬ, and for every pair of -morphisms f and g, a map of -morphisms

  Fₙ₊₁ : (𝑛+1)-hom 𝒞 f g → (𝑛+1)-hom 𝒟 (Fₙ f) (Fₙ g).

A map between noncoherent large wild higher precategories does not have to preserve the identities or composition in any shape or form, and is the least structured notion of a “morphism” between noncoherent wild higher precategories. For a notion of “morphism” between noncoherent large wild higher precategories that in one sense preserves this additional structure, see colax functors between noncoherent large wild higher precategories.

Definitions

Maps between noncoherent large wild higher precategories

record
  map-Noncoherent-Large-Wild-Higher-Precategory
  {α1 α2 : Level  Level} {β1 β2 : Level  Level  Level} (δ : Level  Level)
  (𝒜 : Noncoherent-Large-Wild-Higher-Precategory α1 β1)
  ( : Noncoherent-Large-Wild-Higher-Precategory α2 β2) : UUω
  where
  field
    obj-map-Noncoherent-Large-Wild-Higher-Precategory :
      {l : Level} 
      obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l 
      obj-Noncoherent-Large-Wild-Higher-Precategory  (δ l)

    hom-globular-type-map-Noncoherent-Large-Wild-Higher-Precategory :
      {l1 l2 : Level}
      {x : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l1}
      {y : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l2} 
      map-Globular-Type
        ( hom-globular-type-Noncoherent-Large-Wild-Higher-Precategory 𝒜 x y)
        ( hom-globular-type-Noncoherent-Large-Wild-Higher-Precategory 
          ( obj-map-Noncoherent-Large-Wild-Higher-Precategory x)
          ( obj-map-Noncoherent-Large-Wild-Higher-Precategory y))

open map-Noncoherent-Large-Wild-Higher-Precategory public

module _
  {α1 α2 : Level  Level} {β1 β2 : Level  Level  Level} {δ : Level  Level}
  {𝒜 : Noncoherent-Large-Wild-Higher-Precategory α1 β1}
  { : Noncoherent-Large-Wild-Higher-Precategory α2 β2}
  (F : map-Noncoherent-Large-Wild-Higher-Precategory δ 𝒜 )
  where

  hom-map-Noncoherent-Large-Wild-Higher-Precategory :
    {l1 l2 : Level}
    {x : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l1}
    {y : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l2} 
    hom-Noncoherent-Large-Wild-Higher-Precategory 𝒜 x y 
    hom-Noncoherent-Large-Wild-Higher-Precategory 
      ( obj-map-Noncoherent-Large-Wild-Higher-Precategory F x)
      ( obj-map-Noncoherent-Large-Wild-Higher-Precategory F y)
  hom-map-Noncoherent-Large-Wild-Higher-Precategory =
    0-cell-map-Globular-Type
      ( hom-globular-type-map-Noncoherent-Large-Wild-Higher-Precategory F)

  2-hom-map-Noncoherent-Large-Wild-Higher-Precategory :
    {l1 l2 : Level}
    {x : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l1}
    {y : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l2}
    {f g : hom-Noncoherent-Large-Wild-Higher-Precategory 𝒜 x y} 
    2-hom-Noncoherent-Large-Wild-Higher-Precategory 𝒜 f g 
    2-hom-Noncoherent-Large-Wild-Higher-Precategory 
      ( hom-map-Noncoherent-Large-Wild-Higher-Precategory f)
      ( hom-map-Noncoherent-Large-Wild-Higher-Precategory g)
  2-hom-map-Noncoherent-Large-Wild-Higher-Precategory =
    1-cell-map-Globular-Type
      ( hom-globular-type-map-Noncoherent-Large-Wild-Higher-Precategory F)

  hom-noncoherent-wild-higher-precategory-map-Noncoherent-Large-Wild-Higher-Precategory :
    {l1 l2 : Level}
    (x : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l1)
    (y : obj-Noncoherent-Large-Wild-Higher-Precategory 𝒜 l2) 
    map-Noncoherent-Wild-Higher-Precategory
      ( hom-noncoherent-wild-higher-precategory-Noncoherent-Large-Wild-Higher-Precategory
        ( 𝒜)
        ( x)
        ( y))
      ( hom-noncoherent-wild-higher-precategory-Noncoherent-Large-Wild-Higher-Precategory
        ( )
        ( obj-map-Noncoherent-Large-Wild-Higher-Precategory F x)
        ( obj-map-Noncoherent-Large-Wild-Higher-Precategory F y))
  hom-noncoherent-wild-higher-precategory-map-Noncoherent-Large-Wild-Higher-Precategory
    x y =
    λ where
    .obj-map-Noncoherent-Wild-Higher-Precategory 
      hom-map-Noncoherent-Large-Wild-Higher-Precategory
    .hom-globular-type-map-Noncoherent-Wild-Higher-Precategory 
      globular-type-1-cell-map-Globular-Type
        ( hom-globular-type-map-Noncoherent-Large-Wild-Higher-Precategory F)

The identity map on a noncoherent large wild higher precategory

module _
  {α : Level  Level} {β : Level  Level  Level}
  (𝒜 : Noncoherent-Large-Wild-Higher-Precategory α β)
  where

  id-map-Noncoherent-Large-Wild-Higher-Precategory :
    map-Noncoherent-Large-Wild-Higher-Precategory  l  l) 𝒜 𝒜
  id-map-Noncoherent-Large-Wild-Higher-Precategory =
    λ where
    .obj-map-Noncoherent-Large-Wild-Higher-Precategory 
      id
    .hom-globular-type-map-Noncoherent-Large-Wild-Higher-Precategory 
      id-map-Globular-Type _

Composition of maps of noncoherent large wild higher precategories

module _
  {α1 α2 α3 : Level  Level}
  {β1 β2 β3 : Level  Level  Level}
  {δ1 δ2 : Level  Level}
  {𝒜 : Noncoherent-Large-Wild-Higher-Precategory α1 β1}
  { : Noncoherent-Large-Wild-Higher-Precategory α2 β2}
  {𝒞 : Noncoherent-Large-Wild-Higher-Precategory α3 β3}
  (G : map-Noncoherent-Large-Wild-Higher-Precategory δ2  𝒞)
  (F : map-Noncoherent-Large-Wild-Higher-Precategory δ1 𝒜 )
  where

  comp-map-Noncoherent-Large-Wild-Higher-Precategory :
    map-Noncoherent-Large-Wild-Higher-Precategory  l  δ2 (δ1 l)) 𝒜 𝒞
  comp-map-Noncoherent-Large-Wild-Higher-Precategory =
    λ where
    .obj-map-Noncoherent-Large-Wild-Higher-Precategory 
      obj-map-Noncoherent-Large-Wild-Higher-Precategory G 
      obj-map-Noncoherent-Large-Wild-Higher-Precategory F
    .hom-globular-type-map-Noncoherent-Large-Wild-Higher-Precategory 
      comp-map-Globular-Type
        ( hom-globular-type-map-Noncoherent-Large-Wild-Higher-Precategory G)
        ( hom-globular-type-map-Noncoherent-Large-Wild-Higher-Precategory F)

Recent changes