Colax functors between noncoherent wild higher precategories

Content created by Fredrik Bakke and Vojtěch Štěpančík.

Created on 2024-06-16.
Last modified on 2024-11-17.

{-# OPTIONS --guardedness #-}

module wild-category-theory.colax-functors-noncoherent-wild-higher-precategories where
Imports
open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.identity-types
open import foundation.universe-levels

open import globular-types.globular-maps
open import globular-types.globular-types

open import wild-category-theory.maps-noncoherent-wild-higher-precategories
open import wild-category-theory.noncoherent-wild-higher-precategories

Idea

A colax functor F between noncoherent wild higher precategories 𝒜 and is a map of noncoherent wild higher precategories that preserves identity morphisms and composition colaxly. This means that for every -morphism f in 𝒜, where we take -morphisms to be objects, there is an -morphism

  Fₙ₊₁ (id-hom 𝒜 f) ⇒ id-hom ℬ (Fₙ f)

in , and for every pair of composable -morphisms g after f in 𝒜, there is an -morphism

  Fₙ₊₁ (g ∘ f) ⇒ (Fₙ₊₁ g) ∘ (Fₙ₊₁ f)

in .

Definitions

The predicate of being a colax functor between noncoherent wild higher precategories

record
  is-colax-functor-Noncoherent-Wild-Higher-Precategory
  {l1 l2 l3 l4 : Level}
  {𝒜 : Noncoherent-Wild-Higher-Precategory l1 l2}
  { : Noncoherent-Wild-Higher-Precategory l3 l4}
  (F : map-Noncoherent-Wild-Higher-Precategory 𝒜 ) : UU (l1  l2  l4)
  where
  coinductive
  field
    preserves-id-hom-is-colax-functor-Noncoherent-Wild-Higher-Precategory :
      (x : obj-Noncoherent-Wild-Higher-Precategory 𝒜) 
      2-hom-Noncoherent-Wild-Higher-Precategory 
        ( hom-map-Noncoherent-Wild-Higher-Precategory F
          ( id-hom-Noncoherent-Wild-Higher-Precategory 𝒜 {x}))
        ( id-hom-Noncoherent-Wild-Higher-Precategory 
          { obj-map-Noncoherent-Wild-Higher-Precategory F x})

    preserves-comp-hom-is-colax-functor-Noncoherent-Wild-Higher-Precategory :
      {x y z : obj-Noncoherent-Wild-Higher-Precategory 𝒜}
      (g : hom-Noncoherent-Wild-Higher-Precategory 𝒜 y z)
      (f : hom-Noncoherent-Wild-Higher-Precategory 𝒜 x y) 
      2-hom-Noncoherent-Wild-Higher-Precategory 
        ( hom-map-Noncoherent-Wild-Higher-Precategory F
          ( comp-hom-Noncoherent-Wild-Higher-Precategory 𝒜 g f))
        ( comp-hom-Noncoherent-Wild-Higher-Precategory 
          ( hom-map-Noncoherent-Wild-Higher-Precategory F g)
          ( hom-map-Noncoherent-Wild-Higher-Precategory F f))

    is-colax-functor-map-hom-Noncoherent-Wild-Higher-Precategory :
      (x y : obj-Noncoherent-Wild-Higher-Precategory 𝒜) 
      is-colax-functor-Noncoherent-Wild-Higher-Precategory
        ( hom-noncoherent-wild-higher-precategory-map-Noncoherent-Wild-Higher-Precategory
          ( F)
          ( x)
          ( y))

open is-colax-functor-Noncoherent-Wild-Higher-Precategory public

The type of colax functors between noncoherent wild higher precategories

colax-functor-Noncoherent-Wild-Higher-Precategory :
  {l1 l2 l3 l4 : Level}
  (𝒜 : Noncoherent-Wild-Higher-Precategory l1 l2)
  ( : Noncoherent-Wild-Higher-Precategory l3 l4) 
  UU (l1  l2  l3  l4)
colax-functor-Noncoherent-Wild-Higher-Precategory 𝒜  =
  Σ ( map-Noncoherent-Wild-Higher-Precategory 𝒜 )
    ( is-colax-functor-Noncoherent-Wild-Higher-Precategory)

module _
  {l1 l2 l3 l4 : Level}
  {𝒜 : Noncoherent-Wild-Higher-Precategory l1 l2}
  { : Noncoherent-Wild-Higher-Precategory l3 l4}
  (F : colax-functor-Noncoherent-Wild-Higher-Precategory 𝒜 )
  where

  map-colax-functor-Noncoherent-Wild-Higher-Precategory :
    map-Noncoherent-Wild-Higher-Precategory 𝒜 
  map-colax-functor-Noncoherent-Wild-Higher-Precategory = pr1 F

  is-colax-functor-colax-functor-Noncoherent-Wild-Higher-Precategory :
    is-colax-functor-Noncoherent-Wild-Higher-Precategory
      ( map-colax-functor-Noncoherent-Wild-Higher-Precategory)
  is-colax-functor-colax-functor-Noncoherent-Wild-Higher-Precategory = pr2 F

  obj-colax-functor-Noncoherent-Wild-Higher-Precategory :
    obj-Noncoherent-Wild-Higher-Precategory 𝒜 
    obj-Noncoherent-Wild-Higher-Precategory 
  obj-colax-functor-Noncoherent-Wild-Higher-Precategory =
    obj-map-Noncoherent-Wild-Higher-Precategory
      ( map-colax-functor-Noncoherent-Wild-Higher-Precategory)

  hom-colax-functor-Noncoherent-Wild-Higher-Precategory :
    {x y : obj-Noncoherent-Wild-Higher-Precategory 𝒜} 
    hom-Noncoherent-Wild-Higher-Precategory 𝒜 x y 
    hom-Noncoherent-Wild-Higher-Precategory 
      ( obj-colax-functor-Noncoherent-Wild-Higher-Precategory x)
      ( obj-colax-functor-Noncoherent-Wild-Higher-Precategory y)
  hom-colax-functor-Noncoherent-Wild-Higher-Precategory =
    hom-map-Noncoherent-Wild-Higher-Precategory
      map-colax-functor-Noncoherent-Wild-Higher-Precategory

  preserves-id-hom-colax-functor-Noncoherent-Wild-Higher-Precategory :
    (x : obj-Noncoherent-Wild-Higher-Precategory 𝒜) 
    2-hom-Noncoherent-Wild-Higher-Precategory 
      ( hom-colax-functor-Noncoherent-Wild-Higher-Precategory
        ( id-hom-Noncoherent-Wild-Higher-Precategory 𝒜 {x}))
      ( id-hom-Noncoherent-Wild-Higher-Precategory 
        { obj-colax-functor-Noncoherent-Wild-Higher-Precategory x})
  preserves-id-hom-colax-functor-Noncoherent-Wild-Higher-Precategory =
    preserves-id-hom-is-colax-functor-Noncoherent-Wild-Higher-Precategory
      ( is-colax-functor-colax-functor-Noncoherent-Wild-Higher-Precategory)

  preserves-comp-hom-colax-functor-Noncoherent-Wild-Higher-Precategory :
    {x y z : obj-Noncoherent-Wild-Higher-Precategory 𝒜}
    (g : hom-Noncoherent-Wild-Higher-Precategory 𝒜 y z)
    (f : hom-Noncoherent-Wild-Higher-Precategory 𝒜 x y) 
    2-hom-Noncoherent-Wild-Higher-Precategory 
      ( hom-colax-functor-Noncoherent-Wild-Higher-Precategory
        ( comp-hom-Noncoherent-Wild-Higher-Precategory 𝒜 g f))
      ( comp-hom-Noncoherent-Wild-Higher-Precategory 
        ( hom-colax-functor-Noncoherent-Wild-Higher-Precategory g)
        ( hom-colax-functor-Noncoherent-Wild-Higher-Precategory f))
  preserves-comp-hom-colax-functor-Noncoherent-Wild-Higher-Precategory =
    preserves-comp-hom-is-colax-functor-Noncoherent-Wild-Higher-Precategory
      ( is-colax-functor-colax-functor-Noncoherent-Wild-Higher-Precategory)

  2-hom-colax-functor-Noncoherent-Wild-Higher-Precategory :
    {x y : obj-Noncoherent-Wild-Higher-Precategory 𝒜}
    {f g : hom-Noncoherent-Wild-Higher-Precategory 𝒜 x y} 
    2-hom-Noncoherent-Wild-Higher-Precategory 𝒜 f g 
    2-hom-Noncoherent-Wild-Higher-Precategory 
      ( hom-colax-functor-Noncoherent-Wild-Higher-Precategory f)
      ( hom-colax-functor-Noncoherent-Wild-Higher-Precategory g)
  2-hom-colax-functor-Noncoherent-Wild-Higher-Precategory =
    2-hom-map-Noncoherent-Wild-Higher-Precategory
      map-colax-functor-Noncoherent-Wild-Higher-Precategory

  hom-globular-type-map-colax-functor-Noncoherent-Wild-Higher-Precategory :
    {x y : obj-Noncoherent-Wild-Higher-Precategory 𝒜} 
    map-Globular-Type
      ( hom-globular-type-Noncoherent-Wild-Higher-Precategory 𝒜 x y)
      ( hom-globular-type-Noncoherent-Wild-Higher-Precategory 
        ( obj-colax-functor-Noncoherent-Wild-Higher-Precategory x)
        ( obj-colax-functor-Noncoherent-Wild-Higher-Precategory y))
  hom-globular-type-map-colax-functor-Noncoherent-Wild-Higher-Precategory =
    hom-globular-type-map-Noncoherent-Wild-Higher-Precategory
      ( map-colax-functor-Noncoherent-Wild-Higher-Precategory)

  map-hom-noncoherent-wild-higher-precategory-colax-functor-Noncoherent-Wild-Higher-Precategory :
    (x y : obj-Noncoherent-Wild-Higher-Precategory 𝒜) 
    map-Noncoherent-Wild-Higher-Precategory
      ( hom-noncoherent-wild-higher-precategory-Noncoherent-Wild-Higher-Precategory
        ( 𝒜)
        ( x)
        ( y))
      ( hom-noncoherent-wild-higher-precategory-Noncoherent-Wild-Higher-Precategory
        ( )
        ( obj-colax-functor-Noncoherent-Wild-Higher-Precategory x)
        ( obj-colax-functor-Noncoherent-Wild-Higher-Precategory y))
  map-hom-noncoherent-wild-higher-precategory-colax-functor-Noncoherent-Wild-Higher-Precategory =
    hom-noncoherent-wild-higher-precategory-map-Noncoherent-Wild-Higher-Precategory
      ( map-colax-functor-Noncoherent-Wild-Higher-Precategory)

  hom-noncoherent-wild-higher-precategory-colax-functor-Noncoherent-Wild-Higher-Precategory :
    (x y : obj-Noncoherent-Wild-Higher-Precategory 𝒜) 
    colax-functor-Noncoherent-Wild-Higher-Precategory
      ( hom-noncoherent-wild-higher-precategory-Noncoherent-Wild-Higher-Precategory
        ( 𝒜)
        ( x)
        ( y))
      ( hom-noncoherent-wild-higher-precategory-Noncoherent-Wild-Higher-Precategory
        ( )
        ( obj-colax-functor-Noncoherent-Wild-Higher-Precategory x)
        ( obj-colax-functor-Noncoherent-Wild-Higher-Precategory y))
  hom-noncoherent-wild-higher-precategory-colax-functor-Noncoherent-Wild-Higher-Precategory
    x y =
    ( map-hom-noncoherent-wild-higher-precategory-colax-functor-Noncoherent-Wild-Higher-Precategory
        ( x)
        ( y) ,
      is-colax-functor-map-hom-Noncoherent-Wild-Higher-Precategory
        ( is-colax-functor-colax-functor-Noncoherent-Wild-Higher-Precategory)
        ( x)
        ( y))

The identity colax functor on a noncoherent wild higher precategory

is-colax-functor-id-colax-functor-Noncoherent-Wild-Higher-Precategory :
  {l1 l2 : Level} (𝒜 : Noncoherent-Wild-Higher-Precategory l1 l2) 
  is-colax-functor-Noncoherent-Wild-Higher-Precategory
    ( id-map-Noncoherent-Wild-Higher-Precategory 𝒜)
is-colax-functor-id-colax-functor-Noncoherent-Wild-Higher-Precategory 𝒜 =
  λ where
    .preserves-id-hom-is-colax-functor-Noncoherent-Wild-Higher-Precategory
      x 
      id-2-hom-Noncoherent-Wild-Higher-Precategory 𝒜
    .preserves-comp-hom-is-colax-functor-Noncoherent-Wild-Higher-Precategory
      g f 
      id-2-hom-Noncoherent-Wild-Higher-Precategory 𝒜
    .is-colax-functor-map-hom-Noncoherent-Wild-Higher-Precategory x y 
      is-colax-functor-id-colax-functor-Noncoherent-Wild-Higher-Precategory
        ( hom-noncoherent-wild-higher-precategory-Noncoherent-Wild-Higher-Precategory
          ( 𝒜)
          ( x)
          ( y))

id-colax-functor-Noncoherent-Wild-Higher-Precategory :
  {l1 l2 : Level} (𝒜 : Noncoherent-Wild-Higher-Precategory l1 l2) 
  colax-functor-Noncoherent-Wild-Higher-Precategory 𝒜 𝒜
id-colax-functor-Noncoherent-Wild-Higher-Precategory 𝒜 =
  ( id-map-Noncoherent-Wild-Higher-Precategory 𝒜 ,
    is-colax-functor-id-colax-functor-Noncoherent-Wild-Higher-Precategory 𝒜)

Composition of colax functors between noncoherent wild higher precategories

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  {𝒜 : Noncoherent-Wild-Higher-Precategory l1 l2}
  { : Noncoherent-Wild-Higher-Precategory l3 l4}
  {𝒞 : Noncoherent-Wild-Higher-Precategory l5 l6}
  (G : colax-functor-Noncoherent-Wild-Higher-Precategory  𝒞)
  (F : colax-functor-Noncoherent-Wild-Higher-Precategory 𝒜 )
  where

  map-comp-colax-functor-Noncoherent-Wild-Higher-Precategory :
    map-Noncoherent-Wild-Higher-Precategory 𝒜 𝒞
  map-comp-colax-functor-Noncoherent-Wild-Higher-Precategory =
    comp-map-Noncoherent-Wild-Higher-Precategory
      ( map-colax-functor-Noncoherent-Wild-Higher-Precategory G)
      ( map-colax-functor-Noncoherent-Wild-Higher-Precategory F)

is-colax-functor-comp-colax-functor-Noncoherent-Wild-Higher-Precategory :
  {l1 l2 l3 l4 l5 l6 : Level}
  {𝒜 : Noncoherent-Wild-Higher-Precategory l1 l2}
  { : Noncoherent-Wild-Higher-Precategory l3 l4}
  {𝒞 : Noncoherent-Wild-Higher-Precategory l5 l6}
  (G : colax-functor-Noncoherent-Wild-Higher-Precategory  𝒞)
  (F : colax-functor-Noncoherent-Wild-Higher-Precategory 𝒜 ) 
  is-colax-functor-Noncoherent-Wild-Higher-Precategory
    ( map-comp-colax-functor-Noncoherent-Wild-Higher-Precategory G F)
is-colax-functor-comp-colax-functor-Noncoherent-Wild-Higher-Precategory
  {𝒞 = 𝒞} G F =
  λ where
  .preserves-id-hom-is-colax-functor-Noncoherent-Wild-Higher-Precategory x 
    comp-2-hom-Noncoherent-Wild-Higher-Precategory 𝒞
      ( preserves-id-hom-colax-functor-Noncoherent-Wild-Higher-Precategory G
        ( obj-colax-functor-Noncoherent-Wild-Higher-Precategory F x))
      ( 2-hom-colax-functor-Noncoherent-Wild-Higher-Precategory G
        ( preserves-id-hom-colax-functor-Noncoherent-Wild-Higher-Precategory F
          ( x)))
  .preserves-comp-hom-is-colax-functor-Noncoherent-Wild-Higher-Precategory g f 
    comp-2-hom-Noncoherent-Wild-Higher-Precategory 𝒞
      ( preserves-comp-hom-colax-functor-Noncoherent-Wild-Higher-Precategory G
        ( hom-colax-functor-Noncoherent-Wild-Higher-Precategory F g)
        ( hom-colax-functor-Noncoherent-Wild-Higher-Precategory F f))
      ( 2-hom-colax-functor-Noncoherent-Wild-Higher-Precategory G
        ( preserves-comp-hom-colax-functor-Noncoherent-Wild-Higher-Precategory F
          ( g)
          ( f)))
  .is-colax-functor-map-hom-Noncoherent-Wild-Higher-Precategory x y 
    is-colax-functor-comp-colax-functor-Noncoherent-Wild-Higher-Precategory
      ( hom-noncoherent-wild-higher-precategory-colax-functor-Noncoherent-Wild-Higher-Precategory
        ( G)
        ( obj-colax-functor-Noncoherent-Wild-Higher-Precategory F x)
        ( obj-colax-functor-Noncoherent-Wild-Higher-Precategory F y))
      ( hom-noncoherent-wild-higher-precategory-colax-functor-Noncoherent-Wild-Higher-Precategory
        ( F)
        ( x)
        ( y))

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  {𝒜 : Noncoherent-Wild-Higher-Precategory l1 l2}
  { : Noncoherent-Wild-Higher-Precategory l3 l4}
  {𝒞 : Noncoherent-Wild-Higher-Precategory l5 l6}
  (G : colax-functor-Noncoherent-Wild-Higher-Precategory  𝒞)
  (F : colax-functor-Noncoherent-Wild-Higher-Precategory 𝒜 )
  where

  comp-colax-functor-Noncoherent-Wild-Higher-Precategory :
    colax-functor-Noncoherent-Wild-Higher-Precategory 𝒜 𝒞
  pr1 comp-colax-functor-Noncoherent-Wild-Higher-Precategory =
    map-comp-colax-functor-Noncoherent-Wild-Higher-Precategory G F
  pr2 comp-colax-functor-Noncoherent-Wild-Higher-Precategory =
    is-colax-functor-comp-colax-functor-Noncoherent-Wild-Higher-Precategory G F

Recent changes