Localizations at maps
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-06-28.
Last modified on 2024-03-12.
module orthogonal-factorization-systems.localizations-maps where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.universe-levels open import orthogonal-factorization-systems.local-types open import orthogonal-factorization-systems.localizations-subuniverses
Idea
Let f
be a map of type A → B
and let X
be a type. The localization of
X
at f
, or f
-localization, is an
f
-local type Y
together
with a map η : X → Y
with the property that every type that is f
-local is
also η
-local.
Definition
The predicate of being a localization at a map
is-localization : {l1 l2 l3 l4 : Level} (l5 : Level) {A : UU l1} {B : UU l2} (f : A → B) (X : UU l3) (Y : UU l4) (η : X → Y) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ lsuc l5) is-localization l5 f X Y η = ( is-local f Y) × ( (Z : UU l5) → is-local f Z → is-local η Z)
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {f : A → B} {X : UU l3} {Y : UU l4} {η : X → Y} (is-localization-Y : is-localization l5 f X Y η) where is-local-is-localization : is-local f Y is-local-is-localization = pr1 is-localization-Y
The type of localizations of a type with respect to a map
localization : {l1 l2 l3 : Level} (l4 l5 : Level) {A : UU l1} {B : UU l2} (f : A → B) (X : UU l3) → UU (l1 ⊔ l2 ⊔ l3 ⊔ lsuc l4 ⊔ lsuc l5) localization l4 l5 f X = Σ (UU l4) (λ Y → Σ (X → Y) (is-localization l5 f X Y))
Properties
Localizations at a map are localizations at a subuniverse
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} (f : A → B) (X : UU l3) (Y : UU l4) (η : X → Y) where is-subuniverse-localization-is-localization : is-localization l4 f X Y η → is-subuniverse-localization (is-local-Prop f) X Y pr1 (is-subuniverse-localization-is-localization is-localization-Y) = pr1 is-localization-Y pr1 (pr2 (is-subuniverse-localization-is-localization is-localization-Y)) = η pr2 (pr2 (is-subuniverse-localization-is-localization is-localization-Y)) Z is-local-Z = pr2 is-localization-Y Z is-local-Z
It remains to construct a converse.
References
- [Rij19]
- Egbert Rijke. Classifying Types. PhD thesis, Carnegie Mellon University, 06 2019. arXiv:1906.09435.
- [RSS20]
- Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory. Logical Methods in Computer Science, 01 2020. URL: https://lmcs.episciences.org/6015, arXiv:1706.07526, doi:10.23638/LMCS-16(1:2)2020.
Recent changes
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).
- 2023-09-11. Fredrik Bakke and Egbert Rijke. Some computations for different notions of equivalence (#711).
- 2023-08-23. Fredrik Bakke. Pre-commit fixes and some miscellaneous changes (#705).
- 2023-06-28. Fredrik Bakke. Localizations and other things (#655).