Globular types
Content created by Egbert Rijke, Fredrik Bakke and Vojtěch Štěpančík.
Created on 2024-03-20.
Last modified on 2024-09-03.
{-# OPTIONS --guardedness #-} module structured-types.globular-types where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels
Idea
A globular type¶ is a type equipped with a binary relation valued in globular types.
Thus, a globular type consists of a base type A
which is called the type of
-cells, and for every pair of -cells, a type of -cells, and for every
pair of -cells a type of -cells, and so on ad infinitum. For every pair
of -cells s
and t
, there is a type of -cells from s
to t
,
and we say the -cells have source s
and target t
.
The standard interpretation of the higher cells of a globular type is as arrows
from their source to their target. For instance, given two -cells x
and
y
, two -cells f
and g
from x
to y
, two -cells H
and K
from
f
to g
, and a -cell α
from H
to K
, a common depiction would be
f
-------------
/ // \\ \
/ // α \\ ∨
x H|| ≡≡≡≡≡≡> ||K y.
\ \\ // ∧
\ V V /
-------------
g
We follow the conventional approach of the library and start by defining the globular structure on a type, and then define a globular type to be a type equipped with such structure. Note that we could equivalently have started by defining globular types, and then define globular structures on a type as binary families of globular types on it, but this is a special property of globular types.
Definitions
The structure of a globular type
Comment. The choice to add a second universe level in the definition of a globular structure may seem rather arbitrary, but makes the concept applicable in particular extra cases that are of use to us when working with large globular structures.
record globular-structure {l1 : Level} (l2 : Level) (A : UU l1) : UU (l1 ⊔ lsuc l2) where coinductive field 1-cell-globular-structure : (x y : A) → UU l2 globular-structure-1-cell-globular-structure : (x y : A) → globular-structure l2 (1-cell-globular-structure x y) open globular-structure public
Iterated projections for globular structures
module _ {l1 l2 : Level} {A : UU l1} (G : globular-structure l2 A) {x y : A} (f g : 1-cell-globular-structure G x y) where 2-cell-globular-structure : UU l2 2-cell-globular-structure = 1-cell-globular-structure ( globular-structure-1-cell-globular-structure G x y) f g globular-structure-2-cell-globular-structure : globular-structure l2 2-cell-globular-structure globular-structure-2-cell-globular-structure = globular-structure-1-cell-globular-structure ( globular-structure-1-cell-globular-structure G x y) f g module _ {l1 l2 : Level} {A : UU l1} (G : globular-structure l2 A) {x y : A} {f g : 1-cell-globular-structure G x y} (p q : 2-cell-globular-structure G f g) where 3-cell-globular-structure : UU l2 3-cell-globular-structure = 1-cell-globular-structure ( globular-structure-2-cell-globular-structure G f g) p q globular-structure-3-cell-globular-structure : globular-structure l2 3-cell-globular-structure globular-structure-3-cell-globular-structure = globular-structure-1-cell-globular-structure ( globular-structure-2-cell-globular-structure G f g) p q module _ {l1 l2 : Level} {A : UU l1} (G : globular-structure l2 A) {x y : A} {f g : 1-cell-globular-structure G x y} {p q : 2-cell-globular-structure G f g} (H K : 3-cell-globular-structure G p q) where 4-cell-globular-structure : UU l2 4-cell-globular-structure = 1-cell-globular-structure ( globular-structure-3-cell-globular-structure G p q) H K globular-structure-4-cell-globular-structure : globular-structure l2 4-cell-globular-structure globular-structure-4-cell-globular-structure = globular-structure-1-cell-globular-structure ( globular-structure-3-cell-globular-structure G p q) H K
The type of globular types
Globular-Type : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Globular-Type l1 l2 = Σ (UU l1) (globular-structure l2) module _ {l1 l2 : Level} (A : Globular-Type l1 l2) where 0-cell-Globular-Type : UU l1 0-cell-Globular-Type = pr1 A globular-structure-0-cell-Globular-Type : globular-structure l2 0-cell-Globular-Type globular-structure-0-cell-Globular-Type = pr2 A 1-cell-Globular-Type : (x y : 0-cell-Globular-Type) → UU l2 1-cell-Globular-Type = 1-cell-globular-structure globular-structure-0-cell-Globular-Type globular-structure-1-cell-Globular-Type : (x y : 0-cell-Globular-Type) → globular-structure l2 (1-cell-Globular-Type x y) globular-structure-1-cell-Globular-Type = globular-structure-1-cell-globular-structure ( globular-structure-0-cell-Globular-Type) 1-cell-globular-type-Globular-Type : (x y : 0-cell-Globular-Type) → Globular-Type l2 l2 1-cell-globular-type-Globular-Type x y = ( 1-cell-Globular-Type x y , globular-structure-1-cell-Globular-Type x y) 2-cell-Globular-Type : {x y : 0-cell-Globular-Type} (f g : 1-cell-Globular-Type x y) → UU l2 2-cell-Globular-Type = 2-cell-globular-structure globular-structure-0-cell-Globular-Type globular-structure-2-cell-Globular-Type : {x y : 0-cell-Globular-Type} (f g : 1-cell-Globular-Type x y) → globular-structure l2 (2-cell-Globular-Type f g) globular-structure-2-cell-Globular-Type = globular-structure-2-cell-globular-structure ( globular-structure-0-cell-Globular-Type) 2-cell-globular-type-Globular-Type : {x y : 0-cell-Globular-Type} (f g : 1-cell-Globular-Type x y) → Globular-Type l2 l2 2-cell-globular-type-Globular-Type f g = ( 2-cell-Globular-Type f g , globular-structure-2-cell-Globular-Type f g) 3-cell-Globular-Type : {x y : 0-cell-Globular-Type} {f g : 1-cell-Globular-Type x y} (H K : 2-cell-Globular-Type f g) → UU l2 3-cell-Globular-Type = 3-cell-globular-structure globular-structure-0-cell-Globular-Type 4-cell-Globular-Type : {x y : 0-cell-Globular-Type} {f g : 1-cell-Globular-Type x y} {H K : 2-cell-Globular-Type f g} (α β : 3-cell-Globular-Type H K) → UU l2 4-cell-Globular-Type = 4-cell-globular-structure globular-structure-0-cell-Globular-Type
Examples
The globular structure on a type given by its identity types
globular-structure-Id : {l : Level} (A : UU l) → globular-structure l A globular-structure-Id A = λ where .1-cell-globular-structure x y → x = y .globular-structure-1-cell-globular-structure x y → globular-structure-Id (x = y)
See also
Recent changes
- 2024-09-03. Egbert Rijke. Some infrastructure for dependent globular types (#1176).
- 2024-09-01. Egbert Rijke. Cisinski’s Formalization of Higher Categories (#1171).
- 2024-06-16. Fredrik Bakke and Vojtěch Štěpančík. Noncoherent wild higher precategories (#1099).
- 2024-03-20. Fredrik Bakke. Globular types (#1084).