Equality of globular types
Content created by Fredrik Bakke.
Created on 2024-10-09.
Last modified on 2024-10-09.
{-# OPTIONS --guardedness #-} module structured-types.equality-globular-types where
Imports
open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-homotopies open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.torsorial-type-families open import foundation.univalence open import foundation.universe-levels open import foundation-core.coherently-invertible-maps open import foundation-core.equivalences open import foundation-core.retractions open import foundation-core.sections open import structured-types.globular-types
Idea
We postulate that equality of globular types is characterized by equality of the 0-cells together with, coinductively, a binary family of equalities of the globular type of 1-cells over the equality of the 0-cells. This phrasing is used so that the extensionality principle is independent of univalence.
Definitions
Coinductive equality of globular types
record Eq-Globular-Type {l1 l2 : Level} (A : Globular-Type l1 l2) (B : Globular-Type l1 l2) : UU (lsuc l1 ⊔ lsuc l2) where coinductive field eq-0-cell-Eq-Globular-Type : 0-cell-Globular-Type A = 0-cell-Globular-Type B map-0-cell-Eq-Globular-Type : 0-cell-Globular-Type A → 0-cell-Globular-Type B map-0-cell-Eq-Globular-Type = map-eq eq-0-cell-Eq-Globular-Type field globular-type-1-cell-Eq-Globular-Type : {x y : 0-cell-Globular-Type A} → Eq-Globular-Type ( 1-cell-globular-type-Globular-Type A x y) ( 1-cell-globular-type-Globular-Type B ( map-0-cell-Eq-Globular-Type x) ( map-0-cell-Eq-Globular-Type y)) open Eq-Globular-Type public refl-Eq-Globular-Type : {l1 l2 : Level} (A : Globular-Type l1 l2) → Eq-Globular-Type A A refl-Eq-Globular-Type A = λ where .eq-0-cell-Eq-Globular-Type → refl .globular-type-1-cell-Eq-Globular-Type {x} {y} → refl-Eq-Globular-Type (1-cell-globular-type-Globular-Type A x y) Eq-eq-Globular-Type : {l1 l2 : Level} {A B : Globular-Type l1 l2} → A = B → Eq-Globular-Type A B Eq-eq-Globular-Type {A = A} refl = refl-Eq-Globular-Type A
Equality of globular types as a dependent sum
module _ {l1 l2 : Level} where Eq-Globular-Type' : (A B : Globular-Type l1 l2) → UU (lsuc l1 ⊔ lsuc l2) Eq-Globular-Type' A B = Σ ( 0-cell-Globular-Type A = 0-cell-Globular-Type B) ( λ p → (x y : 0-cell-Globular-Type A) → 1-cell-globular-type-Globular-Type A x y = 1-cell-globular-type-Globular-Type B (map-eq p x) (map-eq p y)) refl-Eq-Globular-Type' : (A : Globular-Type l1 l2) → Eq-Globular-Type' A A refl-Eq-Globular-Type' A = ( refl , refl-binary-htpy (1-cell-globular-type-Globular-Type A)) Eq-eq-Globular-Type' : {A B : Globular-Type l1 l2} → A = B → Eq-Globular-Type' A B Eq-eq-Globular-Type' {A} refl = refl-Eq-Globular-Type' A
Postulate
We postulate that the map Eq-eq-Globular-Type : A = B → Eq-Globular-Type A B
is a coherently invertible map.
module _ {l1 l2 : Level} {A B : Globular-Type l1 l2} where postulate eq-Eq-Globular-Type : Eq-Globular-Type A B → A = B postulate is-section-eq-Eq-Globular-Type : is-section Eq-eq-Globular-Type eq-Eq-Globular-Type postulate is-retraction-eq-Eq-Globular-Type : is-retraction Eq-eq-Globular-Type eq-Eq-Globular-Type postulate coh-eq-Eq-Globular-Type : coherence-is-coherently-invertible ( Eq-eq-Globular-Type) ( eq-Eq-Globular-Type) ( is-section-eq-Eq-Globular-Type) ( is-retraction-eq-Eq-Globular-Type)
Further definitions
module _ {l1 l2 : Level} {A B : Globular-Type l1 l2} where is-coherently-invertible-Eq-eq-Globular-Type : is-coherently-invertible (Eq-eq-Globular-Type {A = A} {B}) is-coherently-invertible-Eq-eq-Globular-Type = ( eq-Eq-Globular-Type , is-section-eq-Eq-Globular-Type , is-retraction-eq-Eq-Globular-Type , coh-eq-Eq-Globular-Type) is-equiv-Eq-eq-Globular-Type : is-equiv (Eq-eq-Globular-Type {A = A} {B}) is-equiv-Eq-eq-Globular-Type = is-equiv-is-invertible eq-Eq-Globular-Type is-section-eq-Eq-Globular-Type is-retraction-eq-Eq-Globular-Type is-equiv-eq-Eq-Globular-Type : is-equiv (eq-Eq-Globular-Type {A = A} {B}) is-equiv-eq-Eq-Globular-Type = is-equiv-is-invertible Eq-eq-Globular-Type is-retraction-eq-Eq-Globular-Type is-section-eq-Eq-Globular-Type equiv-Eq-eq-Globular-Type : (A = B) ≃ Eq-Globular-Type A B equiv-Eq-eq-Globular-Type = Eq-eq-Globular-Type , is-equiv-Eq-eq-Globular-Type equiv-eq-Eq-Globular-Type : Eq-Globular-Type A B ≃ (A = B) equiv-eq-Eq-Globular-Type = eq-Eq-Globular-Type , is-equiv-eq-Eq-Globular-Type is-torsorial-Eq-Globular-Type : {l1 l2 : Level} {A : Globular-Type l1 l2} → is-torsorial (Eq-Globular-Type A) is-torsorial-Eq-Globular-Type = fundamental-theorem-id' ( λ _ → Eq-eq-Globular-Type) ( λ _ → is-equiv-Eq-eq-Globular-Type)
Recent changes
- 2024-10-09. Fredrik Bakke. Extensionality of globular types (#1190).