Separated types
Content created by Fredrik Bakke.
Created on 2023-06-08.
Last modified on 2023-06-28.
module orthogonal-factorization-systems.separated-types where
Imports
open import foundation.identity-types open import foundation.universe-levels open import orthogonal-factorization-systems.local-types
Idea
A type A
is said to be separated with respect to a map f
, or
f
-separated, if its identity types
are f
-local.
Definition
module _ {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) where is-separated-family : (X → UU l3) → UU (l1 ⊔ l2 ⊔ l3) is-separated-family A = (x : X) (y z : A x) → is-local f (y = z) is-separated : UU l3 → UU (l1 ⊔ l2 ⊔ l3) is-separated A = is-separated-family (λ _ → A)
References
- Egbert Rijke, Classifying Types (arXiv:1906.09435, doi:10.48550)
Recent changes
- 2023-06-28. Fredrik Bakke. Localizations and other things (#655).
- 2023-06-08. Fredrik Bakke. Examples of modalities and various fixes (#639).