Separated types
Content created by Fredrik Bakke.
Created on 2023-06-08.
Last modified on 2024-03-12.
module orthogonal-factorization-systems.separated-types where
Imports
open import foundation.identity-types open import foundation.universe-levels open import orthogonal-factorization-systems.local-types
Idea
A type A
is said to be separated with respect to a map f
, or
f
-separated, if its identity types
are f
-local.
Definition
module _ {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) where is-map-separated-family : (X → UU l3) → UU (l1 ⊔ l2 ⊔ l3) is-map-separated-family A = (x : X) (y z : A x) → is-local f (y = z) is-map-separated : UU l3 → UU (l1 ⊔ l2 ⊔ l3) is-map-separated A = is-map-separated-family (λ _ → A)
References
- [Rij19]
- Egbert Rijke. Classifying Types. PhD thesis, Carnegie Mellon University, 06 2019. arXiv:1906.09435.
Recent changes
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2024-02-07. Fredrik Bakke. Deduplicate definitions (#1022).
- 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).
- 2023-06-28. Fredrik Bakke. Localizations and other things (#655).
- 2023-06-08. Fredrik Bakke. Examples of modalities and various fixes (#639).