Globular types

Content created by Egbert Rijke, Fredrik Bakke and Vojtěch Štěpančík.

Created on 2024-03-20.
Last modified on 2024-09-03.

{-# OPTIONS --guardedness #-}

module structured-types.globular-types where
Imports
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels

Idea

A globular type is a type equipped with a binary relation valued in globular types.

Thus, a globular type consists of a base type A which is called the type of -cells, and for every pair of -cells, a type of -cells, and for every pair of -cells a type of -cells, and so on ad infinitum. For every pair of -cells s and t, there is a type of -cells from s to t, and we say the -cells have source s and target t.

The standard interpretation of the higher cells of a globular type is as arrows from their source to their target. For instance, given two -cells x and y, two -cells f and g from x to y, two -cells H and K from f to g, and a -cell α from H to K, a common depiction would be

            f
       -------------
     /   //     \\   \
    /   //   α   \\   ∨
   x  H|| ≡≡≡≡≡≡> ||K  y.
    \   \\       //   ∧
     \   V       V   /
       -------------
            g

We follow the conventional approach of the library and start by defining the globular structure on a type, and then define a globular type to be a type equipped with such structure. Note that we could equivalently have started by defining globular types, and then define globular structures on a type as binary families of globular types on it, but this is a special property of globular types.

Definitions

The structure of a globular type

Comment. The choice to add a second universe level in the definition of a globular structure may seem rather arbitrary, but makes the concept applicable in particular extra cases that are of use to us when working with large globular structures.

record
  globular-structure {l1 : Level} (l2 : Level) (A : UU l1) : UU (l1  lsuc l2)
  where
  coinductive
  field
    1-cell-globular-structure :
      (x y : A)  UU l2
    globular-structure-1-cell-globular-structure :
      (x y : A)  globular-structure l2 (1-cell-globular-structure x y)

open globular-structure public

Iterated projections for globular structures

module _
  {l1 l2 : Level} {A : UU l1} (G : globular-structure l2 A)
  {x y : A} (f g : 1-cell-globular-structure G x y)
  where

  2-cell-globular-structure : UU l2
  2-cell-globular-structure =
    1-cell-globular-structure
      ( globular-structure-1-cell-globular-structure G x y) f g

  globular-structure-2-cell-globular-structure :
    globular-structure l2 2-cell-globular-structure
  globular-structure-2-cell-globular-structure =
    globular-structure-1-cell-globular-structure
      ( globular-structure-1-cell-globular-structure G x y) f g

module _
  {l1 l2 : Level} {A : UU l1} (G : globular-structure l2 A)
  {x y : A} {f g : 1-cell-globular-structure G x y}
  (p q : 2-cell-globular-structure G f g)
  where

  3-cell-globular-structure : UU l2
  3-cell-globular-structure =
    1-cell-globular-structure
      ( globular-structure-2-cell-globular-structure G f g) p q

  globular-structure-3-cell-globular-structure :
    globular-structure l2 3-cell-globular-structure
  globular-structure-3-cell-globular-structure =
    globular-structure-1-cell-globular-structure
      ( globular-structure-2-cell-globular-structure G f g) p q

module _
  {l1 l2 : Level} {A : UU l1} (G : globular-structure l2 A)
  {x y : A} {f g : 1-cell-globular-structure G x y}
  {p q : 2-cell-globular-structure G f g}
  (H K : 3-cell-globular-structure G p q)
  where

  4-cell-globular-structure : UU l2
  4-cell-globular-structure =
    1-cell-globular-structure
      ( globular-structure-3-cell-globular-structure G p q) H K

  globular-structure-4-cell-globular-structure :
    globular-structure l2 4-cell-globular-structure
  globular-structure-4-cell-globular-structure =
    globular-structure-1-cell-globular-structure
      ( globular-structure-3-cell-globular-structure G p q) H K

The type of globular types

Globular-Type : (l1 l2 : Level)  UU (lsuc l1  lsuc l2)
Globular-Type l1 l2 = Σ (UU l1) (globular-structure l2)

module _
  {l1 l2 : Level} (A : Globular-Type l1 l2)
  where

  0-cell-Globular-Type : UU l1
  0-cell-Globular-Type = pr1 A

  globular-structure-0-cell-Globular-Type :
    globular-structure l2 0-cell-Globular-Type
  globular-structure-0-cell-Globular-Type = pr2 A

  1-cell-Globular-Type : (x y : 0-cell-Globular-Type)  UU l2
  1-cell-Globular-Type =
    1-cell-globular-structure globular-structure-0-cell-Globular-Type

  globular-structure-1-cell-Globular-Type :
    (x y : 0-cell-Globular-Type) 
    globular-structure l2 (1-cell-Globular-Type x y)
  globular-structure-1-cell-Globular-Type =
    globular-structure-1-cell-globular-structure
      ( globular-structure-0-cell-Globular-Type)

  1-cell-globular-type-Globular-Type :
    (x y : 0-cell-Globular-Type)  Globular-Type l2 l2
  1-cell-globular-type-Globular-Type x y =
    ( 1-cell-Globular-Type x y , globular-structure-1-cell-Globular-Type x y)

  2-cell-Globular-Type :
    {x y : 0-cell-Globular-Type} (f g : 1-cell-Globular-Type x y)  UU l2
  2-cell-Globular-Type =
    2-cell-globular-structure globular-structure-0-cell-Globular-Type

  globular-structure-2-cell-Globular-Type :
    {x y : 0-cell-Globular-Type} (f g : 1-cell-Globular-Type x y) 
    globular-structure l2 (2-cell-Globular-Type f g)
  globular-structure-2-cell-Globular-Type =
    globular-structure-2-cell-globular-structure
      ( globular-structure-0-cell-Globular-Type)

  2-cell-globular-type-Globular-Type :
    {x y : 0-cell-Globular-Type} (f g : 1-cell-Globular-Type x y) 
    Globular-Type l2 l2
  2-cell-globular-type-Globular-Type f g =
    ( 2-cell-Globular-Type f g , globular-structure-2-cell-Globular-Type f g)

  3-cell-Globular-Type :
    {x y : 0-cell-Globular-Type} {f g : 1-cell-Globular-Type x y}
    (H K : 2-cell-Globular-Type f g)  UU l2
  3-cell-Globular-Type =
    3-cell-globular-structure globular-structure-0-cell-Globular-Type

  4-cell-Globular-Type :
    {x y : 0-cell-Globular-Type} {f g : 1-cell-Globular-Type x y}
    {H K : 2-cell-Globular-Type f g} (α β : 3-cell-Globular-Type H K)  UU l2
  4-cell-Globular-Type =
    4-cell-globular-structure globular-structure-0-cell-Globular-Type

Examples

The globular structure on a type given by its identity types

globular-structure-Id : {l : Level} (A : UU l)  globular-structure l A
globular-structure-Id A =
  λ where
  .1-cell-globular-structure x y 
    x  y
  .globular-structure-1-cell-globular-structure x y 
    globular-structure-Id (x  y)

See also

Recent changes