Local maps

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-09-11.
Last modified on 2024-01-25.

module orthogonal-factorization-systems.local-maps where
open import foundation.cartesian-morphisms-arrows
open import foundation.fibers-of-maps
open import foundation.propositions
open import foundation.unit-type
open import foundation.universe-levels

open import orthogonal-factorization-systems.local-families-of-types
open import orthogonal-factorization-systems.local-types
open import orthogonal-factorization-systems.orthogonal-maps


A map g : A → B is said to be local at f : Y → X, or f-local, if all its fibers are f-local types.


module _
  {l1 l2 l3 l4 : Level} {Y : UU l1} {X : UU l2} {A : UU l3} {B : UU l4}
  (f : Y  X) (g : A  B)

  is-local-map : UU (l1  l2  l3  l4)
  is-local-map = is-local-family f (fiber g)

  is-property-is-local-map : is-prop is-local-map
  is-property-is-local-map = is-property-is-local-family f (fiber g)

  is-local-map-Prop : Prop (l1  l2  l3  l4)
  is-local-map-Prop = is-local-family-Prop f (fiber g)

A type B is f-local if and only if the terminal map B → unit is f-local

module _
  {l1 l2 l3 : Level} {Y : UU l1} {X : UU l2} {B : UU l3}
  (f : Y  X)

  is-local-is-local-terminal-map :
    is-local-map f (terminal-map B)  is-local f B
  is-local-is-local-terminal-map H =
    is-local-equiv f (inv-equiv-fiber-terminal-map star) (H star)

  is-local-terminal-map-is-local :
    is-local f B  is-local-map f (terminal-map B)
  is-local-terminal-map-is-local H u =
    is-local-equiv f (equiv-fiber-terminal-map u) H

A map is f-local if and only if it is f-orthogonal

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} {X' : UU l5} {Y' : UU l6}
  (f : A  B) (g : X  Y)

  is-local-map-is-orthogonal-pullback-condition :
    is-orthogonal-pullback-condition f g  is-local-map f g
  is-local-map-is-orthogonal-pullback-condition G y =
    is-local-is-orthogonal-pullback-condition-terminal-map f
      ( is-orthogonal-pullback-condition-right-base-change f g
        ( terminal-map (fiber g y))
        ( fiber-cartesian-hom-arrow g y)
        ( G))

  is-local-map-is-orthogonal : is-orthogonal f g  is-local-map f g
  is-local-map-is-orthogonal G y =
    is-local-is-orthogonal-terminal-map f
      ( is-orthogonal-right-base-change f g
        ( terminal-map (fiber g y))
        ( fiber-cartesian-hom-arrow g y)
        ( G))

The converse remains to be formalized.

See also

Recent changes