Dependent globular types

Content created by Egbert Rijke.

Created on 2024-09-03.
Last modified on 2024-09-03.

{-# OPTIONS --guardedness #-}

module structured-types.dependent-globular-types where
Imports
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import structured-types.globular-types

Idea

Consider a globular type G. A dependent globular type over G consists of a type family H₀ : G₀ → 𝒰, and for any two 0-cells x y : G₀ in G a binary family of dependent globular types

  H₁ : H₀ x → H₀ y → dependent-globular-type (G₁ x y).

Definitions

Dependent globular types

record
  Dependent-Globular-Type
    {l1 l2 : Level} (l3 l4 : Level) (G : Globular-Type l1 l2) :
    UU (l1  l2  lsuc l3  lsuc l4)
  where
  coinductive
  field
    0-cell-Dependent-Globular-Type :
      0-cell-Globular-Type G  UU l3
    1-cell-dependent-globular-type-Dependent-Globular-Type :
      {x y : 0-cell-Globular-Type G} 
      0-cell-Dependent-Globular-Type x 
      0-cell-Dependent-Globular-Type y 
      Dependent-Globular-Type l4 l4 (1-cell-globular-type-Globular-Type G x y)

open Dependent-Globular-Type public

module _
  {l1 l2 l3 l4 : Level} {G : Globular-Type l1 l2}
  (H : Dependent-Globular-Type l3 l4 G)
  where

  1-cell-Dependent-Globular-Type :
    {x x' : 0-cell-Globular-Type G} 
    (y : 0-cell-Dependent-Globular-Type H x)
    (y' : 0-cell-Dependent-Globular-Type H x') 
    1-cell-Globular-Type G x x'  UU l4
  1-cell-Dependent-Globular-Type y y' =
    0-cell-Dependent-Globular-Type
      ( 1-cell-dependent-globular-type-Dependent-Globular-Type H y y')

See also

Recent changes