Library UniMath.All
Library UniMath.Algebra.AbelianGroups
- 1. Basic definitions
- 2. Subobjects
- 3. Kernels
- 4. Quotient objects
- 5. Direct products
- 6. Abelian group of fractions of an abelian unitary monoid
- 7. Abelian group of fractions and abelian monoid of fractions
- 8. Canonical homomorphism to the abelian group of fractions
- 9. Abelian group of fractions in the case when all elements are cancelable
- 10. Relations on the abelian group of fractions
- 11. Relations and the canonical homomorphism to abgrdiff
Library UniMath.Algebra.AbelianMonoids
- 1. Basic definitions
- 2. Subobjects
- 3. Quotient objects
- 4. Direct products
- 5. Monoid of fractions of an abelian monoid
- 6. Canonical homomorphism to the monoid of fractions
- 7. Abelian monoid of fractions in the case when elements of the localization submonoid are cancelable
- 8. Relations on the abelian monoid of fractions
- 9. Relations and canonical homomorphism to abmonoidfrac
Library UniMath.Algebra.Apartness
Library UniMath.Algebra.Archimedean
Library UniMath.Algebra.BinaryOperations
- 1. Unary operations
- 2. Binary operations
- 2.1. General definitions
- 2.2. Standard conditions on one binary operation on a set
- 2.3. Elements with inverses
- 2.4. Group operations
- 2.5. Standard conditions on a pair of binary operations on a set
- 3. Sets with one binary operation
- 3.1. General definitions
- 3.2. Functions compatible with a binary operation (homomorphism) and their properties
- 3.3. Transport of properties of a binary operation
- 3.4. Subobject
- 3.5. Relations compatible with a binary operation and quotient objects
- 3.6. Relations inversely compatible with a binary operation
- 3.7. Homomorphisms and relations
- 3.8. Quotient relations
- 3.9. Direct products
- 4. Sets with two binary operations
- 4.1. General definitions
- 4.2. Functions compatible with a pair of binary operation (homomorphisms) and their properties
- 4.3. Transport of properties of a pair of binary operations
- 4.4. Subobjects
- 4.5. Quotient objects
- 4.6. Direct products
- 5. Infinitary operations
Library UniMath.Algebra.ConstructiveStructures
Library UniMath.Algebra.DivisionRig
Library UniMath.Algebra.Domains_and_Fields
- Algebra I. Part E. Integral domains and fields. Vladimir Voevodsky. Aug. 2011 - .
Library UniMath.Algebra.Free_Monoids_and_Groups
Library UniMath.Algebra.GroupAction
Library UniMath.Algebra.Groups
Library UniMath.Algebra.Groups2
- 1. Basic definitions
- 2. Computation lemmas for groups
- 3. Relations on groups
- 4. Subobjects
- 5. Quotient objects
- 6. Cosets
- 7. Normal Subgroups
- 8. Direct products
- 9. Group of invertible elements in a monoid
Library UniMath.Algebra.IteratedBinaryOperations
Library UniMath.Algebra.Matrix
Library UniMath.Algebra.Modules
Library UniMath.Algebra.Monoids
Library UniMath.Algebra.Monoids2
- 1. Basic definitions
- 2. Functions between monoids compatible with structures (homomorphisms) and their properties
- 3. Subobjects
- 4. Kernels
- 5. Quotient objects
- 6. Cosets
- 7. Direct products
Library UniMath.Algebra.RigsAndRings
- Algebra I. Part D. Rigs and rings. Vladimir Voevodsky. Aug. 2011 - .
- Preamble
- Standard Algebraic Structures (cont.)
- Rigs - semirings with 1, 0 and x * 0 = 0 * x = 0
- Commutative rigs
- Rings
- General definitions
- Homomorphisms of rings
- (X = Y) ≃ (ringiso X Y)
- Computation lemmas for rings
- Relations compatible with the additive structure on rings
- Relations compatible with the multiplicative structure on rings
- Relations "inversely compatible" with the multiplicative structure on rings
- Relations on rings and ring homomorphisms
- Subobjects
- Quotient objects
- Direct products
- Opposite rings
- Ring of differences associated with a rig
- Canonical homomorphism to the ring associated with a rig (ring of differences)
- Relations similar to "greater" or "greater or equal" on the ring associated with a rig
- Relations and the canonical homomorphism to the ring associated with a rig (ring of differences)
- Commutative rings
- General definitions
- (X = Y) ≃ (ringiso X Y)
- Computational lemmas for commutative rings
- Subobjects
- Quotient objects
- Direct products
- Opposite commutative rings
- Commutative rigs to commutative rings
- Rings of fractions
- Canonical homomorphism to the ring of fractions
- Ring of fractions in the case when all elements which are being inverted are cancelable
- Relations similar to "greater" or "greater or equal" on the rings of fractions
- Relations and the canonical homomorphism to the ring of fractions
Library UniMath.Algebra.Tests
Library UniMath.Algebra.Universal
Library UniMath.Algebra.GaussianElimination.Auxiliary
- Matrices
- Logic
- Naturals
- Standard finite sets
- Rings, fields
- Rationals. Commented out to respect import dependency ordering. Could be downstreamed or removed.
- Maybe
Library UniMath.Algebra.GaussianElimination.Corollaries
Library UniMath.Algebra.GaussianElimination.Elimination
Library UniMath.Algebra.GaussianElimination.Matrices
Library UniMath.Algebra.GaussianElimination.RowOps
Library UniMath.Algebra.GaussianElimination.Tests
Library UniMath.Algebra.GaussianElimination.Vectors
- Matrices
- Vectors in arbitrary types
- Basic vector algebra over rigs
- Total sums of vectors
- Pulse functions
Library UniMath.Algebra.Modules.Core
Library UniMath.Algebra.Modules.Examples
- 1. The identity multimodule morphism
- 2. Constructing a module from a ring morphism
- 3. The zero module
Library UniMath.Algebra.Modules.Multimodules
Library UniMath.Algebra.Modules.Quotient
- 1. Preliminaries
- 2. The quotient module and its universal property
- Universal property in terms of submodules
Library UniMath.Algebra.Modules.Submodule
Library UniMath.Algebra.RigsAndRings.Ideals
Library UniMath.Algebra.Universal.Algebras
Library UniMath.Algebra.Universal.Algebras_eq
Library UniMath.Algebra.Universal.Congruences
Library UniMath.Algebra.Universal.DisplayedAlgebras
Library UniMath.Algebra.Universal.EqAlgebras
Library UniMath.Algebra.Universal.Equations
Library UniMath.Algebra.Universal.FreeAlgebras
Library UniMath.Algebra.Universal.HVecRel
Library UniMath.Algebra.Universal.HVectors
- Heterogeneous vectors.
Library UniMath.Algebra.Universal.Signatures
Library UniMath.Algebra.Universal.SortedTypes
Library UniMath.Algebra.Universal.SubAlgebras
Library UniMath.Algebra.Universal.TermAlgebras
Library UniMath.Algebra.Universal.Terms
- Terms for a given signature.
Library UniMath.Algebra.Universal.VTerms
Library UniMath.Algebra.Universal.WTypes
Library UniMath.Algebra.Universal.Examples.Bool
Library UniMath.Algebra.Universal.Examples.Group
Library UniMath.Algebra.Universal.Examples.ListDataType
Library UniMath.Algebra.Universal.Examples.Monoid
Library UniMath.Algebra.Universal.Examples.Nat
Library UniMath.Algebra.Universal.Examples.Tests
Library UniMath.AlgebraicGeometry.SheavesOfRings
Library UniMath.AlgebraicGeometry.Spec
Library UniMath.AlgebraicGeometry.Topology
Library UniMath.AlgebraicTheories.AlgebraCategory
- 1. Univalence
- 2. Algebras are fibered over theories
- 3. A characterization of iso's of algebras
- 4. Algebra pullback functor along an algebraic theory morphism
Library UniMath.AlgebraicTheories.AlgebraCategoryCore
Library UniMath.AlgebraicTheories.AlgebraMorphisms
Library UniMath.AlgebraicTheories.AlgebraicTheories
Library UniMath.AlgebraicTheories.AlgebraicTheoryCategory
Library UniMath.AlgebraicTheories.AlgebraicTheoryCategoryCore
Library UniMath.AlgebraicTheories.AlgebraicTheoryMorphisms
Library UniMath.AlgebraicTheories.AlgebraicTheoryToLawvereTheory
- 1. The functor from algebraic theories to setcategories
- 2. The equivalence between two types of presheaves
Library UniMath.AlgebraicTheories.AlgebraicTheoryToMonoid
Library UniMath.AlgebraicTheories.Algebras
- 1. The definition of algebras
- 2. An equality lemma
- 3. Some properties of algebras
- 4. A lemma about the interplay between the algebra action and vectors
Library UniMath.AlgebraicTheories.CategoryOfRetracts
- 1. The category of retracts
- 2. The terminal object
- 3. Fixpoints
- 4. Binary products
- 5. Exponential objects
- 6. Every object is a retract of λ x, x
Library UniMath.AlgebraicTheories.Combinators
- 1. The tactics
- 2. Compose
- 3. Pair
- 4. Pair arrow
- 5. Pair projections
- 6. Union arrow ('match')
- 7. Union injections
- 8. Evaluation of a curried function
- 9. Curry
- 10. Uncurry
- 11. N-tuple
- 12. N-tuple arrow
- 13. N-tuple projection
Library UniMath.AlgebraicTheories.FiniteSetSkeleton
Library UniMath.AlgebraicTheories.IndexedSetCategory
Library UniMath.AlgebraicTheories.LambdaCalculus
- 1. The data of the λ-calculus
- 2. Properties and operations derived from the data
- 3. A definition of the λ-calculus with compatibility between the pieces of data
- 4. Properties derived from the full λ-calculus
Library UniMath.AlgebraicTheories.LambdaTheories
- 1. The definition of λ-theories
- 2. The definition of β-equality
- 3. The definiiton of η-equality
- 4. Lemmas on the interaction of abs with subst
- 5. The definition and properties of app and beta_equality
- 6. A characterization of app and abs in terms of app' and one
Library UniMath.AlgebraicTheories.LambdaTheoryCategory
Library UniMath.AlgebraicTheories.LambdaTheoryCategoryCore
Library UniMath.AlgebraicTheories.LambdaTheoryMorphisms
Library UniMath.AlgebraicTheories.OriginalRepresentationTheorem
Library UniMath.AlgebraicTheories.PresheafCategory
Library UniMath.AlgebraicTheories.PresheafCategoryCore
Library UniMath.AlgebraicTheories.PresheafEquivalence
- 1. The equivalence between R and K
- 2. The fully faithful functor from LL to K
- 2.1. The isomorphism between the composed functor and the embedding from L1 to K
- 3. The equivalence
Library UniMath.AlgebraicTheories.PresheafMorphisms
Library UniMath.AlgebraicTheories.Presheaves
Library UniMath.AlgebraicTheories.ReflexiveObjects
Library UniMath.AlgebraicTheories.RepresentationTheorem
- 1. A proof that the object (theory_presheaf) can be exponentiated
- 2. A construction of the lambda endomorphism theory of theory_presheaf
- 3. An isomorphism between the two λ-theories
- 4. The right inverse
Library UniMath.AlgebraicTheories.RepresentationTheoremsRelation
- 1. The diagram
- 2. The isomorphism between the reflexive objects
- 3. The endomorphism theory has no left inverse
Library UniMath.AlgebraicTheories.Examples.EmptyPresheaf
Library UniMath.AlgebraicTheories.Examples.EndomorphismTheory
- 1. The definition of the endomorphism algebraic theory
- 2. The definition of the endomorphism λ-theory
- 3. A characterization of the endomorphism theories with β-equality
- 4. A characterization of the endomorphism theories with η-equality
- 5. The endomorphism theory of a set
- 6. The morphism between endomorphism theories
Library UniMath.AlgebraicTheories.Examples.ExtensionsTheory
- 1. The theory of extensions
- 2. The category of T_A-algebras is equivalent to A / T-alg
- 3. Every morphism F: T -> T' factors through T(F^*(T'_0))
Library UniMath.AlgebraicTheories.Examples.FreeMonoidTheory
- 1. The definition of the algebraic theory
- 2. The functor from monoids to algebras
- 3. Constructing a monoid from an algebra
- 4. The equivalence
Library UniMath.AlgebraicTheories.Examples.FreeObjectTheory
Library UniMath.AlgebraicTheories.Examples.FreeTheory
- 1. The free functor
- 2. The forgetful functor
- 3. The adjunction
- 4. The equivalence between algebras and coslices
Library UniMath.AlgebraicTheories.Examples.LambdaCalculus
- 1. The algebraic theory of the λ-calculus
- 2. The λ-theory of the λ-calculus
- 3. The λ-theory has β-equality
Library UniMath.AlgebraicTheories.Examples.OnePointTheory
- 1. The definition of the one point theory
- 2. The only algebra of the one point theory is the unit type
Library UniMath.AlgebraicTheories.Examples.Plus1Presheaf
Library UniMath.AlgebraicTheories.Examples.ProjectionsTheory
Library UniMath.AlgebraicTheories.Examples.PuncturedTheory
- 1. The punctured theory
- 2. The embedding and pullback
- 3. The lifting of T*-algebras to T-algebras
- 4. The isomorphism that shows we have a retraction for T_0 nonempty
Library UniMath.AlgebraicTheories.Examples.TheoryAlgebra
Library UniMath.AlgebraicTheories.FundamentalTheorem.AlgebraToTheory
Library UniMath.AlgebraicTheories.FundamentalTheorem.SurjectivePrecomposition
Library UniMath.AlgebraicTheories.FundamentalTheorem.CommonUtilities.MonoidActions
- 1. The category of monoid action data and its objects
- 2. The category of monoid actions
- 3. The definition of a right M-action
- 4. The definition of a morphism of M-actions
- 5. The terminal M-action
- 6. The binary product of M-actions
- 7. The exponential M-action
- 8. A characterization of isomorphisms
- 9. An isomorphism between the set of global elements and the set of fixpoints of a monoid action
- 10. Restriction of scalars
- 11. Extension of scalars
Library UniMath.Bicategories.BicatOfBicategory
Library UniMath.Bicategories.BicategoryOfBicat
Library UniMath.Bicategories.Colimits.CoproductEquivalences
Library UniMath.Bicategories.Colimits.Coproducts
Library UniMath.Bicategories.Colimits.Extensive
Library UniMath.Bicategories.Colimits.Initial
Library UniMath.Bicategories.Colimits.KleisliObjects
Library UniMath.Bicategories.Colimits.Examples.BicatOfCatsColimits
Library UniMath.Bicategories.Colimits.Examples.BicatOfEnrichedCatsColimits
Library UniMath.Bicategories.Colimits.Examples.BicatOfUnivCatsColimits
Library UniMath.Bicategories.Colimits.Examples.DisplayMapSliceColimits
Library UniMath.Bicategories.Colimits.Examples.OneTypesColimits
Library UniMath.Bicategories.Colimits.Examples.OpCellBicatColimits
Library UniMath.Bicategories.Colimits.Examples.SliceBicategoryColimits
Library UniMath.Bicategories.ComprehensionCat.BicatOfCompCat
Library UniMath.Bicategories.ComprehensionCat.CompCatNotations
- 1. Notations for comprehension categories
- 2. Notations and accessors for functors of comprehension categories
- 3. Terms in comprehension categories
Library UniMath.Bicategories.ComprehensionCat.ComprehensionEso
Library UniMath.Bicategories.ComprehensionCat.DFLCompCat
- 1. The bicategory of DFL comprehension categories
- 2. This bicategory is univalent
- 3. Builders and accessors
- 4. Invertible 2-cells
- 5. The adjoint equivalence coming from democracy
- 6. Adjoint equivalences of DFL comprehension categories
Library UniMath.Bicategories.ComprehensionCat.DFLCompCatNotations
- 1. Terms and displayed morphisms
- 2. Operations on democracy
- 3. Operations on extensional identity types
- 4. Operations on sigma types
Library UniMath.Bicategories.ComprehensionCat.SetGroupoidModel
- 1. The univalent comprehension category of setgroupoids
- 2. The univalent comprehension category of setgroupoids with split isofibrations
Library UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.CompCat
- 1. Comprehension functors
- 2. Comprehension natural transformations
- 3. The displayed bicategory of comprehension categories
- 4. The univalence of this displayed bicategory
- 5. Builders and accessors
- 6. Comparison
- 7. Adjoint equivalences
Library UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.DispCatTerminal
- 1. The bicategory of categories with a terminal object and a displayed category
- 2. Builders and accessors
- 3. Adjoint equivalences
Library UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.FibTerminal
- 1. The bicategory of categories with a terminal object and a fibration
- 2. Builders and accessors
- 3. Adjoint equivalences
Library UniMath.Bicategories.ComprehensionCat.BicatOfCompCat.FullCompCat
- 1. The bicategory of full comprehension categories
- 2. The univalence of the bicategory of full comprehension categories
- 3. Builders and accessors
- 4. Adjoint equivalences
Library UniMath.Bicategories.ComprehensionCat.Biequivalence.Biequiv
Library UniMath.Bicategories.ComprehensionCat.Biequivalence.Counit
- 1. The morphism of the counit
- 2. The naturality of the counit
- 3. The data of the counit
- 4. The laws of the counit
- 5. The counit
- 6. The counit is an adjoint equivalence
Library UniMath.Bicategories.ComprehensionCat.Biequivalence.DFLCompCatToFinLim
- 1. The action on objects
- 2. The action on morphisms
- 3. The action on 2-cells
- 4. The identitor and compositor
- 5. The data of the pseudofunctor
- 6. The laws of the pseudofunctor
- 7. The pseudofunctor from DFL comprehension categories to categories with finite limits
Library UniMath.Bicategories.ComprehensionCat.Biequivalence.FinLimToDFLCompCat
- 1. The action on objects
- 2. The action on morphisms
- 3. The action on 2-cells
- 4. The identitor and compositor
- 5. The data
- 6. The laws
- 7. The pseudofunctor from categories with finite limits to DFL comprehension categories
Library UniMath.Bicategories.ComprehensionCat.Biequivalence.InternalLanguageTopos
- 1. The internal language of pretoposes
- 2. The internal language of ∏-pretoposes
- 3. The internal language of pretoposes with natural numbers
- 4. The internal language of elementary toposes
- 5. The internal language of elementary toposes with an NNO
Library UniMath.Bicategories.ComprehensionCat.Biequivalence.LocalProperty
- 1. The extended pseudofunctor from categories to comprehension categories
- 2. The extended pseudofunctor from comprehension categories to categories
- 3. The unit
- 4. The counit
- 5. The displayed biequivalence
Library UniMath.Bicategories.ComprehensionCat.Biequivalence.PiTypesBiequiv
- 1. Lemmas on equivalences and locally cartesian closed categories
- 2. The extended pseudofunctor from categories to comprehension categories
- 3. The extended pseudofunctor from comprehension categories to categories
- 4. The unit
- 5. The counit
- 6. The displayed biequivalence
Library UniMath.Bicategories.ComprehensionCat.Biequivalence.Unit
- 1. The morphism of the unit
- 2. The naturality of the unit
- 3. The laws of the unit
- 4. The unit
- 5. The unit is a pointwise adjoint equivalence
Library UniMath.Bicategories.ComprehensionCat.LocalProperty.CatWithProp
- 1. The displayed bicategory arising from a categorical property
- 2. The univalence of this bicategory
- 3. Displayed adjoint equivalences in this bicategory
Library UniMath.Bicategories.ComprehensionCat.LocalProperty.DFLCompCatWithProp
- 1. The displayed bicategory of DFL comprehension categories with fiberwise structure
- 2. Properties of this displayed bicategory
- 3. Adjoint equivalences
Library UniMath.Bicategories.ComprehensionCat.LocalProperty.Examples
- 1. Conjunction of local properties
- 2. Subproperties of local properties
- 3. Strict initial objects
- 4. Stable binary coproducts
- 5. Disjoint binary coproducts
- 6. Regularity
- 7. Exactness
- 8. Pretoposes
- 9. Subobject classifiers
- 10. Elementary toposes
- 11. Parameterized natural number objects
- 12. Arithmetic universes
- 13. Elementary toposes with a natural numbers object
Library UniMath.Bicategories.ComprehensionCat.LocalProperty.LocalProperties
Library UniMath.Bicategories.ComprehensionCat.TypeFormers.Democracy
- 1. Democratic full comprehension categories
- 2. Functors that preserve democracy
- 3. The displayed bicategory of democratic full comprehension categories
- 4. The univalence of this displayed bicategory
Library UniMath.Bicategories.ComprehensionCat.TypeFormers.EqualizerTypes
- 1. The displayed bicategory of equalizer types
- 2. The univalence of this displayed bicategory
- 3. Equalizer types for comprehension categories
- 4. Equalizer types for full comprehension categories
- 5. Adjoint equivalences
Library UniMath.Bicategories.ComprehensionCat.TypeFormers.PiTypes
- 1. Preliminaries on pi-types
- 2. Dependent products for morphisms that are isomorphic to projections
- 3. Builders for dependent products
- 4. Uniqueness of dependent products
- 5. Preservation of dependent products
- 6. Examples of functors that preserve dependent products
- 7. The displayed bicategory of pi-types
- 8. This displayed bicategory is univalent
- 9. Pi-types for DFL full comprehension categories
- 10. Adjoint equivalences
Library UniMath.Bicategories.ComprehensionCat.TypeFormers.ProductTypes
- 1. The displayed bicategory of product types
- 2. The univalence of this displayed bicategory
- 3. Product types for comprehension categories
- 4. Product types for full comprehension categories
- 5. Adjoint equivalences
Library UniMath.Bicategories.ComprehensionCat.TypeFormers.SigmaTypes
- 1. The displayed bicategory of sigma types
- 2. The univalence of this displayed bicategory
- 3. Sigma types for comprehension categories
- 4. Adjoint equivalences
Library UniMath.Bicategories.ComprehensionCat.TypeFormers.UnitTypes
- 1. The displayed bicategory of unit types
- 2. The univalence of this displayed bicategory
- 3. Unit types for comprehension categories
- 4. Unit types for full comprehension categories
- 5. Adjoint equivalences
- 6. Strong unit types
Library UniMath.Bicategories.Core.AdjointUnique
Library UniMath.Bicategories.Core.Bicat
- Bicategories
- Definition of prebicategory
- Laws
- Bicategories
- Invertible 2-cells
- Derived laws
- Interchange law
- Homs are categories
- Functor structure on horizontal composition.
- Chaotic bicat
- Associators and unitors are isos.
- Functor structure on associators and unitors.
- Precomposition functor
- Postcomposition functor
- Notations.
Library UniMath.Bicategories.Core.BicategoryLaws
Library UniMath.Bicategories.Core.Discreteness
Library UniMath.Bicategories.Core.EquivToAdjequiv
Library UniMath.Bicategories.Core.Invertible_2cells
Library UniMath.Bicategories.Core.Strictness
Library UniMath.Bicategories.Core.TransportLaws
Library UniMath.Bicategories.Core.Unitors
Library UniMath.Bicategories.Core.Univalence
Library UniMath.Bicategories.Core.UnivalenceOp
Library UniMath.Bicategories.Core.YonedaLemma
Library UniMath.Bicategories.Core.Examples.BicatOfCats
Library UniMath.Bicategories.Core.Examples.BicatOfUnivCats
Library UniMath.Bicategories.Core.Examples.BicategoryFromMonoidal
Library UniMath.Bicategories.Core.Examples.BicategoryFromWhiskeredMonoidal
Library UniMath.Bicategories.Core.Examples.DiscreteBicat
- 1. The discrete bicategory
- 2. The discrete bicategory is discrete
- 3. Global univalence of the discrete bicategory
Library UniMath.Bicategories.Core.Examples.FibSlice
Library UniMath.Bicategories.Core.Examples.Final
Library UniMath.Bicategories.Core.Examples.Groupoids
Library UniMath.Bicategories.Core.Examples.Image
Library UniMath.Bicategories.Core.Examples.Initial
Library UniMath.Bicategories.Core.Examples.OneTypes
Library UniMath.Bicategories.Core.Examples.OpCellBicat
Library UniMath.Bicategories.Core.Examples.OpFibSlice
Library UniMath.Bicategories.Core.Examples.OpMorBicat
Library UniMath.Bicategories.Core.Examples.PointedOneTypesBicat
Library UniMath.Bicategories.Core.Examples.StrictCats
Library UniMath.Bicategories.Core.Examples.StructuredCategories
Library UniMath.Bicategories.Core.Examples.TwoType
Library UniMath.Bicategories.DaggerCategories.BicatOfDaggerCats
Library UniMath.Bicategories.DisplayMapCat.BicatOfDisplayMapCat
Library UniMath.Bicategories.DisplayMapCat.DispBicatOfDisplayMapCat
- Bicategory of Display Map Categories
Library UniMath.Bicategories.DisplayedBicats.CartesianPseudoFunctor
Library UniMath.Bicategories.DisplayedBicats.Cartesians
Library UniMath.Bicategories.DisplayedBicats.CleavingOfBicat
Library UniMath.Bicategories.DisplayedBicats.CleavingOfBicatIsAProp
Library UniMath.Bicategories.DisplayedBicats.DispAdjunctions
- Internal adjunction in displayed bicategories
- Definitions and properties of displayed adjunctions
- Classification of internal adjunctions in the total category
Library UniMath.Bicategories.DisplayedBicats.DispBiadjunction
Library UniMath.Bicategories.DisplayedBicats.DispBicat
- Displayed bicategories
- Displayed bicategories.
- Transport of displayed cells.
- Definition of displayed bicategories.
- Operations on bicategories
- Data projections
- Laws
- Invertible displayed 2-cells.
- Derived laws
- Total bicategory of a displayed bicategory
- Displayed left and right unitors coincide on the identity
- Useful properties
- Notations.
Library UniMath.Bicategories.DisplayedBicats.DispBicatSection
Library UniMath.Bicategories.DisplayedBicats.DispBiequivalence
Library UniMath.Bicategories.DisplayedBicats.DispBuilders
Library UniMath.Bicategories.DisplayedBicats.DispInvertibles
- Displayed invertible 2-cells
Library UniMath.Bicategories.DisplayedBicats.DispModification
Library UniMath.Bicategories.DisplayedBicats.DispPseudofunctor
Library UniMath.Bicategories.DisplayedBicats.DispToFiberEquivalence
Library UniMath.Bicategories.DisplayedBicats.DispTransformation
Library UniMath.Bicategories.DisplayedBicats.DispTransportLaws
Library UniMath.Bicategories.DisplayedBicats.DispUnivalence
Library UniMath.Bicategories.DisplayedBicats.DisplayedUniversalArrow
Library UniMath.Bicategories.DisplayedBicats.DisplayedUniversalArrowOnCat
Library UniMath.Bicategories.DisplayedBicats.EquivalenceBetweenCartesians
Library UniMath.Bicategories.DisplayedBicats.FiberBicategory
Library UniMath.Bicategories.DisplayedBicats.FiberCategory
Library UniMath.Bicategories.DisplayedBicats.ProductDispBiequiv
Library UniMath.Bicategories.DisplayedBicats.UnivalenceTechniques
Library UniMath.Bicategories.DisplayedBicats.Examples.Add2Cell
Library UniMath.Bicategories.DisplayedBicats.Examples.Algebras
Library UniMath.Bicategories.DisplayedBicats.Examples.BicatOfInvertibles
Library UniMath.Bicategories.DisplayedBicats.Examples.Codomain
Library UniMath.Bicategories.DisplayedBicats.Examples.Cofunctormap
Library UniMath.Bicategories.DisplayedBicats.Examples.ContravariantFunctor
Library UniMath.Bicategories.DisplayedBicats.Examples.CwF
Library UniMath.Bicategories.DisplayedBicats.Examples.DispBicatOfDispCats
Library UniMath.Bicategories.DisplayedBicats.Examples.DispBicatOfTwoSidedDispCat
Library UniMath.Bicategories.DisplayedBicats.Examples.DispBicatOnCatToUniv
Library UniMath.Bicategories.DisplayedBicats.Examples.DispDepProd
Library UniMath.Bicategories.DisplayedBicats.Examples.DisplayMapBicatSlice
Library UniMath.Bicategories.DisplayedBicats.Examples.DisplayMapBicatToDispBicat
Library UniMath.Bicategories.DisplayedBicats.Examples.Displayed2Inserter
Library UniMath.Bicategories.DisplayedBicats.Examples.DisplayedCatToBicat
Library UniMath.Bicategories.DisplayedBicats.Examples.DisplayedInserter
Library UniMath.Bicategories.DisplayedBicats.Examples.EndoMap
Library UniMath.Bicategories.DisplayedBicats.Examples.EnrichedCats
- 1. The displayed bicategory
- 2. Local univalence
- 3. Global univalence
- 4. Accessors for the bicategory of enriched categories
- 5. The category of quantale enriched categories
Library UniMath.Bicategories.DisplayedBicats.Examples.FullSub
Library UniMath.Bicategories.DisplayedBicats.Examples.FunctorsIntoCat
Library UniMath.Bicategories.DisplayedBicats.Examples.KleisliTriple
Library UniMath.Bicategories.DisplayedBicats.Examples.LaxSlice
Library UniMath.Bicategories.DisplayedBicats.Examples.LiftDispBicat
- 1. The lift of a displayed bicategory
- 2. Invertible 2-cells in the lift
- 3. Adjoints equivalences in the lift
- 4. The univalence of the lift
- 5. Properties of the lift
Library UniMath.Bicategories.DisplayedBicats.Examples.MonadKtripleBiequiv
Library UniMath.Bicategories.DisplayedBicats.Examples.Monads
Library UniMath.Bicategories.DisplayedBicats.Examples.MonadsLax
Library UniMath.Bicategories.DisplayedBicats.Examples.PointedGroupoid
Library UniMath.Bicategories.DisplayedBicats.Examples.PointedOneTypes
Library UniMath.Bicategories.DisplayedBicats.Examples.Prod
Library UniMath.Bicategories.DisplayedBicats.Examples.Sigma
Library UniMath.Bicategories.DisplayedBicats.Examples.Slice
Library UniMath.Bicategories.DisplayedBicats.Examples.Sub1Cell
Library UniMath.Bicategories.DisplayedBicats.Examples.Trivial
Library UniMath.Bicategories.DisplayedBicats.Examples.CategoriesWithStructure.BinProducts
Library UniMath.Bicategories.DisplayedBicats.Examples.CategoriesWithStructure.Equalizers
Library UniMath.Bicategories.DisplayedBicats.Examples.CategoriesWithStructure.FiniteLimits
Library UniMath.Bicategories.DisplayedBicats.Examples.CategoriesWithStructure.Pullbacks
Library UniMath.Bicategories.DisplayedBicats.Examples.CategoriesWithStructure.SubobjectClassifier
Library UniMath.Bicategories.DisplayedBicats.Examples.CategoriesWithStructure.Terminal
Library UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.CodomainCleaving
Library UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.DisplayMapBicatCleaving
Library UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.FibrationCleaving
Library UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.FunctorsIntoCatCleaving
Library UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.OpFibrationCleaving
Library UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.SliceCleaving
Library UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.TrivialCleaving
Library UniMath.Bicategories.DisplayedBicats.FiberBicategory.CodomainFiber
Library UniMath.Bicategories.DisplayedBicats.FiberBicategory.DisplayMapFiber
Library UniMath.Bicategories.DisplayedBicats.FiberBicategory.FiberBicategory1
Library UniMath.Bicategories.DisplayedBicats.FiberBicategory.FiberBicategory2
Library UniMath.Bicategories.DisplayedBicats.FiberBicategory.FunctorFromCleaving
Library UniMath.Bicategories.DisplayedBicats.FiberBicategory.SliceFiber
Library UniMath.Bicategories.DisplayedBicats.FiberBicategory.TrivialFiber
Library UniMath.Bicategories.DoubleCategories.DerivedLaws
Library UniMath.Bicategories.DoubleCategories.AlternativeDefinitions.DoubleCatsEquivalentDefinitions
- Double Categories
- 1. The map from unfolded double categories to double categories
- 2. The inverse
- 3. It forms an equivalence
Library UniMath.Bicategories.DoubleCategories.AlternativeDefinitions.DoubleCatsUnfolded
Library UniMath.Bicategories.DoubleCategories.Basics.DoubleCategoryBasics
- 1. Horizontal identities
- 2. Horizontal composition
- 3. Left unitor
- 4. Right unitor
- 5. Associator
- 6. Triangle and pentagon laws
Library UniMath.Bicategories.DoubleCategories.Basics.StrictDoubleCatBasics
- 1. Laws for strict double categories
- 2. Horizontal identities/composition forms a set
- 3. Preservation of horizontal identities
- 4. Preservation of horizontal composition
- 5. The identity preserves identities and composition
- 6. The composition preserves identities and composition
Library UniMath.Bicategories.DoubleCategories.Core.BicatOfDoubleCats
- 1. Two-sided displayed categories with identities
- 2. Two-sided displayed categories with horizontal composition
- 3. Two-sided displayed categories with identities and horizontal composition
- 4. Two-sided displayed categories with left unitors
- 5. Two-sided displayed categories with right unitors
- 6. Two-sided displayed categories with associators
- 7. Two-sided displayed categories with unitors and associators
- 8. Displayed bicategory of double categories
Library UniMath.Bicategories.DoubleCategories.Core.CatOfPseudoDoubleCats
- 1. Preliminary definitions
- 2. Displayed category that adds the left unitor
- 3. Displayed category that adds the right unitor
- 4. Displayed category that adds the associator
- 5. Displayed category that adds the unitors and associator
- 6. The category of pseudo double setcategories
Library UniMath.Bicategories.DoubleCategories.Core.CatOfStrictDoubleCats
- 1. The displayed category of horizontal identities
- 2. The displayed categoryes of horizontal compositions
- 3. The displayed category of horizontal identities and compositions
- 4. The category of strict double categories
Library UniMath.Bicategories.DoubleCategories.Core.CompanionsAndConjoints
Library UniMath.Bicategories.DoubleCategories.Core.DoubleCats
- 1. Double categories
- 2. Accessors for double categories
- 3. Builder for double categories
- 4. Squares and equalities
- 5. Flat double categories
Library UniMath.Bicategories.DoubleCategories.Core.DoubleFunctor
Library UniMath.Bicategories.DoubleCategories.Core.DoubleTransformation
- 1. Preservation of the identity
- 2. Preservation of composition
- 3. Examples of double transformations
Library UniMath.Bicategories.DoubleCategories.Core.InvertiblesAndEquivalences
Library UniMath.Bicategories.DoubleCategories.Core.PseudoDoubleSetCats
- 1. Pseudo double setcategories
- 2. Accessors for pseudo double setcategories
- 3. Builder for pseudo double setcategories
Library UniMath.Bicategories.DoubleCategories.Core.StrictDoubleCats
- 1. Strict double categories
- 2. Accessors for double categories
- 3. Builder for strict double categories
- 4. Strict functors for strict double categories
- 5. Accessors for strict double functors
- 6. Builder for strict double functors
Library UniMath.Bicategories.DoubleCategories.Core.SymmetricUnivalent
- 1. The horizontal category
- 2. The 2-sided displayed category of vertical morphisms and squares
- 3. A useful lemma for `idtoiso`
- 4. Horizontal identities
- 5. Horizontal composition
- 6. The left unitor
- 7. The right unitor
- 8. The associator
- 9. The triangle and pentagon equations
- 10. The dual double category
- 11. Symmetric univalence for double categories
Library UniMath.Bicategories.DoubleCategories.Core.UnivalentDoubleCats
- 1. Univalent double categories
- 2. Accessors for univalent double categories
- 3. Builder for double categories
- 4. Lax functors for double categories
- 5. Accessors for lax functors
- 6. Builder for lax functors
- 7. Strong double functors
- 8. Double transformations
- 9. Accessors for double transformations
- 10. Builder for double transformations
Library UniMath.Bicategories.DoubleCategories.Core.DoubleFunctor.Associator
Library UniMath.Bicategories.DoubleCategories.Core.DoubleFunctor.Basics
- 1. Preservation of the identity
- 2. Preservation of composition
- 3. Preservation of the unitors and associators
- 4. The identity double functor
Library UniMath.Bicategories.DoubleCategories.Core.DoubleFunctor.LeftUnitor
Library UniMath.Bicategories.DoubleCategories.Core.DoubleFunctor.RightUnitor
Library UniMath.Bicategories.DoubleCategories.DerivedLaws.TransportLaws
Library UniMath.Bicategories.DoubleCategories.DerivedLaws.Unitors
- 1. Derived laws regarding horizontal composition
- 2. Derived laws for the pentagon and triangle
- 3. Derived laws for the unitors on the identity
Library UniMath.Bicategories.DoubleCategories.DerivedLaws.Variations
- 1. Variations of the double category laws
- 2. Laws involving identities and globular iso squares
- 3. Variations of the laws of lax double functors
Library UniMath.Bicategories.DoubleCategories.DoubleBicat.CellsAndSquares
- 1. Maps from cells to squares
- 2. The conditions that cells can be expressed as certain squares
- 3. Verity double bicategories in which vertical cells are the same as squares
- 3.1. Identity squares and vertical cells
- 3.2. Composition of squares and vertical cells
- 3.3. Invertible squares and vertical cells
- 4. Verity double bicategories in which horizontal cells are the same as squares
- 4.1. Identity squares and horizontal cells
- 4.2. Composition of squares and horizontal cells
- 4.3. Invertible squares and horizontal cells
Library UniMath.Bicategories.DoubleCategories.DoubleBicat.CompanionPairAdjEquiv
- 1. Cells between companion pairs
- 2. Invertible 2-cells between companions
- 3. Companions of adjoint equivalences
- 4. Vertical equivalences in Verity double bicategories with all companions
Library UniMath.Bicategories.DoubleCategories.DoubleBicat.CompanionPairUnique
- 1. Squares between companion pairs
- 2. The square is invertible
- 3. Preservation of the unit and counit
- 4. Consequences of the uniqueness
Library UniMath.Bicategories.DoubleCategories.DoubleBicat.CompanionPairs
- 1. Definition of companion pairs
- 2. Identity companion pairs
- 3. Composition of companion pairs
- 4. Verity double bicategories with all companion pairs
- 5. Companions of horizontal morphisms
Library UniMath.Bicategories.DoubleCategories.DoubleBicat.Conjoints
- 1. Definition of conjoints
- 2. Conjoints and companions
- 3. Identity conjoints
- 4. Composition of companion pairs
- 5. Verity double bicategories with all conjoints
Library UniMath.Bicategories.DoubleCategories.DoubleBicat.Core
Library UniMath.Bicategories.DoubleCategories.DoubleBicat.DerivedLaws
- 1. Laws regarding the left unitor and composition
- 2. Laws regarding the right unitor and composition
- 3. Laws regarding the associator
- 4. Laws regarding whiskering 2-cells
- 5. Equality laws for whiskering
- 6. Operations on globular squares
- 7. Composing corners
Library UniMath.Bicategories.DoubleCategories.DoubleBicat.GlobalUnivalence
- 1. Horizontally globally univalent Verity double bicategories
- 3. Globally univalent Verity double bicategories
- 4. Gregarious univalent Verity double bicategories
- 5. Horizontally globally univalent to gregarious univalent
- 6. Equivalence of horizontal global univalence and gregarious univalence
Library UniMath.Bicategories.DoubleCategories.DoubleBicat.GregariousEquivalence
- 1. Gregarious equivalences
- 2. The identity is a gregarious equivalence
- 3. Identities to gregarious equivalences
- 4. Horizontal gregarious equivalences
- 5. Being a horizontal gregarious equivalence is a proposition
- 6. Adjoint equivalences and gregarious equivalences
Library UniMath.Bicategories.DoubleCategories.DoubleBicat.LocalUnivalence
- 1. Local horizontal univalence
- 2. Local horizontal univalence via squares
- 3. Equivalence between the different local horizontal univalence conditions
- 4. Local vertical univalence
- 5. Local vertical univalence via squares
- 6. Equivalence between the different local vertical univalence conditions
- 7. Locally univalent vertical bicategories
Library UniMath.Bicategories.DoubleCategories.DoubleBicat.UnderlyingCats
- 1. The underlying horizontal bicategory
- 2. The underlying vertical bicategory
- 3. The underlying horizontal hom-category
- 4. The underlying vertical hom-category
- 5. The underlying category of squares and horizontal cylinders
- 6. The underlying category of squares and vertical cylinders
- 7. The underlying category of vertical morphisms and squares
- 8. The underlying category of horizontal morphisms and squares
Library UniMath.Bicategories.DoubleCategories.DoubleBicat.VerityDoubleBicat
- 1. Bicategories with squares
- 2. Horizontal and vertical bicategory with squares
- 3. Horizontal identity squares and verizontal composition of squares
- 4. Whiskering operations
- 5. Identity and composition laws for whiskering (items (i)-(v) in Verity)
- 6. Laws relating composition and identity squares (items (ix) and (x) in Verity)
- 7. Laws about cylinders (items (vi)-(vii) in Verity)
- 8. Verity double bicategories
- 9. Unfolded versions of the laws for Verity double bicategories
Library UniMath.Bicategories.DoubleCategories.Examples.BiSetcatToDoubleCat
- 1. The underlying category
- 2. The 2-sided displayed category of 1-cells
- 3. Horizontal identities
- 4. Horizontal composition
- 5. The unitors and associators
- 6. The pentagon and triangle equation
- 7. The double category corresponding to a bicategory
- 8. The pseudo double setcategory corresponding to a bicategory
Library UniMath.Bicategories.DoubleCategories.Examples.Coalgebras
- 1. Basic definitions
- 2. The 2-sided displayed category
- 3. Builders and accessors for horizontal morphisms
- 4. Builders and accessors for squares
- 5. Horizontal identities
- 6. Horizontal composition
- 7. Globular isomorphism squares
- 8. The left unitor
- 9. The right unitor
- 10. The associator
- 11. The coherences
- 12. The double category of coalgebras of a lax double functor
- 13. The univalence of the double category of coalgebra
- 14. The univalent double category of coalgebras of a lax double functor
- 15. Flatness of the double category of coalgebras
Library UniMath.Bicategories.DoubleCategories.Examples.Coreflections
- 1. Coreflections in a 2-category
- 2. The displayed category of adjunctions
- 3. The displayed category of coreflections
- 4. The double category of coreflections
- 5. Lemmas for calculation
- 6. Companions and conjoints
Library UniMath.Bicategories.DoubleCategories.Examples.DoubleCatOnDispCat
Library UniMath.Bicategories.DoubleCategories.Examples.DoubleCatToDoubleBicat
- 1. The vertical bicategory
- 2. The whiskering operations
- 3. The laws of the Verity double bicategory
- 4. The Verity double bicategory coming from a pseudo double category
- 5. The univalence of this Verity double bicategory
- 6. Companions and conjoints
Library UniMath.Bicategories.DoubleCategories.Examples.EnrichedProfunctorDoubleBicat
- 1. The 2-sided displayed category of the Verity bicategory of enriched profunctors
- 2. The vertical bicategory of enriched profunctors
- 3. The whiskering operations
- 4. More laws
- 5. The Verity double bicategory of enriched categories and profunctors
- 6. 2-cells versus squares
- 7. Companion pairs of profunctors
- 8. Vertical invertible 2-cells of enriched profunctors
- 9. The local univalence of the Verity double bicategory of squares
- 10. The global univalence of the Verity double bicategory of squares
Library UniMath.Bicategories.DoubleCategories.Examples.EnrichedProfunctorDoubleCat
- 1. The 2-sided displayed category of quantale enriched profunctors
- 2. Horizontal identities
- 3. Horizontal composition
- 4. The unitors and associators
- 5. The double category of quantale enriched profunctors
- 6. Companions and conjoints
Library UniMath.Bicategories.DoubleCategories.Examples.EnrichedRelDoubleCat
- 1. Horizontal identities
- 2. Horizontal composition
- 3. Unitors and associators
- 4. The double category of enriched relations
- 5. Companion pairs and conjoints
Library UniMath.Bicategories.DoubleCategories.Examples.FullSubDoubleCat
Library UniMath.Bicategories.DoubleCategories.Examples.HorizontalDual
- 1. The data of the horizontal dual
- 2. Whiskering operations
- 3. Laws of the horizontal dual
- 4. The horizontal dual
- 5. Vertical cells and squares
- 6. The local univalence of the dual
Library UniMath.Bicategories.DoubleCategories.Examples.KleisliDoubleCat
Library UniMath.Bicategories.DoubleCategories.Examples.LaxExtensionToFunctor
- 1. Every lax extension gives rise to a lax double functor
- 2. Every lax double functor gives rise to a lax extension
- 3. Equivalence between lax double functors and functors with a lax extension
Library UniMath.Bicategories.DoubleCategories.Examples.LensesDoubleCat
- 1. The horizontal identity
- 2. Horizontal composition
- 3. Unitors and associators
- 4. The double category
- 5. The strict double category
Library UniMath.Bicategories.DoubleCategories.Examples.MateDoubleBicat
- 1. The bicategory of left adjoints
- 2. The data of the double bicategory of mates
- 3. The laws
- 4. The double bicategory of mates
- 5. 2-cells coincide with certain mates
- 6. Companion pairs
- 7. Vertical invertible 2-cells
- 8. The local univalence of the Verity double bicategory of mates
- 9. Vertical adjoint equivalences
- 10. The global univalence of the Verity double bicategory of mates
Library UniMath.Bicategories.DoubleCategories.Examples.OpDoubleCat
- 1. Vertical opposites of double categories
- 1.1. Horizontal identity in the vertical opposite
- 1.2. Horizontal composition in the vertical opposite
- 1.3. Unitors and associators
- 1.4. Triangle and pentagon
- 1.5. The vertical opposite
- 2. Horizontal opposites of double categories
- 2.1. Horizontal identity in the horizontal opposite
- 2.2. Horizontal composition in the horizontal opposite
- 2.3. Unitors and associators
- 2.4. Triangle and pentagon
- 2.5. The horizontal opposite
Library UniMath.Bicategories.DoubleCategories.Examples.ParaDoubleCat
- 1. Horizontal identities
- 2. Horizontal composition
- 3. The unitors and associators
- 4. The triangle and pentagon equations
- 5. The double category of parametrized morphisms
- 6. Parametrized morphisms and isomorphisms
Library UniMath.Bicategories.DoubleCategories.Examples.ProductDoubleCat
- 1. Horizontal identity and composition
- 2. Unitors and associator
- 3. The triangle and pentagon
- 4. The product of double categories
- 5. Projections
- 6. Pairing
- 7. Pairing of double transformations
- 8. Products of double categories
Library UniMath.Bicategories.DoubleCategories.Examples.ProfunctorDoubleBicat
- 1. The 2-sided displayed category of the Verity bicategory of profunctors
- 2. The vertical bicategory of profunctors
- 3. The whiskering operations
- 4. More laws
- 5. The Verity double bicategory of univalent categories and profunctors
- 6. 2-cells versus squares
- 7. Companion pairs of profunctors
- 8. Vertical invertible 2-cells of profunctors
- 9. The local univalence of the Verity double bicategory of squares
- 10. The global univalence of the Verity double bicategory of squares
Library UniMath.Bicategories.DoubleCategories.Examples.ProfunctorDoubleCat
- 1. Horizontal identity
- 2. Horizontal composition
- 3. Unitors and associators
- 4. Triangle and pentagon
- 5. The univalent pseudo double category of profunctors
- 6. Companions and conjoints
Library UniMath.Bicategories.DoubleCategories.Examples.RelationsDoubleCat
- 1. Relations valued in propositions
- 1.1. Horizontal identities
- 1.2. Horizontal composition
- 1.3. The unitors and associators
- 1.4. The triangle and pentagon equations
- 1.5. The double category of relations valued in propositions
- 1.6. Companions and conjoints
- 2. Relations valued in sets
- 2.1. Horizontal identities
- 2.2. Horizontal composition
- 2.3. The unitors and associators
- 2.4. The triangle and pentagon equations
- 2.5. The double category of relations
- 2.6. Companions and conjoints
Library UniMath.Bicategories.DoubleCategories.Examples.SpansDoubleCat
- 1. Horizontal identities
- 2. Horizontal composition
- 3. The unitors and associators
- 4. The triangle and pentagon equations
- 5. The double category of spans
Library UniMath.Bicategories.DoubleCategories.Examples.SquareDoubleBicat
- 1. The data of the double bicategory of squares
- 2. The laws
- 3. The double bicategory of squares
- 4. 2-cells coincide with certain squares
- 5. Companion pairs
- 6. Vertical invertible 2-cells
- 7. The local univalence of the Verity double bicategory of squares
- 8. Vertical adjoint equivalences
- 9. The global univalence of the Verity double bicategory of squares
Library UniMath.Bicategories.DoubleCategories.Examples.SquareDoubleCat
Library UniMath.Bicategories.DoubleCategories.Examples.SquareDoubleCatTwo
- 1. Horizontal operations
- 2. The square double category of a 2-category
- 3. The square pseudo double setcategory of a 2-setcategory
Library UniMath.Bicategories.DoubleCategories.Examples.StructuredCospansDoubleCat
- 1. Horizontal identities
- 2. Horizontal composition
- 3. The unitors and associators
- 4. The triangle and pentagon equations
- 5. The double category of structured cospans
Library UniMath.Bicategories.DoubleCategories.Examples.StructuredCospansDoubleFunctor
- 1. Preservation of horizontal identities
- 2. Preservation of horizontal composition
- 3. The coherences
- 4. The double functors between the double categories of structured cospans
- 5. Conditions under which this double functor is strong
Library UniMath.Bicategories.DoubleCategories.Examples.TransposeDoubleBicat
- 1. The 2-sided displayed category of the transpose
- 2. The vertical bicategory of the transpose
- 3. The whiskering operations
- 4. The transpose of a Verity double bicategory
Library UniMath.Bicategories.DoubleCategories.Examples.TransposeStrict
- 1. The precategory
- 2. The 2-sided displayed category
- 3. The horizontal identity
- 4. Horizontal composition
- 5. Double category laws
- 6. The dual double category
Library UniMath.Bicategories.DoubleCategories.Examples.UnitDoubleCat
- 1. Horizontal operations of the unit double category
- 2. The unit double category
- 3. Functors to the unit double category
- 4. Transformations to the unit double category
- 5. The unit double category is a terminal object
Library UniMath.Bicategories.DoubleCategories.Limits.DoubleTerminal
- 1. Terminal objects in double categories
- 2. Accessors and builders
- 3. Terminal object in the double category of relations
- 4. Terminal object in the double category of enriched relations
- 5. Terminal object in the double category of spans
Library UniMath.Bicategories.DoubleCategories.Underlying.HorizontalBicategory
- 1. The data of the horizontal bicategory
- 2. The laws of the horizontal bicategory
- 3. The horizontal bicategory
- 4. Local univalence of the bicategory
Library UniMath.Bicategories.DoubleCategories.Underlying.VerticalTwoCategory
- 1. The underlying vertical category
- 2. The data of the vertical 2-category
- 3. The laws of the vertical 2-category
- 4. The vertical 2-category of a pseudo double category
Library UniMath.Bicategories.DoubleCategories.Underlying.VerticalTwoCategoryStrict
- 1. The underlying category
- 2. The data of the 2-category
- 3. The laws of the 2-category
- 4. The underlying vertical 2-category
Library UniMath.Bicategories.Grothendieck.Biequivalence
Library UniMath.Bicategories.Grothendieck.Counit
Library UniMath.Bicategories.Grothendieck.FiberwiseEquiv
Library UniMath.Bicategories.Grothendieck.FibrationToPseudoFunctor
Library UniMath.Bicategories.Grothendieck.PseudoFunctorToFibration
Library UniMath.Bicategories.Grothendieck.Unit
Library UniMath.Bicategories.Limits.CommaObjects
Library UniMath.Bicategories.Limits.EilenbergMooreComonad
Library UniMath.Bicategories.Limits.EilenbergMooreObjects
Library UniMath.Bicategories.Limits.EquifierEquivalences
Library UniMath.Bicategories.Limits.Equifiers
Library UniMath.Bicategories.Limits.Final
Library UniMath.Bicategories.Limits.InserterEquivalences
Library UniMath.Bicategories.Limits.Inserters
Library UniMath.Bicategories.Limits.IsoInserters
Library UniMath.Bicategories.Limits.ProductEquivalences
Library UniMath.Bicategories.Limits.Products
Library UniMath.Bicategories.Limits.PullbackEquivalences
Library UniMath.Bicategories.Limits.PullbackFunctions
Library UniMath.Bicategories.Limits.Pullbacks
Library UniMath.Bicategories.Limits.Examples.BicatOfCatsLimits
Library UniMath.Bicategories.Limits.Examples.BicatOfEnrichedCatsLimits
Library UniMath.Bicategories.Limits.Examples.BicatOfUnivCatsLimits
Library UniMath.Bicategories.Limits.Examples.DispConstructionsLimits
Library UniMath.Bicategories.Limits.Examples.DisplayMapSliceLimits
Library UniMath.Bicategories.Limits.Examples.LimitsStructuredCategories
Library UniMath.Bicategories.Limits.Examples.OneTypesLimits
Library UniMath.Bicategories.Limits.Examples.OpCellBicatLimits
Library UniMath.Bicategories.Limits.Examples.OpMorBicatLimits
Library UniMath.Bicategories.Limits.Examples.SliceBicategoryLimits
Library UniMath.Bicategories.Limits.Examples.SubbicatLimits
Library UniMath.Bicategories.Limits.Examples.TotalBicategoryLimits
Library UniMath.Bicategories.Limits.Examples.UnivGroupoidsLimits
Library UniMath.Bicategories.Logic.ComprehensionBicat
Library UniMath.Bicategories.Logic.DisplayMapBicat
Library UniMath.Bicategories.Logic.Examples.DisplayMapComprehensionBicat
Library UniMath.Bicategories.Logic.Examples.FibrationsComprehensionBicat
Library UniMath.Bicategories.Logic.Examples.FunctorsIntoCatComprehensionBicat
Library UniMath.Bicategories.Logic.Examples.OpfibrationsComprehensionBicat
Library UniMath.Bicategories.Logic.Examples.PullbackComprehensionBicat
Library UniMath.Bicategories.Logic.Examples.TrivialComprehensionBicat
Library UniMath.Bicategories.Modifications.Modification
Library UniMath.Bicategories.Modifications.Examples.ApModification
Library UniMath.Bicategories.Modifications.Examples.Associativity
Library UniMath.Bicategories.Modifications.Examples.ModificationIntoCat
Library UniMath.Bicategories.Modifications.Examples.Unitality
Library UniMath.Bicategories.Monads.ConstructionOfAlgebras
Library UniMath.Bicategories.Monads.DistributiveLaws
Library UniMath.Bicategories.Monads.LocalEquivalenceMonad
- 1. Action on objects
- 2. Action on morphisms
- 3. The functor
- 4. The functor is faithful
- 5. The functor is full
- 6. The functor is essentially surjective
- 7. The adjoint equivalence
Library UniMath.Bicategories.Monads.MixedDistributiveLaws
Library UniMath.Bicategories.Monads.MonadToAdjunction
Library UniMath.Bicategories.Monads.Examples.AdjunctionToMonad
Library UniMath.Bicategories.Monads.Examples.Composition
Library UniMath.Bicategories.Monads.Examples.MonadsInBicatOfCats
Library UniMath.Bicategories.Monads.Examples.MonadsInBicatOfEnrichedCats
Library UniMath.Bicategories.Monads.Examples.MonadsInBicatOfUnivCats
Library UniMath.Bicategories.Monads.Examples.MonadsInMonads
Library UniMath.Bicategories.Monads.Examples.MonadsInOp1Bicat
Library UniMath.Bicategories.Monads.Examples.MonadsInOp2Bicat
Library UniMath.Bicategories.Monads.Examples.MonadsInStructuredCategories
Library UniMath.Bicategories.Monads.Examples.MonadsInTotalBicat
Library UniMath.Bicategories.Monads.Examples.PsfunctorOnMonad
Library UniMath.Bicategories.Monads.Examples.ToMonadInCat
Library UniMath.Bicategories.MonoidalCategories.ActionBasedStrength
Library UniMath.Bicategories.MonoidalCategories.ActionBasedStrongFunctorCategory
Library UniMath.Bicategories.MonoidalCategories.ActionBasedStrongFunctorsMonoidal
Library UniMath.Bicategories.MonoidalCategories.ActionBasedStrongFunctorsWhiskeredMonoidal
Library UniMath.Bicategories.MonoidalCategories.ActionOfEndomorphismsInBicat
Library UniMath.Bicategories.MonoidalCategories.ActionOfEndomorphismsInBicatWhiskered
Library UniMath.Bicategories.MonoidalCategories.Actions
Library UniMath.Bicategories.MonoidalCategories.ActionsFormBicategory
Library UniMath.Bicategories.MonoidalCategories.BicatOfActegories
Library UniMath.Bicategories.MonoidalCategories.BicatOfActegoriesFinalObject
Library UniMath.Bicategories.MonoidalCategories.BicatOfActionsInBicat
Library UniMath.Bicategories.MonoidalCategories.BicatOfWhiskeredMonCats
Library UniMath.Bicategories.MonoidalCategories.BicatOfWhiskeredMonCatsFinalObject
Library UniMath.Bicategories.MonoidalCategories.BicatOfWhiskeredMonCatsLax
Library UniMath.Bicategories.MonoidalCategories.ConstructionOfActions
Library UniMath.Bicategories.MonoidalCategories.EndofunctorsMonoidal
Library UniMath.Bicategories.MonoidalCategories.EndofunctorsWhiskeredMonoidal
Library UniMath.Bicategories.MonoidalCategories.EquivalenceActegoriesAndActions
Library UniMath.Bicategories.MonoidalCategories.IdempotencePointedFunctorsWhiskeredMonoidal
Library UniMath.Bicategories.MonoidalCategories.MonadsAsMonoidsWhiskered
Library UniMath.Bicategories.MonoidalCategories.MonoidalDialgebrasInserters
Library UniMath.Bicategories.MonoidalCategories.MonoidalFromBicategory
Library UniMath.Bicategories.MonoidalCategories.PointedFunctorsMonoidal
Library UniMath.Bicategories.MonoidalCategories.PointedFunctorsWhiskeredMonoidal
Library UniMath.Bicategories.MonoidalCategories.WhiskeredMonoidalFromBicategory
Library UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer
Library UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.CurriedMonoidalCategories
Library UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.EquivalenceMonCatCurried
Library UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.EquivalenceMonCatNonCurried
Library UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.EquivalenceWhiskeredCurried
Library UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.FinalLayer
Library UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.TensorLayer
Library UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.TensorUnitLayer
Library UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.UnitLayer
Library UniMath.Bicategories.Morphisms.Adjunctions
Library UniMath.Bicategories.Morphisms.DiscreteMorphisms
Library UniMath.Bicategories.Morphisms.Eso
Library UniMath.Bicategories.Morphisms.ExtensionsAndLiftings
Library UniMath.Bicategories.Morphisms.FullyFaithful
Library UniMath.Bicategories.Morphisms.InternalStreetFibration
Library UniMath.Bicategories.Morphisms.InternalStreetOpFibration
Library UniMath.Bicategories.Morphisms.Monadic
Library UniMath.Bicategories.Morphisms.Properties
Library UniMath.Bicategories.Morphisms.Examples.EsosInBicatOfUnivCats
Library UniMath.Bicategories.Morphisms.Examples.FibrationsInBicatOfUnivCats
Library UniMath.Bicategories.Morphisms.Examples.FibrationsInStrictCats
Library UniMath.Bicategories.Morphisms.Examples.MorphismsInBicatOfEnrichedCats
- 1. Faithful 1-cells
- 2. Fully faithful 1-cells
- 3. Conservative 1-cells
- 4. Discrete 1-cells
- 5. Enriched adjunctions
Library UniMath.Bicategories.Morphisms.Examples.MorphismsInBicatOfUnivCats
Library UniMath.Bicategories.Morphisms.Examples.MorphismsInOneTypes
Library UniMath.Bicategories.Morphisms.Examples.MorphismsInOp1Bicat
Library UniMath.Bicategories.Morphisms.Examples.MorphismsInOp2Bicat
Library UniMath.Bicategories.Morphisms.Examples.MorphismsInSliceBicat
Library UniMath.Bicategories.Morphisms.Examples.MorphismsInStructuredCat
Library UniMath.Bicategories.Morphisms.Properties.AdjunctionsRepresentable
Library UniMath.Bicategories.Morphisms.Properties.ClosedUnderInvertibles
Library UniMath.Bicategories.Morphisms.Properties.ClosedUnderPullback
Library UniMath.Bicategories.Morphisms.Properties.Composition
Library UniMath.Bicategories.Morphisms.Properties.ContainsAdjEquiv
Library UniMath.Bicategories.Morphisms.Properties.EsoProperties
Library UniMath.Bicategories.Morphisms.Properties.FromInitial
Library UniMath.Bicategories.Morphisms.Properties.Projections
Library UniMath.Bicategories.Objects.CartesianObject
Library UniMath.Bicategories.Objects.CocartesianObject
Library UniMath.Bicategories.Objects.Examples.BicatOfUnivCatsObjects
Library UniMath.Bicategories.OrthogonalFactorization.EnrichedEsoFactorization
- 1, The left and right class of the factorization system
- 2. Image factorization
- 3. Lifts of 1-cells
- 4. Lifts of 2-cells
- 5. Uniqueness of lifts of 2-cells
- 6. Fully faithful 1-cells are closed under invertible 2-cells
- 7. The factorization system
- 8. Essentially surjective+fully faithful implies adjoint equivalence
Library UniMath.Bicategories.OrthogonalFactorization.EsoFactorizationSystem
Library UniMath.Bicategories.OrthogonalFactorization.FactorizationSystem
- 1. Factorizations
- 2. Orthogonal factorization systems
- 3. Builder for orthogonal factorization systems
- 4. Projections for orthogonal factorization systems
- 5. Properties of orthogonal factorization systems
Library UniMath.Bicategories.OrthogonalFactorization.Orthogonality
Library UniMath.Bicategories.OtherStructure.ClassifyingDiscreteOpfib
Library UniMath.Bicategories.OtherStructure.Cores
Library UniMath.Bicategories.OtherStructure.DualityInvolution
- 1. Data of duality involutions
- 2. Counit of duality involution
- 3. Laws of duality involutions
- 4. Duality involutions
- 5. Accessors for the laws of duality involutions
Library UniMath.Bicategories.OtherStructure.DualityInvolutionProperties
Library UniMath.Bicategories.OtherStructure.Exponentials
Library UniMath.Bicategories.OtherStructure.Examples.StructureBicatOfEnrichedCats
Library UniMath.Bicategories.OtherStructure.Examples.StructureBicatOfUnivCats
Library UniMath.Bicategories.OtherStructure.Examples.StructureOneTypes
Library UniMath.Bicategories.PseudoFunctors.Biadjunction
Library UniMath.Bicategories.PseudoFunctors.Biequivalence
Library UniMath.Bicategories.PseudoFunctors.LocalEquivalenceProperties
- 1. Action on 1-cells and 2-cells
- 2. Unit and counit
- 3. Functoriality of the action on 2-cells
- 4. Action on invertible 2-cells
- 5. Identitor and compositor
- 6. Pseudofunctor laws
Library UniMath.Bicategories.PseudoFunctors.Properties
- 1. Local equivalences
- 2. Projections for local equivalences
- 3. Local weak equivalences
- 4. Essentially surjective pseudofunctors
- 5. Weak equivalences of bicategories
Library UniMath.Bicategories.PseudoFunctors.PseudoFunctor
Library UniMath.Bicategories.PseudoFunctors.PseudoFunctorLimits
Library UniMath.Bicategories.PseudoFunctors.Representable
Library UniMath.Bicategories.PseudoFunctors.StrictPseudoFunctor
Library UniMath.Bicategories.PseudoFunctors.UniversalArrow
Library UniMath.Bicategories.PseudoFunctors.Yoneda
Library UniMath.Bicategories.PseudoFunctors.Display.Base
Library UniMath.Bicategories.PseudoFunctors.Display.Compositor
Library UniMath.Bicategories.PseudoFunctors.Display.Identitor
Library UniMath.Bicategories.PseudoFunctors.Display.Map1Cells
Library UniMath.Bicategories.PseudoFunctors.Display.Map2Cells
Library UniMath.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat
Library UniMath.Bicategories.PseudoFunctors.Display.StrictCompositor
Library UniMath.Bicategories.PseudoFunctors.Display.StrictIdentitor
Library UniMath.Bicategories.PseudoFunctors.Display.StrictPseudoFunctorBicat
Library UniMath.Bicategories.PseudoFunctors.Examples.ApFunctor
Library UniMath.Bicategories.PseudoFunctors.Examples.BicatOfCatToUnivCat
Library UniMath.Bicategories.PseudoFunctors.Examples.CatDiag
Library UniMath.Bicategories.PseudoFunctors.Examples.ChangeOfBaseEnriched
Library UniMath.Bicategories.PseudoFunctors.Examples.Composition
Library UniMath.Bicategories.PseudoFunctors.Examples.CompositionPseudoFunctor
Library UniMath.Bicategories.PseudoFunctors.Examples.ConstProduct
Library UniMath.Bicategories.PseudoFunctors.Examples.Constant
Library UniMath.Bicategories.PseudoFunctors.Examples.CorestrictImage
Library UniMath.Bicategories.PseudoFunctors.Examples.CurryingInBicatOfCats
Library UniMath.Bicategories.PseudoFunctors.Examples.Identity
Library UniMath.Bicategories.PseudoFunctors.Examples.LiftingActegories
Library UniMath.Bicategories.PseudoFunctors.Examples.MonadInclusion
Library UniMath.Bicategories.PseudoFunctors.Examples.Op2OfPseudoFunctor
Library UniMath.Bicategories.PseudoFunctors.Examples.OpFunctor
Library UniMath.Bicategories.PseudoFunctors.Examples.OpFunctorEnriched
Library UniMath.Bicategories.PseudoFunctors.Examples.PathGroupoid
Library UniMath.Bicategories.PseudoFunctors.Examples.Projection
Library UniMath.Bicategories.PseudoFunctors.Examples.PseudoFunctorsIntoCat
Library UniMath.Bicategories.PseudoFunctors.Examples.PseudofunctorFromMonoidal
Library UniMath.Bicategories.PseudoFunctors.Examples.PullbackFunctor
Library UniMath.Bicategories.PseudoFunctors.Examples.Reindexing
Library UniMath.Bicategories.PseudoFunctors.Examples.StrictToPseudo
Library UniMath.Bicategories.PseudoFunctors.Examples.Strictify
Library UniMath.Bicategories.PseudoFunctors.Preservation.BiadjunctionPreservation
Library UniMath.Bicategories.PseudoFunctors.Preservation.BiadjunctionPreserveCoproducts
Library UniMath.Bicategories.PseudoFunctors.Preservation.BiadjunctionPreserveEquifiers
Library UniMath.Bicategories.PseudoFunctors.Preservation.BiadjunctionPreserveInserters
Library UniMath.Bicategories.PseudoFunctors.Preservation.BiadjunctionPreserveProducts
Library UniMath.Bicategories.PseudoFunctors.Preservation.ClosedUnderEquivalence
Library UniMath.Bicategories.PseudoFunctors.Preservation.Preservation
Library UniMath.Bicategories.PseudoFunctors.Preservation.PullbackPreservation
Library UniMath.Bicategories.RezkCompletions.BicatToLocalUnivalentBicat
Library UniMath.Bicategories.RezkCompletions.DisplayedRezkCompletions
Library UniMath.Bicategories.RezkCompletions.RezkCompletionOfBicategory
Library UniMath.Bicategories.RezkCompletions.Uniqueness
- 1. An equality lemma for the type `functor_from A`
- 2. Two initial functors from a type are equal
- 3. Two Rezk completions are equal
Library UniMath.Bicategories.RezkCompletions.StructuredCats.BinProducts
Library UniMath.Bicategories.RezkCompletions.StructuredCats.Equalizers
Library UniMath.Bicategories.RezkCompletions.StructuredCats.FiniteLimits
Library UniMath.Bicategories.RezkCompletions.StructuredCats.Pullbacks
Library UniMath.Bicategories.RezkCompletions.StructuredCats.SubobjectClassifier
Library UniMath.Bicategories.RezkCompletions.StructuredCats.Terminal
Library UniMath.Bicategories.Transformations.PseudoTransformation
Library UniMath.Bicategories.Transformations.Examples.AlgebraMap
Library UniMath.Bicategories.Transformations.Examples.ApTransformation
Library UniMath.Bicategories.Transformations.Examples.Associativity
Library UniMath.Bicategories.Transformations.Examples.PseudoTransformationIntoCat
Library UniMath.Bicategories.Transformations.Examples.Unitality
Library UniMath.Bicategories.Transformations.Examples.Whiskering
Library UniMath.Bicategories.WkCatEnrichment.Cat
Library UniMath.Bicategories.WkCatEnrichment.Notations
Library UniMath.Bicategories.WkCatEnrichment.bicategory
Library UniMath.Bicategories.WkCatEnrichment.hcomp_bicat
Library UniMath.Bicategories.WkCatEnrichment.internal_equivalence
Library UniMath.Bicategories.WkCatEnrichment.prebicategory
Library UniMath.Bicategories.WkCatEnrichment.whiskering
Library UniMath.CategoryTheory.Abelian
- Abelian categories
- Definition of Abelian categories
- isMonic f -> isEpi f -> is_z_isomorphism f
- Pullbacks of monics and pushouts of epis
- Equalizers and Coequalizers
- Pushouts and pullbacks
- Monic kernels and Epi cokernels
- Factorization of morphisms
- Kernels, Cokernels, CoImage, and Image
- Construction of the morphism CoIm f --> Im f
- f = (x --> CoIm f) · (CoIm f --> Im f) · (Im f --> y)
- CoIm f --> Im f is an isomorphism.
- f = Epi ((x --> CoIm f) · (CoIm f --> Im f)) · Monic (Im f --> y)
- f = Epi ((x --> CoIm f)) · Monic ((CoIm f --> Im f) · (Im f --> y))
- A Abelian -> A^op Abelian, Abelian_opp
Library UniMath.CategoryTheory.AbelianPushoutPullback
Library UniMath.CategoryTheory.AbelianToAdditive
Library UniMath.CategoryTheory.Actions
Library UniMath.CategoryTheory.Additive
- Additive categories.
- Contents
- Definition of additive categories
- Quotient is additive
- Kernels, Equalizers, Cokernels, and Coequalizers in CategoryWithAdditiveStructure categories
- Sum and in to BinDirectSum is Monic
- Monics and Epis in an additive category
- Miscellaneous results about pre- and postcomposition in an additive category
Library UniMath.CategoryTheory.AdditiveFunctors
- Additive functors
- Definition of additive functor
- Additive functor preserves BinDirectSums
- Additive criteria
- The functor QuotcategoryFunctor is additive
- Equivalences of additive categories
Library UniMath.CategoryTheory.All
Library UniMath.CategoryTheory.ArrowCategory
Library UniMath.CategoryTheory.BicatOfCatsElementary
Library UniMath.CategoryTheory.CategoricalRecursionSchemes
Library UniMath.CategoryTheory.CategoriesWithBinOps
Library UniMath.CategoryTheory.CategoryEquality
Library UniMath.CategoryTheory.CategorySum
Library UniMath.CategoryTheory.CommaCategories
Library UniMath.CategoryTheory.CompletelyIterativeAlgebras
Library UniMath.CategoryTheory.Connected
Library UniMath.CategoryTheory.Core
Library UniMath.CategoryTheory.ElementaryTopos
Library UniMath.CategoryTheory.Elements
Library UniMath.CategoryTheory.ElementsOp
Library UniMath.CategoryTheory.EpiFacts
Library UniMath.CategoryTheory.Epis
- Epis
- Definition of Epis
- Construction of the subcategory consisting of all epis.
- In functor categories epis can be constructed from pointwise epis
Library UniMath.CategoryTheory.ExponentiationLeftAdjoint
Library UniMath.CategoryTheory.FiveLemma
- FiveLemma
Library UniMath.CategoryTheory.FunctorAlgebras
Library UniMath.CategoryTheory.FunctorCategory
Library UniMath.CategoryTheory.FunctorCoalgebras
Library UniMath.CategoryTheory.Groupoids
Library UniMath.CategoryTheory.HomotopicalCategory
Library UniMath.CategoryTheory.HorizontalComposition
Library UniMath.CategoryTheory.IsoCommaCategory
Library UniMath.CategoryTheory.LatticeObject
Library UniMath.CategoryTheory.LeftKanExtension
Library UniMath.CategoryTheory.LocalizingClass
- Localizing class
- Localizing class and localization of categories.
Library UniMath.CategoryTheory.Monics
- Monics
- Definition of Monics
- Construction of the subcategory consisting of all monics.
- In functor categories monics can be constructed from pointwise monics
Library UniMath.CategoryTheory.Morphisms
- Some general constructions
- Pair of morphisms
- MorphismPair and opposite categories
- ShortShortExactData
- ShortShortExactData and opposite categories
Library UniMath.CategoryTheory.PointedFunctorAlgebras
Library UniMath.CategoryTheory.PointedFunctors
Library UniMath.CategoryTheory.PointedFunctorsComposition
Library UniMath.CategoryTheory.PowerObject
Library UniMath.CategoryTheory.PreAdditive
- Definition of preadditive categories.
- Definition of a PreAdditive precategory
- Zero and unit
- Inverses and composition
- KernelIn, CokernelOut, and Binary Operations
- Quotient of homsets
- Here are some random results copied from category_abgr.v.
- Composition of morphisms
- Some equations on linearity, compositions, and binops
- Construction of the Quotcategory
- Quotient precategory of PreAdditive is PreAdditive
- The canonical functor to Quotcategory
- If PA has a zero object, then so does Quotcategory of PA
Library UniMath.CategoryTheory.PrecategoriesWithAbgrops
Library UniMath.CategoryTheory.PrecategoryBinProduct
Library UniMath.CategoryTheory.PrecompEquivalence
Library UniMath.CategoryTheory.Presheaf
Library UniMath.CategoryTheory.ProductCategory
Library UniMath.CategoryTheory.PseudoElements
Library UniMath.CategoryTheory.Quotobjects
Library UniMath.CategoryTheory.RightKanExtension
- Definition of global right Kan extension as right adjoint to precomposition
- Construction of right Kan extensions when the target category has limits
Library UniMath.CategoryTheory.SetValuedFunctors
Library UniMath.CategoryTheory.ShortExactSequences
- Short exact sequences
- Introduction
- Definition of short exact sequences
- ShortShortExact criteria
- Correspondence of shortexact in A an A^op
- LeftShortExact and RightShortExact from a ShortShortExact with extra properties
- Correspondence between ShortShortExact and ShortExact
- ShortShortExact from isKernel and isCokernel
- LeftShortExact (resp. RightShortExact) construction for derived functors
Library UniMath.CategoryTheory.SimplicialSets
Library UniMath.CategoryTheory.SplitMonicsAndEpis
Library UniMath.CategoryTheory.Subobjects
- Definition of the category of subobjects (monos) of c
- Definition of subobjects as equivalence classes of monos
Library UniMath.CategoryTheory.UnderCategories
Library UniMath.CategoryTheory.UnitorsAndAssociatorsForEndofunctors
Library UniMath.CategoryTheory.YonedaBinproducts
Library UniMath.CategoryTheory.YonedaExponentials
Library UniMath.CategoryTheory.ZigZag
Library UniMath.CategoryTheory.category_binops
Library UniMath.CategoryTheory.catiso
Library UniMath.CategoryTheory.coslicecat
Library UniMath.CategoryTheory.covyoneda
Library UniMath.CategoryTheory.elems_slice_equiv
- Proof that PreShv ∫P ≃ PreShv C / P
- Construction of the functor from PreShv ∫P to PreShv C / P
- Construction of the functor from PreShv C / P to PreShv ∫P
- Construction of the natural isomorphism from (slice_to_PreShv ∙ PreShv_to_slice) to the identity functor
- Construction of the natural isomorphism from the identity functor to (PreShv_to_slice ∙ slice_to_PreShv)
- The equivalence of the categories PreShv ∫P and PreShv C / P
Library UniMath.CategoryTheory.exponentials
- 1. Definition of exponentials
- 2. Accessors
- 3. Preservation
- Preservation of exponentials by functors
- 4. Transport along an adjoint equivalence
- 5. Exponentials are independent of the choice of the binary products
Library UniMath.CategoryTheory.opp_precat
Library UniMath.CategoryTheory.precomp_ess_surj
- Lengthy preparation for the main result of this file
- Precomposition with an ess. surj. and f. f. functor is ess. surj.
Library UniMath.CategoryTheory.precomp_fully_faithful
- Precomposition with an essentially surjective functor is faithful.
- Precomposition with an essentially surjective and full functor is full
- Precomposition with an essentially surjective and full functor is fully faithful
Library UniMath.CategoryTheory.slicecat
- Definition of slice categories
- Proof that C/x is a univalent_category if C is.
- A morphism x --> y in the base category induces a functor between C/x and C/y
- Colimits in slice categories
- Moving between Binary products in slice categories and Pullbacks in base category
- Binary coproducts in slice categories of categories with binary coproducts
- Coproducts in slice categories of categories with coproducts
Library UniMath.CategoryTheory.whiskering
Library UniMath.CategoryTheory.yoneda
Library UniMath.CategoryTheory.Actegories.Actegories
Library UniMath.CategoryTheory.Actegories.ActionBasedStrongMonads
Library UniMath.CategoryTheory.Actegories.ConstructionOfActegories
Library UniMath.CategoryTheory.Actegories.ConstructionOfActegoryMorphisms
Library UniMath.CategoryTheory.Actegories.CoproductsInActegories
Library UniMath.CategoryTheory.Actegories.MorphismsOfActegories
Library UniMath.CategoryTheory.Actegories.ProductActegory
Library UniMath.CategoryTheory.Actegories.ProductsInActegories
Library UniMath.CategoryTheory.Actegories.Examples.ActionOfEndomorphismsInCATElementary
Library UniMath.CategoryTheory.Actegories.Examples.SelfActionInCATElementary
Library UniMath.CategoryTheory.Adjunctions.AdjunctionMonics
Library UniMath.CategoryTheory.Adjunctions.Core
- Adjunctions
- Identity functor is a left adjoint
- Construction of an adjunction from some partial data (Theorem 2 (iv) of Chapter IV.1 of
- Construction of an adjunction from some partial data
- Post-composition with a left adjoint is a left adjoint
- Post-composition with a right adjoint is a right adjoint
- Definition of the maps on hom-types
- Proof that those maps are inverse to each other
- Proof of the equations (naturality squares) of the adjunction
- Adjunction defined from a natural isomorphism on homsets (F A --> B) ≃ (A --> G B)
- Weak equivalence between adjunctions F -| G and natural weqs of homsets (F A --> B) ≃ (A --> G B)
Library UniMath.CategoryTheory.Adjunctions.Examples
- 1. Adjunctions between delta functors and (co)product functors
- 1.1. The adjunction between the binary delta and product functor
- 1.2. The adjunction between the general delta and product functor
- 1.3. The adjunction between the binary coproduct and delta functor
- 1.4. The adjunction between the general coproduct and delta functor
- 2. Swapping of arguments in functor categories
- 3. Adjunctions are closed under natural isomorphism
- 4. The adjunction between the constant initial and terminal functors
Library UniMath.CategoryTheory.Adjunctions.Restriction
Library UniMath.CategoryTheory.Arithmetic.NNO
Library UniMath.CategoryTheory.Arithmetic.ParameterizedNNO
- 1. Parameterized NNOs
- 2. Accessors
- 3. Every parameterized NNO is an NNO
- 4. Uniqueness of parameterized NNOs
- 5. Preservation of parameterized NNOs
- 6. Examples of functors that preserve parameterized NNOs
- 7. Independence of the choice of binary products
Library UniMath.CategoryTheory.Categories.AbelianGroup
- 1. The univalent category of abelian groups
- 2. The additive structure
- 3. Kernels and Cokernels
- 4. Monics are inclusions and Epis are surjections
- 5. Monics are kernels of their cokernels and epis are cokernels of their kernels
- 6. The category of abelian groups is an abelian category
- 7. An elementwise criterion for isKernel
Library UniMath.CategoryTheory.Categories.AbelianMonoid
Library UniMath.CategoryTheory.Categories.CGraph
Library UniMath.CategoryTheory.Categories.CartesianCubicalSets
Library UniMath.CategoryTheory.Categories.CatIsoInserter
Library UniMath.CategoryTheory.Categories.CategoryOfSetCategories
- 1. The category of strict categories
- 2. Isomorphisms of strict categories
- 3. The univalence of the category of strict categories
Library UniMath.CategoryTheory.Categories.CategoryOfSetGroupoids
- 1. Groupoids whose objects form a set
- 2. The category of setgroupoids
- 3. Isomorphisms
- 4. The univalent category of setgroupoids
Library UniMath.CategoryTheory.Categories.CoEilenbergMoore
Library UniMath.CategoryTheory.Categories.Commrig
Library UniMath.CategoryTheory.Categories.Commring
Library UniMath.CategoryTheory.Categories.Dialgebras
Library UniMath.CategoryTheory.Categories.EilenbergMoore
Library UniMath.CategoryTheory.Categories.FinSet
Library UniMath.CategoryTheory.Categories.Fld
Library UniMath.CategoryTheory.Categories.Graph
Library UniMath.CategoryTheory.Categories.Group
Library UniMath.CategoryTheory.Categories.Intdom
Library UniMath.CategoryTheory.Categories.KleisliCategory
Library UniMath.CategoryTheory.Categories.Magma
- 1. The category of magmas
- 2. The category of abelian magmas
- 3. The category of semigroups
- 4. The category of unital magmas
- 5. The category of monoids
- 6. The category of abelian monoids
- 7. The category of groups
- 8. The category of abelian groups
Library UniMath.CategoryTheory.Categories.Module
Library UniMath.CategoryTheory.Categories.ModuleCore
Library UniMath.CategoryTheory.Categories.Monoid
Library UniMath.CategoryTheory.Categories.MonoidToCategory
Library UniMath.CategoryTheory.Categories.PrecategoryOfCategories
Library UniMath.CategoryTheory.Categories.Quotient
- 1. Definition of a congruence relation mor_cong_rel C on a category C
- 2. Definition of the quotient category mor_quot_category
Library UniMath.CategoryTheory.Categories.Rel
Library UniMath.CategoryTheory.Categories.Rig
Library UniMath.CategoryTheory.Categories.Ring
Library UniMath.CategoryTheory.Categories.SetWith2BinOp
Library UniMath.CategoryTheory.Categories.StandardCategories
Library UniMath.CategoryTheory.Categories.Woset
- The category of well-ordered sets with order preserving morphisms
- The category of well-ordered sets with arbitrary functions as morphisms
Library UniMath.CategoryTheory.Categories.HSET.All
Library UniMath.CategoryTheory.Categories.HSET.Colimits
- Colimits in HSET
Library UniMath.CategoryTheory.Categories.HSET.Core
Library UniMath.CategoryTheory.Categories.HSET.FilteredColimits
Library UniMath.CategoryTheory.Categories.HSET.Limits
- Limits in HSET
- Elements of pullbacks of sets
Library UniMath.CategoryTheory.Categories.HSET.MonoEpiIso
Library UniMath.CategoryTheory.Categories.HSET.SetCoends
Library UniMath.CategoryTheory.Categories.HSET.Slice
- Slices of HSET
Library UniMath.CategoryTheory.Categories.HSET.SliceFamEquiv
Library UniMath.CategoryTheory.Categories.HSET.Structures
Library UniMath.CategoryTheory.Categories.HSET.Univalence
Library UniMath.CategoryTheory.Categories.KaroubiEnvelope.Core
- 1. The definition of a karoubi envelope
- 2. Functors on C are equivalent to functors on the setcategory Karoubi envelope
Library UniMath.CategoryTheory.Categories.KaroubiEnvelope.RezkCompletion
Library UniMath.CategoryTheory.Categories.KaroubiEnvelope.SetKaroubi
- 1. The setcategory Karoubi envelope and its embedding of C
- 1.1. The objects and morphisms and their constructors and accessors
- 1.2. The category
- 1.3. The embedding
- 1.4. Every idempotent in the setcategory karoubi envelope splits
- 1.5. Every object of the setcategory karoubi envelope is a retract of an element of C
- 1.6. The bundling of the above into a term of set_karoubi_envelope
- 3. The alternative definition, using the presheaf category
- 4. The formations of the opposite category and the Karoubi envelope commute
- 5. The Karoubi envelope construction gives a monad on the category of setcategories
Library UniMath.CategoryTheory.Categories.KaroubiEnvelope.UnivalentKaroubi
Library UniMath.CategoryTheory.Categories.PreorderCategory.Core
Library UniMath.CategoryTheory.Categories.PreorderCategory.Sieves
Library UniMath.CategoryTheory.Categories.Type.Colimits
Library UniMath.CategoryTheory.Categories.Type.Core
Library UniMath.CategoryTheory.Categories.Type.Limits
Library UniMath.CategoryTheory.Categories.Type.MonoEpiIso
Library UniMath.CategoryTheory.Categories.Type.NoHomsets
Library UniMath.CategoryTheory.Categories.Type.Structures
Library UniMath.CategoryTheory.Categories.Type.Univalence
Library UniMath.CategoryTheory.Categories.Universal_Algebra.Algebras
Library UniMath.CategoryTheory.Categories.Universal_Algebra.EqAlgebras
Library UniMath.CategoryTheory.Chains.Adamek
Library UniMath.CategoryTheory.Chains.All
Library UniMath.CategoryTheory.Chains.Chains
Library UniMath.CategoryTheory.Chains.CoAdamek
Library UniMath.CategoryTheory.Chains.Cochains
Library UniMath.CategoryTheory.Chains.OmegaCocontFunctors
- ω-cocontinuous functors
- Examples of (omega) cocontinuous functors
- Left adjoints preserve colimits
- The identity functor is (omega) cocontinuous
- The constant functor is omega cocontinuous
- Functor composition preserves omega cocontinuity
- Functor iteration preserves (omega)-cocontinuity
- A pair of functors (F,G) : A * B -> C * D is omega cocontinuous if F and G are
- A functor F : A -> product_category I B is (omega-)cocontinuous if each F_i : A -> B_i is
- A family of functor F^I : A^I -> B^I is omega cocontinuous if each F_i is
- The bindelta functor C -> C^2 mapping x to (x,x) is omega cocontinuous
- The generalized delta functor C -> C^I is omega cocontinuous
- The functor "+ : C^2 -> C" is cocontinuous
- The functor "+ : C^I -> C" is cocontinuous
- Binary coproduct of functors: F + G : C -> D is omega cocontinuous
- Coproduct of families of functors: + F_i : C -> D is omega cocontinuous
- Constant product functors: C -> C, x |-> a * x and x |-> x * a are cocontinuous
- The functor "* : C^2 -> C" is omega cocontinuous
- Binary product of functors: F * G : C -> D is omega cocontinuous
- Direct proof that the precomposition functor is cocontinuous
- Precomposition functor is cocontinuous using construction of right Kan extensions
- Swapping of functor category arguments
- The forgetful functor from Set/X to Set preserves colimits
Library UniMath.CategoryTheory.Chains.OmegaContFunctors
Library UniMath.CategoryTheory.Core.Categories
Library UniMath.CategoryTheory.Core.EssentiallyAlgebraic
Library UniMath.CategoryTheory.Core.Functors
- Functors
- Functors : Morphisms of precategories
- Functors preserve isomorphisms
- Functors and idtoiso
- Functors preserve inverses
- Conservative functors
- Composition of functors, identity functors
- Fully faithful functors
- (Split) essentially surjective functors
- Faithful functors
- Full functors
- Fully faithful is the same as full and faithful
- Image on objects of a functor
Library UniMath.CategoryTheory.Core.Isos
Library UniMath.CategoryTheory.Core.NaturalTransformations
Library UniMath.CategoryTheory.Core.PosetCat
- 1. Posetal categories
- 2. Every posetal category is a poset
- 3. Every poset is a posetal category
- 4. Equivalence between posetal categories and posets
Library UniMath.CategoryTheory.Core.Prelude
Library UniMath.CategoryTheory.Core.Setcategories
Library UniMath.CategoryTheory.Core.TransportMorphisms
Library UniMath.CategoryTheory.Core.TwoCategories
- 1. Definition of 2-categories
- 2. Accessors for the data
- 4. Projections of the laws
- 5. 2-categories
- 6. Derived laws
- 7. 2-setcategories
- 8. Univalent 2-categories
- 9. Hom-categories
Library UniMath.CategoryTheory.Core.Univalence
Library UniMath.CategoryTheory.DaggerCategories.CatIso
Library UniMath.CategoryTheory.DaggerCategories.Categories
Library UniMath.CategoryTheory.DaggerCategories.FunctorCategory
Library UniMath.CategoryTheory.DaggerCategories.Functors
Library UniMath.CategoryTheory.DaggerCategories.Transformations
Library UniMath.CategoryTheory.DaggerCategories.Unitary
Library UniMath.CategoryTheory.DaggerCategories.Univalence
Library UniMath.CategoryTheory.DaggerCategories.Examples.Fullsub
Library UniMath.CategoryTheory.DaggerCategories.Examples.Groupoids
Library UniMath.CategoryTheory.DaggerCategories.Examples.Relations
Library UniMath.CategoryTheory.DaggerCategories.Functors.Factorization
Library UniMath.CategoryTheory.DaggerCategories.Functors.FullyFaithful
Library UniMath.CategoryTheory.DaggerCategories.Functors.Precomp
Library UniMath.CategoryTheory.DaggerCategories.Functors.WeakEquivalences
Library UniMath.CategoryTheory.DisplayedCats.Adjunctions
- Naturality of homset bijections
- homset_conj_inv and homset_conj' are weak equivalences.
- The right adjoint functor of a displayed adjunction preserves cartesian morphisms.
Library UniMath.CategoryTheory.DisplayedCats.Binproducts
Library UniMath.CategoryTheory.DisplayedCats.CatIsoDisplayed
Library UniMath.CategoryTheory.DisplayedCats.Codomain
Library UniMath.CategoryTheory.DisplayedCats.ComprehensionC
Library UniMath.CategoryTheory.DisplayedCats.Constructions
Library UniMath.CategoryTheory.DisplayedCats.Core
Library UniMath.CategoryTheory.DisplayedCats.DisplayMapCat
- Display Map Category
- Display Map
- Display Map Category
- Inclusion Functor
- Functor between Display Map Classes
- Functor between Display Map Categories
- Natural Transformation
- Corresponding Comprehension Category
- Pseudo Map corresponding to a functor between Display Map Categories
- Transformation corresponding to a natural transformation between functors between display map categories
Library UniMath.CategoryTheory.DisplayedCats.DisplayedCatEq
Library UniMath.CategoryTheory.DisplayedCats.DisplayedFunctorEq
Library UniMath.CategoryTheory.DisplayedCats.EquivalenceOverId
Library UniMath.CategoryTheory.DisplayedCats.Equivalences
- General definition of displayed adjunctions and equivalences
- Constructions on and of displayed equivalences
- Displayed equivalences and adjunctions over identity
- Constructions on and of displayed equivalences over identity
Library UniMath.CategoryTheory.DisplayedCats.Examples
Library UniMath.CategoryTheory.DisplayedCats.Fiber
Library UniMath.CategoryTheory.DisplayedCats.Fibrations
- Isofibrations
- Fibrations
- Split fibrations
Library UniMath.CategoryTheory.DisplayedCats.FullyFaithfulDispFunctor
Library UniMath.CategoryTheory.DisplayedCats.FunctorCategory
Library UniMath.CategoryTheory.DisplayedCats.Functors
Library UniMath.CategoryTheory.DisplayedCats.Isos
Library UniMath.CategoryTheory.DisplayedCats.Limits
Library UniMath.CategoryTheory.DisplayedCats.NaturalTransformations
Library UniMath.CategoryTheory.DisplayedCats.PreservesCleaving
Library UniMath.CategoryTheory.DisplayedCats.Projection
Library UniMath.CategoryTheory.DisplayedCats.ReindexingForward
Library UniMath.CategoryTheory.DisplayedCats.SIP
Library UniMath.CategoryTheory.DisplayedCats.StreetFibration
Library UniMath.CategoryTheory.DisplayedCats.StreetOpFibration
Library UniMath.CategoryTheory.DisplayedCats.Total
Library UniMath.CategoryTheory.DisplayedCats.TotalAdjunction
Library UniMath.CategoryTheory.DisplayedCats.TotalCategoryFacts
Library UniMath.CategoryTheory.DisplayedCats.Univalence
Library UniMath.CategoryTheory.DisplayedCats.Codomain.CodColimits
Library UniMath.CategoryTheory.DisplayedCats.Codomain.CodDomain
Library UniMath.CategoryTheory.DisplayedCats.Codomain.CodFunctor
- 1. Displayed functor between codomain displayed categories
- 2. Displayed natural transformation between codomain displayed categories
- 3. Cartesianness of the displayed functor
- 4. Preservation of limits
- 5. Preservation of colimits
- 6. Naturality for the slice of terminal objects
Library UniMath.CategoryTheory.DisplayedCats.Codomain.CodLeftAdjoint
- 1. The left adjoint
- 2. The unit
- 3. The counit
- 4. The triangle equalities
- 5. The adjunction
- 6. The Beck-Chevalley condition
- 7. Dependent sums for the codomain
Library UniMath.CategoryTheory.DisplayedCats.Codomain.CodLimits
- 1. Preservation of limits by substitution
- 2. Fiberwise terminal objects
- 3. Fiberwise binary products
- 4. Fiberwise equalizers
Library UniMath.CategoryTheory.DisplayedCats.Codomain.CodMorphisms
Library UniMath.CategoryTheory.DisplayedCats.Codomain.CodNNO
- 1. Basic definitions
- 2. The universal mapping property
- 3. Parameterized natural numbers object in the slice category
- 4. Stability under substitution
- 5. Preservation by the pseudofunctoriality of the arrow category
Library UniMath.CategoryTheory.DisplayedCats.Codomain.CodRegular
- 1. Regular epimorphisms in the slice category
- 2. Regular categories are closed under slicing
- 3. Preservation of regular epimorphisms by the pullback functor
- 4. Preservation of regular epimorphisms by the codomain functor
- 5. Exactness of the slice category
Library UniMath.CategoryTheory.DisplayedCats.Codomain.CodRightAdjoint
Library UniMath.CategoryTheory.DisplayedCats.Codomain.CodSubobjectClassifier
- 1. The universal property
- 2. The subobject classifier
- 3. Preservation of subobject classifiers by the pullback functor
- 4. The functor on the arrow category preserves subobject classifiers
Library UniMath.CategoryTheory.DisplayedCats.Codomain.ColimitProperties
- 1. Strict initial objects in the slice category
- 2. Disjoint binary coproducts in the slice
- 3. Stable binary coproducts in the slice
- 4. Preservation of colimits by the arrow functor
Library UniMath.CategoryTheory.DisplayedCats.Codomain.FiberCod
- 1. Accessors for the fiber of the codomain
- 2. Builders for the fiber of the codomain
- 3. Standard objects and morphisms in the codomain
- 4. Calculations for codomain fiber
- 5. The fiber of terminal objects
Library UniMath.CategoryTheory.DisplayedCats.Codomain.IteratedSlice
- 1. Iterated slice categories
- 2. Pullbacks in iterated slice categories
- 3. Preservation of colimits by pullback in the iterated slice
Library UniMath.CategoryTheory.DisplayedCats.Constructions.CategoryWithStructure
Library UniMath.CategoryTheory.DisplayedCats.Constructions.DisplayedFunctorCat
Library UniMath.CategoryTheory.DisplayedCats.Constructions.DisplayedSections
- 1. Displayed sections and their accessors
- 2. Displayed natural transformations and their accessors
- 3. The category
Library UniMath.CategoryTheory.DisplayedCats.Constructions.FullSubcategory
- 1. The construction of the full subcategory as a displayed category
- 2. Univalence
- 3. Shortcuts for just the resulting total category
- 4. The truncation functor
Library UniMath.CategoryTheory.DisplayedCats.Constructions.FunctorLift
Library UniMath.CategoryTheory.DisplayedCats.Constructions.Product
- 1. The product displayed category
- Products of displayed (pre)categories
- 2. A characterization of displayed isomorphism
- 3. Univalence
- 4. The projecton displayed functors
Library UniMath.CategoryTheory.DisplayedCats.Examples.AlgebraStructures
Library UniMath.CategoryTheory.DisplayedCats.Examples.Arrow
Library UniMath.CategoryTheory.DisplayedCats.Examples.Cartesian
- 1. One can consider any category as a displayed category over the unit category
- 2. The cartesian product as a displayed category over the first component
- 3. The arrow category
- 4. A direct definition of the product category as a displayed category
- 4.1. This cartesian has limits as well
Library UniMath.CategoryTheory.DisplayedCats.Examples.CategoryOfPosets
Library UniMath.CategoryTheory.DisplayedCats.Examples.DCPOStructures
Library UniMath.CategoryTheory.DisplayedCats.Examples.DispFunctorPair
Library UniMath.CategoryTheory.DisplayedCats.Examples.HValuedPredicates
- 1. The displayed category of H-valued predicates
- 2. Properties of this displayed category
- 3. The hyperdoctrine of H-valued predicates
- 4. Logic of H-valued predicates
- 4.1. Fiberwise terminal object
- 4.2. Fiberwise initial object
- 4.3. Fiberwise binary products
- 4.4. Fiberwise binary coproducts
- 4.5. Fiberwise exponentials
- 4.6. Dependent products
- 4.7. Dependent sums
- 5. The first-order hyperdoctrine of H-valued predicates
- 6. Comprehension category of H-valued predicates
- 7. The tripos of H-valued predicates
- 8. The comprehension category of H-valued predicates is not necessarily full
Library UniMath.CategoryTheory.DisplayedCats.Examples.MonadAlgebras
Library UniMath.CategoryTheory.DisplayedCats.Examples.MonoCodomain
- 1. The displayed category of monomorphisms
- 2. Pullback squares are cartesian
- 3. Cleaving for codomain of monomorphisms
- 4. Isos in the codomain
- 5. The univalence
- 6. Accessors for monomorphisms
Library UniMath.CategoryTheory.DisplayedCats.Examples.Opposite
Library UniMath.CategoryTheory.DisplayedCats.Examples.PointedDCPOStrict
Library UniMath.CategoryTheory.DisplayedCats.Examples.PointedDCPOStructures
Library UniMath.CategoryTheory.DisplayedCats.Examples.PointedPosetStrict
Library UniMath.CategoryTheory.DisplayedCats.Examples.PointedPosetStructures
Library UniMath.CategoryTheory.DisplayedCats.Examples.PointedSetStructures
Library UniMath.CategoryTheory.DisplayedCats.Examples.PosetStructures
Library UniMath.CategoryTheory.DisplayedCats.Examples.Reindexing
Library UniMath.CategoryTheory.DisplayedCats.Examples.SetGroupoidComprehension
- 1. The total category of an isofibration
- 2. The comprehension functor
- 3. Some transport lemmas that we need
- 4. The comprehension functor is Cartesian
- 5. Comprehension for split isofibrations
Library UniMath.CategoryTheory.DisplayedCats.Examples.SetGroupoidsIsoFib
- 1. Displayed categories that represent setgroupoids
- 2. Properties of displayed setgroupoids
- 3. The data of the displayed category of displayed setgroupoids
- 4. Transport lemmas
- 5. Verification of the axioms
- 6. This displayed category is univalent
- 7. The displayed category of isofibrations
- 8. A cleaving for the displayed category of isofibrations
- 9. The displayed category of split isofibrations
- 10. A cleaving for the displayed category of split isofibrations
Library UniMath.CategoryTheory.DisplayedCats.Examples.SetStructures
Library UniMath.CategoryTheory.DisplayedCats.Examples.Sigma
Library UniMath.CategoryTheory.DisplayedCats.Examples.StrictTwoSidedDispCat
- 1. The data of the displayed category of 2-sided displayed categories
- 2. Transport lemmas for this displayed category
- 3. The laws
- 4. The displayed category of strict 2-sided displayed categories
- 5. The proof that it is univalent
Library UniMath.CategoryTheory.DisplayedCats.Examples.Three
Library UniMath.CategoryTheory.DisplayedCats.Examples.UnitalBinop
Library UniMath.CategoryTheory.DisplayedCats.Fiberwise.DependentProducts
- 1. The Beck-Chevalley condition for right adjoints
- 2. Dependent products
- 3. Accessors for dependent products
- 4. Preservation of dependent products by functors between fibrations
- 5. Examples of functors that preserve dependent products
Library UniMath.CategoryTheory.DisplayedCats.Fiberwise.DependentSums
- 1. The natural transformation from the left Beck-Chevalley condition
- 2. Fibrations with dependent sums
- 3. Accessors for dependent sums
- 4. Preservation of dependent sums by functors between fibrations
Library UniMath.CategoryTheory.DisplayedCats.Fiberwise.DualBeckChevalley
Library UniMath.CategoryTheory.DisplayedCats.Fiberwise.FiberwiseCartesianClosed
- 1. Fiberwise exponentials
- 2, Accessors
- 3. Specialized builder for fibrations that land in posets
- 4. Distributivity of products and coproducts
Library UniMath.CategoryTheory.DisplayedCats.Fiberwise.FiberwiseCoproducts
Library UniMath.CategoryTheory.DisplayedCats.Fiberwise.FiberwiseEqualizers
Library UniMath.CategoryTheory.DisplayedCats.Fiberwise.FiberwiseInitial
Library UniMath.CategoryTheory.DisplayedCats.Fiberwise.FiberwiseProducts
Library UniMath.CategoryTheory.DisplayedCats.Fiberwise.FiberwiseSubobjectClassifier
Library UniMath.CategoryTheory.DisplayedCats.Fiberwise.FiberwiseTerminal
- 1. Fiberwise terminal objects
- 2. Right adjoint from fiberwise terminal objects
- 3. Preservation of fiberwise terminal objects
Library UniMath.CategoryTheory.DisplayedCats.MonoCodomain.FiberMonoCod
- 1. Accessors for the fiber of the codomain of monomorphisms
- 2. Builders for the fiber of the codomain of monomorphisms
- 3. Standard objects and morphisms in the codomain of monomorphisms
Library UniMath.CategoryTheory.DisplayedCats.MonoCodomain.Inclusion
- 1. The displayed functor
- 2. The fiber functor
- 3. From the slice category to the slice category of monomorphisms
Library UniMath.CategoryTheory.DisplayedCats.MonoCodomain.MonoCodColimits
Library UniMath.CategoryTheory.DisplayedCats.MonoCodomain.MonoCodFunctor
- 1. Displayed functor between displayed categories of monomorphisms
- 2. Conditions for which this functor is a weak equivalence
- 3. Properties of the fiber functor
Library UniMath.CategoryTheory.DisplayedCats.MonoCodomain.MonoCodLeftAdjoint
Library UniMath.CategoryTheory.DisplayedCats.MonoCodomain.MonoCodLimits
Library UniMath.CategoryTheory.DisplayedCats.MonoCodomain.MonoCodRightAdjoint
- 1. Preservation of monomorphisms by dependent products
- 2. Rules for universal quantification
- 3. Stability under substitution for the universal quantifier
- 4. The universal quantifier
- 5. Introduction/elimination rules for the implication
- 6. Stability under substitution for the implication
- 7. The implication
Library UniMath.CategoryTheory.DisplayedCats.MonoCodomain.MonoHyperdoctrine
- 1. The preorder hyperdoctrine of monomorphisms in a category
- 2. The hyperdoctrine of monomorphisms in a univalent category
Library UniMath.CategoryTheory.DisplayedCats.MoreFibrations.CartesiannessOfComposites
Library UniMath.CategoryTheory.DisplayedCats.MoreFibrations.DispCatsEquivFunctors
Library UniMath.CategoryTheory.DisplayedCats.MoreFibrations.DisplayedDisplayedCats
Library UniMath.CategoryTheory.DisplayedCats.MoreFibrations.FibrationsCharacterisation
Library UniMath.CategoryTheory.DisplayedCats.MoreFibrations.Prefibrations
Library UniMath.CategoryTheory.DisplayedCats.Structures.CartesianStructure
Library UniMath.CategoryTheory.DisplayedCats.Structures.StructureLimitsAndColimits
Library UniMath.CategoryTheory.DisplayedCats.Structures.StructuresSmashProduct
Library UniMath.CategoryTheory.EnrichedCats.BenabouCosmos
Library UniMath.CategoryTheory.EnrichedCats.EnrichedRelation
- 1. Enriched relations
- 2. Identity and composition of enriched relations
- 3. Order on enriched relations
- 4. Squares of enriched relations
- 5. Associators and unitors
- 6. Identity squares
- 7. Composition of squares
- 8. Converses of enriched relations
- 9. Companion pairs of enriched relations
- 10. Conjoints of enriched relations
- 11. Calculational lemmas
- 12. Basic properties of the order of enriched relations
Library UniMath.CategoryTheory.EnrichedCats.Enrichment
Library UniMath.CategoryTheory.EnrichedCats.EnrichmentAdjunction
Library UniMath.CategoryTheory.EnrichedCats.EnrichmentFunctor
- 1. Functors with enrichments
- 2. Properties for enriched functors
- 4. The composition of enriched functors
- 5. The constant functor
- 6. Lemmas for pre- and postcomposition
Library UniMath.CategoryTheory.EnrichedCats.EnrichmentMonad
Library UniMath.CategoryTheory.EnrichedCats.EnrichmentTransformation
Library UniMath.CategoryTheory.EnrichedCats.FullyFaithful
- 1. Composition of fully faithful functors
- 2. Fully faithful functors are closed under natural isomorphism
- 3. Factorization of fully faithful functors
Library UniMath.CategoryTheory.EnrichedCats.LaxExtension
- 1. Definition of lax extensions
- 2. Builder and equality
- 3. Functors with a lax extension
- 4. Properties of lax extensions
Library UniMath.CategoryTheory.EnrichedCats.YonedaLemma
Library UniMath.CategoryTheory.EnrichedCats.Bifunctors.CurriedBifunctors
Library UniMath.CategoryTheory.EnrichedCats.Bifunctors.CurriedTransformations
Library UniMath.CategoryTheory.EnrichedCats.Bifunctors.WhiskeredBifunctors
- 1. Definition of whiskered bifunctors
- 2. Accessors for whiskered bifunctors
- 3. Equivalence with functors from the tensor
Library UniMath.CategoryTheory.EnrichedCats.Bifunctors.WhiskeredTransformations
- 1. Whiskered transformations between bifunctors
- 2. Equivalence with enriched natural transformations
Library UniMath.CategoryTheory.EnrichedCats.Colimits.CopowerFunctor
Library UniMath.CategoryTheory.EnrichedCats.Colimits.EnrichedBinaryCoproducts
Library UniMath.CategoryTheory.EnrichedCats.Colimits.EnrichedCoequalizers
Library UniMath.CategoryTheory.EnrichedCats.Colimits.EnrichedColimits
Library UniMath.CategoryTheory.EnrichedCats.Colimits.EnrichedConicalColimits
Library UniMath.CategoryTheory.EnrichedCats.Colimits.EnrichedCopowers
Library UniMath.CategoryTheory.EnrichedCats.Colimits.EnrichedCoproducts
Library UniMath.CategoryTheory.EnrichedCats.Colimits.EnrichedInitial
Library UniMath.CategoryTheory.EnrichedCats.Colimits.Examples.OppositeEnrichedColimits
Library UniMath.CategoryTheory.EnrichedCats.Colimits.Examples.PosetEnrichedColimits
Library UniMath.CategoryTheory.EnrichedCats.Colimits.Examples.SelfEnrichedColimits
Library UniMath.CategoryTheory.EnrichedCats.Colimits.Examples.StructureEnrichedColimits
Library UniMath.CategoryTheory.EnrichedCats.Enriched.ChangeOfBase
Library UniMath.CategoryTheory.EnrichedCats.Enriched.Enriched
Library UniMath.CategoryTheory.EnrichedCats.Enriched.EnrichmentEquiv
Library UniMath.CategoryTheory.EnrichedCats.Enriched.Opposite
Library UniMath.CategoryTheory.EnrichedCats.Enriched.UnderlyingCategory
Library UniMath.CategoryTheory.EnrichedCats.Examples.ChangeOfBase
Library UniMath.CategoryTheory.EnrichedCats.Examples.CollageEnriched
- 1. The underlying category
- 2. The enrichment
- 3. The underlying category
- 4. The underlying category is univalent
- 5. The left inclusion
- 6. The right inclusion
- 7. The square of the collage
Library UniMath.CategoryTheory.EnrichedCats.Examples.DialgebraEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.EilenbergMooreEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.EmptyEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.FullSubEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.FunctorCategory
Library UniMath.CategoryTheory.EnrichedCats.Examples.GraphEnriched
- 1. The graph of an enriched profunctor
- 2. Accessors and builders for objects and morphisms
- 3. The enriched hom object
- 4. Operations for the enrichment
- 5. Laws for the enrichment
- 6. The enrichment for the graph
- 7. The first projection
- 8. The second projection
- 9. The square of the graph
Library UniMath.CategoryTheory.EnrichedCats.Examples.HomFunctor
Library UniMath.CategoryTheory.EnrichedCats.Examples.ImageEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.KleisliEnriched
- 1. Data of the enrichment
- 2. The laws of the enrichment
- 3. The enrichment
- 4. Enriched functors from the Kleisli category
- 5. Natural transformations from the Kleisli category
Library UniMath.CategoryTheory.EnrichedCats.Examples.OppositeEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.PosetEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.Precomposition
Library UniMath.CategoryTheory.EnrichedCats.Examples.Presheaves
- 1. Hom objects of presheaves
- 2. The identity for the enrichment
- 3. Composition for the enrichment
- 4. Global elements versus natural transformations
- 5. Laws of the enrichment
- 6. Enrichment for the presheaf category
Library UniMath.CategoryTheory.EnrichedCats.Examples.ProductEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.QuantaleEnriched
- 1. Builder for categories enriched over quantales
- 2. The objects in a quantale enriched univalent category form a set
- 3. Builder for functors of categories enriched over quantales
- 4. Properties of quantale enriched functors
- 5. Equality of natural transformation for quantale enriched categories
- 6. Builder for quantale enriched profunctors
- 7. Properties of quantale enriched profunctors
- 8. Properties of quantale enriched transformations
Library UniMath.CategoryTheory.EnrichedCats.Examples.SelfEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.SetEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.SliceEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.SmashStructureEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.StructureEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.Tensor
Library UniMath.CategoryTheory.EnrichedCats.Examples.UnitEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.UnivalentKleisliEnriched
Library UniMath.CategoryTheory.EnrichedCats.Examples.UnivalentKleisliMapping
- 1. Enriched functors from the univalent Kleisli category
- 2. Enriched transformations from the univalent Kleisli category
- 3. Uniqueness of 2-cells from the univalent Kleisli category
Library UniMath.CategoryTheory.EnrichedCats.Examples.Yoneda
Library UniMath.CategoryTheory.EnrichedCats.Limits.EnrichedBinaryProducts
Library UniMath.CategoryTheory.EnrichedCats.Limits.EnrichedConicalLimits
Library UniMath.CategoryTheory.EnrichedCats.Limits.EnrichedEqualizers
Library UniMath.CategoryTheory.EnrichedCats.Limits.EnrichedLimits
- 1. Cones of enriched limits
- 2. Limits in an enriched category
- 3. Being a limit is a proposition *
- 4. Some accessors for enriched limits
- 5. Enriched limits are unique up to isomorphism
- 6. Uniqueness of enriched limits
- 7. Instances of limits
- 7.1. Powers as limits
- 7.2. Conical limits as limits
Library UniMath.CategoryTheory.EnrichedCats.Limits.EnrichedPowers
Library UniMath.CategoryTheory.EnrichedCats.Limits.EnrichedProducts
Library UniMath.CategoryTheory.EnrichedCats.Limits.EnrichedTerminal
Library UniMath.CategoryTheory.EnrichedCats.Limits.Examples.OppositeEnrichedLimits
Library UniMath.CategoryTheory.EnrichedCats.Limits.Examples.PosetEnrichedLimits
Library UniMath.CategoryTheory.EnrichedCats.Limits.Examples.SelfEnrichedLimits
Library UniMath.CategoryTheory.EnrichedCats.Limits.Examples.StructureEnrichedLimits
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.Coend
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.Composition
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.Invertible
- 1. Invertible profunctor transformations
- 2. The inverse transformation
- 3. The identity type of enriched profunctors
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.Profunctor
- 1. Enriched profunctors
- 2. Accessors
- 3. Equivalence with whiskered bifunctors
- 4. Action on morphisms in the underlying category
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.ProfunctorSquares
- 1. Squares of enriched profunctors
- 2. Accessors/builders for squares of enriched profunctors
- 3. Squares and transformations
- 4. Examples of squares of enriched profunctors
- 4.4. Up whiskering
- 4.5. Down whiskering
- 4.6. Left whiskering
- 4.7. Right whiskering
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.ProfunctorTransformations
- 1. Transformations between enriched profunctors
- 2. Equivalence with the usual definition
- 3. Standard transformations of profunctors
- 4. Extra laws
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.RepresentableLaws
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.StandardProfunctors
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.Composition.Associators
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.Composition.BicatLaws
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.Composition.CompositionProf
- 1. The functor over which we take the coend
- 2. The coend used to define composition
- 3. The left action
- 4. The right action
- 5. The data
- 6. The laws
- 7. Composition of enriched profunctors
- 8. Additional laws for action on morphisms
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.Composition.OtherLaws
- 1. The interchange law
- 2. Cylinder laws for the left unitor
- 3. Cylinder laws for the right unitor
- 4. Cylinder laws for the associator
- 5. Composition and whiskering
- 6. Saturation of the Verity double bicategory of enriched profunctors
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.Composition.SquareComp
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.Composition.Unitors
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.Composition.WhiskerLaws
- 1. Up whiskering and composition
- 2. Down whiskering and composition
- 3. Up whiskering and identities
- 4. Swapping whiskering
- 5. Composition of squares and whiskering
Library UniMath.CategoryTheory.EnrichedCats.Profunctors.Composition.Whiskering
Library UniMath.CategoryTheory.EnrichedCats.RezkCompletion.EnrichedRezkCompletion
Library UniMath.CategoryTheory.EnrichedCats.RezkCompletion.PrecompEssentiallySurjective
- 1. Action on objects
- 2. Action on morphisms
- 3. The enrichment
- 4. The commutativity
- 5. Essential surjectivity
Library UniMath.CategoryTheory.EnrichedCats.RezkCompletion.PrecompFullyFaithful
Library UniMath.CategoryTheory.EnrichedCats.RezkCompletion.RezkUniversalProperty
- 1. Universal property of the Rezk completion
- 2. Accessors for the universal property of the Rezk completion
Library UniMath.CategoryTheory.Equivalences.CompositesAndInverses
Library UniMath.CategoryTheory.Equivalences.Core
- Sloppy equivalence of categories
- Equivalence of (pre)categories
- Adjointification of a sloppy equivalence
- Being an adjoint equivalence is closed under isomorphism
- Identity functor is an adjoint equivalence
- Equivalence of categories yields equivalence of object types
- From full faithfullness and ess surj to equivalence
Library UniMath.CategoryTheory.Equivalences.EquivalenceFromComp
Library UniMath.CategoryTheory.Equivalences.FullyFaithful
Library UniMath.CategoryTheory.ExactCategories.ExactCategories
Library UniMath.CategoryTheory.ExactCategories.Tests
Library UniMath.CategoryTheory.GrothendieckConstruction.IsOpfibration
Library UniMath.CategoryTheory.GrothendieckConstruction.IsPullback
Library UniMath.CategoryTheory.GrothendieckConstruction.IsosInTotal
Library UniMath.CategoryTheory.GrothendieckConstruction.Projection
Library UniMath.CategoryTheory.GrothendieckConstruction.TotalCategory
Library UniMath.CategoryTheory.GrothendieckToposes.Sheaves
Library UniMath.CategoryTheory.GrothendieckToposes.Sieves
Library UniMath.CategoryTheory.GrothendieckToposes.Sites
Library UniMath.CategoryTheory.GrothendieckToposes.Topologies
Library UniMath.CategoryTheory.GrothendieckToposes.Toposes
- 1. The property of being a Grothendieck topos
- 2. Grothendieck toposes
- 3. The recursion and induction principles
Library UniMath.CategoryTheory.GrothendieckToposes.Examples.DiscreteTopology
Library UniMath.CategoryTheory.GrothendieckToposes.Examples.EmptySieve
Library UniMath.CategoryTheory.GrothendieckToposes.Examples.IndiscreteTopology
Library UniMath.CategoryTheory.GrothendieckToposes.Examples.TerminalSheaf
Library UniMath.CategoryTheory.Hyperdoctrines.FirstOrderHyperdoctrine
- 1. First-order hyperdoctrines
- 2. The truth formula
- 3. The falsity formula
- 4. Conjunction
- 5. Weakening of hypotheses
- 6. Disjunction
- 7. Implication
- 8. Universal quantification
- 9. Existential quantification
- 10. Equality
- 11. Derived rules for equality
- 12. Derived connectives
- 12.1. Bi-implication
- 12.2. Negation
- 13. A tactic for simplifying goals in the internal language of first-order hyperdoctrines
Library UniMath.CategoryTheory.Hyperdoctrines.GenericPredicate
Library UniMath.CategoryTheory.Hyperdoctrines.HValuedSets
- 1. The topos of H-valued sets
- 2. Accessors and builders for H-valued sets
- 3. Accessors and builders for morphisms of H-valued sets
Library UniMath.CategoryTheory.Hyperdoctrines.Hyperdoctrine
- 1. Structure of hyperdoctrines
- 2. Accessors for types in a hyperdoctrine
- 3. Accessors for terms in a hyperdoctrine
- 3.1. Substitution on terms
- 3.2. Terms for the unit type
- 3.3. Terms for the binary product type
- 4. Formulas in a hyperdoctrine
- 5. Proof terms in a hyperdoctrine
- 6. Equality of formulas
- 7. Substitution on formulas in a hyperdoctrine
Library UniMath.CategoryTheory.Hyperdoctrines.Tripos
- 1. Tripos
- 2. Some substitutions necessary to define weak triposes
- 3. The definition of weak triposes
- 4. Every tripos is a weak tripos
Library UniMath.CategoryTheory.Hyperdoctrines.TriposToTopos
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.ExponentialEqs
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.ExponentialEval
- 1. The formula of the evaluation morphism
- 2. The laws of the evaluation morphism
- 3. The evaluation morphism
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.ExponentialLam
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.ExponentialPER
- 1. Functions of partial setoids via the powerset
- 2. Accessors
- 3. Pointwise equality of partial setoid functions
- 4. The partial setoid of functions
- 5. Accessors for the partial equivalence relation of functions
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.InternalLogic
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.PERBinProducts
- 1. The first projection
- 2. The second projection
- 3. Pairing partial setoid morphisms
- 4. The uniqueness
- 5. Binary products of partial setoids
- 6. Preservation of binary products by the constant object functor
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.PERCategory
- 1. The identity morphism
- 2. The composition of morphisms of partial setoids
- 3. The category of partial setoids
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.PERConstantObjects
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.PEREqualizers
- 1. The equalizer partial setoid
- 2. Accessors for the partial equivalence relation of the equalizer
- 3. The inclusion of the equalizer
- 4. The universal property of the equalizer
- 4.1. The map from the universal property
- 4.2. Uniqueness of the morphism
- 5. Equalizers of partial setoids
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.PERExponentials
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.PERInitial
- 1. The initial partial setoid
- 2. The morphism from the initial partial setoid and its uniqueness
- 3. The initial object
- 4. This initial object is strict
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.PERMonomorphisms
- 1. Formulas to monomorphisms
- 1.1. The partial setoid
- 1.2. Accessors for the partial equivalence relation
- 1.3. The inclusion
- 1.4. The proof that it is monic
- 2. Proofs to commuting triangles
- 2.1. The morphism from a proof
- 2.2. Proof of commutativity
- 3. The displayed functor from formulas to monomorphisms
- 4. The displayed functor is fully faithful
- 5. The displayed functor is split essentially surjective
- 6. Identifying terms using monomorphisms
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.PERMorphisms
- 1. Laws of partial setoid morphisms
- 2. Partial setoid morphisms
- 3. Accessors for partial setoid morphisms
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.PERSubobjectClassifier
- 1. The partial setoid representing the subobject classifier
- 2. Accessors for the partial equivalence relation
- 3. The map representing truth
- 4. The universal mapping property of the subobject classifier
- 4.1. Maps to the subobject classifier
- 4.2. The map gives rise to a pullback square
- 4.3. Uniqueness
- 5. The subobject classifier of partial setoids
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.PERTerminal
- 1. Morphism to the terminal object
- 2. Uniqueness of the morphism to the terminal object
- 3. The terminal object
- 4. Preservation of terminal objects by the constant object functor
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.PERs
- 1. Partial equivalence relations
- 2. Partial setoids
- 3. Every type is a partial setoid with equality
- 4. The product of partial setoids
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.Logic.Conjunction
- 1. The formula
- 2. Elimination rules
- 3. Introduction rule
- 4. Stability under substitution
- 5. Fiberwise binary products
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.Logic.Disjunction
- 1. The formula
- 2. Introduction rules
- 3. Elimination rule
- 4. Stability under substitution
- 5. Fiberwise binary coproducts
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.Logic.Existential
- 1. The formula
- 2. Introduction rule
- 3. Elimination rule
- 4. Stability under substitution
- 5. Dependent sums
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.Logic.Falsity
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.Logic.Implication
- 1. The formula
- 2. Elimination rule
- 3. Introduction rule
- 4. Stability under substitution
- 5. Fiberwise exponentials
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.Logic.MonoEquiv
- 1. Subobjects to monomorphisms
- 2. The action on morphisms
- 3. The displayed functor
- 4. Fully faithfulness
- 5. Split essential surjectivity
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.Logic.SubobjectDispCat
- 1. Subobjects of partial setoids
- 2. Accessors for subobjects of partial setoids
- 3. Morphisms between subobjects of partial setoids
- 4. The displayed category of subobjects
- 5. This displayed category is univalent
- 6. The cleaving
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.Logic.Truth
- 1. The formula
- 2. Introduction rule
- 3. Stability under substitution
- 4. The fiberwise terminal object
Library UniMath.CategoryTheory.Hyperdoctrines.PartialEqRels.Logic.Universal
Library UniMath.CategoryTheory.IdempotentsAndSplitting.Fullsub
Library UniMath.CategoryTheory.IdempotentsAndSplitting.FunctorCategory
Library UniMath.CategoryTheory.IdempotentsAndSplitting.Retracts
Library UniMath.CategoryTheory.IdempotentsAndSplitting.Set
Library UniMath.CategoryTheory.IndexedCategories.CartesianToIndexedFunctor
Library UniMath.CategoryTheory.IndexedCategories.CoreIndexedCategory
Library UniMath.CategoryTheory.IndexedCategories.FibrationToIndexedCategory
Library UniMath.CategoryTheory.IndexedCategories.IndexedCategory
Library UniMath.CategoryTheory.IndexedCategories.IndexedCategoryToFibration
Library UniMath.CategoryTheory.IndexedCategories.IndexedFunctor
Library UniMath.CategoryTheory.IndexedCategories.IndexedFunctorToCartesian
Library UniMath.CategoryTheory.IndexedCategories.IndexedTransformation
Library UniMath.CategoryTheory.IndexedCategories.IndexedTransformationToTransformation
Library UniMath.CategoryTheory.IndexedCategories.NatTransToIndexed
Library UniMath.CategoryTheory.IndexedCategories.OpIndexedCategory
Library UniMath.CategoryTheory.Inductives.LambdaCalculus
Library UniMath.CategoryTheory.Inductives.Lists
- Lists as the colimit of a chain given by the list functor: F(X) = 1 + A * X
- Equivalence with lists as iterated products
Library UniMath.CategoryTheory.Inductives.PropositionalLogic
Library UniMath.CategoryTheory.Inductives.Trees
Library UniMath.CategoryTheory.Limits.BinBiproducts
Library UniMath.CategoryTheory.Limits.BinCoproducts
- Definition of binary coproduct of objects in a precategory
- Proof that coproducts are unique when the precategory C is a univalent_category
- Binary coproducts from colimits
- Coproducts over bool from binary coproducts
Library UniMath.CategoryTheory.Limits.BinDirectSums
- Direct definition of binary direct sum using preadditive categories.
- BinDirectSums in quotient of PreAdditive category
Library UniMath.CategoryTheory.Limits.BinProducts
- Direct implementation of binary products
- Contents
- Definition of binary products
- Binary products from limits (BinProducts_from_Lims)
- Definition of binary product functor (binproduct_functor)
- Definition of a binary product structure on a functor category
- Construction of BinProduct from an isomorphism to BinProduct.
- Equivalent universal property: (C --> A) × (C --> B) ≃ (C --> A × B)
- Terminal object as the unit (up to isomorphism) of binary products
Library UniMath.CategoryTheory.Limits.Coends
- 1. Coedges
- 2. Coends
- 3. Accessors for coends
- 4. Construction of coends from coproducts and coequalizers
Library UniMath.CategoryTheory.Limits.Coequalizers
Library UniMath.CategoryTheory.Limits.Cokernels
- Direct definition of cokernels
- Definition of cokernels
- Correspondence of cokernels and coequalizers
- Cokernels up to iso
- Cokernel of epi · morphism
- CokernelOut of equal, not necessarily definitionally equal, morphisms is iso
Library UniMath.CategoryTheory.Limits.Cones
Library UniMath.CategoryTheory.Limits.Coproducts
- Definition of indexed coproducts of objects in a precategory
- The coproduct functor: C^I -> C
- Coproducts lift to functor categories
- Coproducts from colimits
Library UniMath.CategoryTheory.Limits.DisjointBinCoproducts
- 1. Disjoint binary coproducts
- 2. Stable binary coproducts
- 3. Characterization of stable binary coproducts
Library UniMath.CategoryTheory.Limits.Ends
Library UniMath.CategoryTheory.Limits.Equalizers
Library UniMath.CategoryTheory.Limits.EquivalencePreservation
- 1. Equivalences and limits (backward preservation)
- 2. Equivalences and colimits (forward preservation)
- 3. Equivalences and limits (forward preservation)
- 4. Equivalences and colimits (backward preservation)
Library UniMath.CategoryTheory.Limits.Filtered
- Filtered Categories *
- *
- Definition of filtered categories and compact/finitely presentable *
- objects. Two definitions of filtered categories are given, *
- is_filtered *
- is_filtered_alt *
- and a proof that they are equivalent is given in weq_filtered. *
- *
- Contents *
- 1) Filtered categories *
- 2) Compact objects *
- 3) Properties *
- 4) Equivalence between is_filtered and is_filtered_alt. *
- *
Library UniMath.CategoryTheory.Limits.FinOrdCoproducts
Library UniMath.CategoryTheory.Limits.FinOrdProducts
Library UniMath.CategoryTheory.Limits.Initial
- Being initial is a property in a (saturated/univalent) category
- Construction of initial object in a functor category
Library UniMath.CategoryTheory.Limits.Kernels
- Direct implementation of kernels
- Correspondence of kernels and equalizers
- Kernel up to isomorphism
- Kernel of morphism · monic
- KernelIn of equal, not necessarily definitionally equal, morphisms is iso
- Transports of kernels
Library UniMath.CategoryTheory.Limits.LimitIso
- 1. Binary products on isomorphisc cones
- 2. Equalizers on isomorphic cones
- 3. Binary coproducts on isomorphic cocones
Library UniMath.CategoryTheory.Limits.Opp
- Duality between C and C^op
- Translation of structures from C^op to C
- Translation of structures from C to C^op
Library UniMath.CategoryTheory.Limits.Preservation
Library UniMath.CategoryTheory.Limits.PreservationProperties
- 1. Preservation and natural isomorphisms
- 2. Preservation and equivalences in the arrow bicategory
- 3. Preservation of binary products and equalizers from pullbacks
- 4. Preservation of pullbacks via binary products and equalizers
Library UniMath.CategoryTheory.Limits.Products
- Definition of indexed products of objects in a precategory
- The product functor: C^I -> C
- Products lift to functor categories
- Products from limits
Library UniMath.CategoryTheory.Limits.PullbackConstructions
- 1. Equalizers from pullbacks and products
- 2. Equalizers from pullbacks and a terminal object
- 3. Pullback of a product
Library UniMath.CategoryTheory.Limits.Pullbacks
- Criteria for existence of pullbacks.
- A square isomorphic to a pullback is a pullback (case 1)
- Pullback of identities
- A fully faithful functor reflects limits
- A fully faithful and essentially surjective functor preserves pullbacks
- Pullbacks in functor categories
- Construction of binary products from pullbacks
- Pullbacks in functor_precategory
- Swapping pullbacks
Library UniMath.CategoryTheory.Limits.PullbacksSliceProductsEquiv
- Proof that the types of binary products in C/Z and pullbacks of pairs of arrows to Z in C are equivalent
- equivalence of function taking proof of isPullback to proof of isBinProduct
- equivalence of function taking proof of isBinProduct to proof of isPullback
- pullback_to_slice_binprod is invertible
- slice_binprod_to_pullback is invertible
- function taking the type of all binary products in C / Z
- function taking the type of all pullbacks of functions to Z in C
- binprod_to_pullback is invertible
- pullback_to_binprod is invertible
- the equivalence of the types of binary products in C/Z
Library UniMath.CategoryTheory.Limits.Pushouts
Library UniMath.CategoryTheory.Limits.StandardDiagrams
Library UniMath.CategoryTheory.Limits.StrictInitial
- 1. Strict initial objects
- 2. Strictness is preserved under isomorphism
- 3. Stability of strict initial objects
- 4. Monics from strict initial objects
Library UniMath.CategoryTheory.Limits.Terminal
Library UniMath.CategoryTheory.Limits.Zero
Library UniMath.CategoryTheory.Limits.Cats.Limits
Library UniMath.CategoryTheory.Limits.Examples.AlgebraStructuresColimits
Library UniMath.CategoryTheory.Limits.Examples.CategoryOfSetGroupoidsLimits
Library UniMath.CategoryTheory.Limits.Examples.CategoryOfSetcategoriesLimits
Library UniMath.CategoryTheory.Limits.Examples.CategoryProductLimits
Library UniMath.CategoryTheory.Limits.Examples.EilenbergMooreLimits
Library UniMath.CategoryTheory.Limits.Examples.IsoCommaLimits
Library UniMath.CategoryTheory.Limits.Examples.UnitCategoryLimits
Library UniMath.CategoryTheory.Limits.Graphs.BinCoproducts
- Definition of binary coproduct of objects in a precategory
- Proof that coproducts are unique when the precategory C is a univalent_category
Library UniMath.CategoryTheory.Limits.Graphs.BinProducts
Library UniMath.CategoryTheory.Limits.Graphs.Coequalizers
- Coequalizers defined in terms of colimits
- Definition of coequalizers in terms of colimits
- Definitions coincide
Library UniMath.CategoryTheory.Limits.Graphs.Cokernels
Library UniMath.CategoryTheory.Limits.Graphs.Colimits
Library UniMath.CategoryTheory.Limits.Graphs.Coproducts
Library UniMath.CategoryTheory.Limits.Graphs.Diagrams
Library UniMath.CategoryTheory.Limits.Graphs.EqDiag
Library UniMath.CategoryTheory.Limits.Graphs.Equalizers
- Equalizers defined in terms of limits
- Definition of equalizers in terms of limits
- Definitions coincide
Library UniMath.CategoryTheory.Limits.Graphs.Initial
Library UniMath.CategoryTheory.Limits.Graphs.Kernels
Library UniMath.CategoryTheory.Limits.Graphs.Limits
Library UniMath.CategoryTheory.Limits.Graphs.Pullbacks
Library UniMath.CategoryTheory.Limits.Graphs.Pushouts
- Pushouts defined in terms of colimits
- Definition of pushouts in terms of colimits
- Definitions coincide
Library UniMath.CategoryTheory.Limits.Graphs.Terminal
Library UniMath.CategoryTheory.Limits.Graphs.Zero
Library UniMath.CategoryTheory.LocallyCartesianClosed.LocallyCartesianClosed
- 1. Locally cartesian closed categories
- 2. The slices of locally cartesian closed categories are cartesian closed
- 3. Some properties of locally Cartesian closed categories
Library UniMath.CategoryTheory.LocallyCartesianClosed.Preservation
- 1. Structure preserving functors between LCCCs
- 2. The identity is structure preserving
- 3. The composition is structure preserving
Library UniMath.CategoryTheory.MarkovCategories.AlmostSurely
Library UniMath.CategoryTheory.MarkovCategories.Conditionals
- 1. Definition of markov_category_with_conditionals
- 2. Accessors
- 3. Bayesian inverses
- 4. Consequences and derived information flow axioms
Library UniMath.CategoryTheory.MarkovCategories.Couplings
Library UniMath.CategoryTheory.MarkovCategories.Determinism
Library UniMath.CategoryTheory.MarkovCategories.InformationFlowAxioms
Library UniMath.CategoryTheory.MarkovCategories.MarkovCategory
Library UniMath.CategoryTheory.MarkovCategories.ProbabilitySpaces
Library UniMath.CategoryTheory.MarkovCategories.State
Library UniMath.CategoryTheory.MarkovCategories.Univalence
Library UniMath.CategoryTheory.Monads.ComonadCoalgebras
Library UniMath.CategoryTheory.Monads.Comonads
- Definition and lemmas for cobind
- Helper lemma for showing two comonads are equal
- Alternate (equivalent) definition of Comonad
- Equivalence of Comonad and Comonad'
Library UniMath.CategoryTheory.Monads.Derivative
- Definition of distributive laws for Monads and composition of Monads
- Definition of the "Maybe" monad (coproduct with a fixed object)
Library UniMath.CategoryTheory.Monads.KTriples
Library UniMath.CategoryTheory.Monads.KTriplesEquiv
Library UniMath.CategoryTheory.Monads.Kleisli
Library UniMath.CategoryTheory.Monads.KleisliCategory
Library UniMath.CategoryTheory.Monads.LModules
Library UniMath.CategoryTheory.Monads.MonadAlgebras
Library UniMath.CategoryTheory.Monads.Monads
- Definition and lemmas for bind
- Operations for monads based on binary coproducts
- Substitution operation for monads
- Helper lemma for showing two monads are equal
- Alternate (equivalent) definition of Monad
- Equivalence of Monad and Monad'
Library UniMath.CategoryTheory.Monads.RelMonads_Coreflection
Library UniMath.CategoryTheory.Monads.RelativeModules
Library UniMath.CategoryTheory.Monads.RelativeMonads
Library UniMath.CategoryTheory.Monoidal.Adjunctions
Library UniMath.CategoryTheory.Monoidal.Categories
Library UniMath.CategoryTheory.Monoidal.CategoriesForQuantum
Library UniMath.CategoryTheory.Monoidal.CategoriesOfMonoids
Library UniMath.CategoryTheory.Monoidal.FunctorCategories
Library UniMath.CategoryTheory.Monoidal.Functors
Library UniMath.CategoryTheory.Monoidal.StrongMonad
Library UniMath.CategoryTheory.Monoidal.WhiskeredBifunctors
Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.AugmentedSimplexCategory
Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.BraidedMonoidalCategories
Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.CategoriesOfMonoids
Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.DisplayedMonoidalCurried
Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.DisplayedMonoidalTensored
Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.EquivalenceWhiskeredNonCurriedMonoidalCategories
Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.MonoidalCategoriesCurried
Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.MonoidalCategoriesReordered
Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.MonoidalCategoriesTensored
Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.MonoidalFunctorCategory
Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.MonoidalFunctorsCurried
Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.MonoidalFunctorsTensored
Library UniMath.CategoryTheory.Monoidal.AlternativeDefinitions.TotalDisplayedMonoidalCurried
Library UniMath.CategoryTheory.Monoidal.Comonoids.CartesianAsComonoids
Library UniMath.CategoryTheory.Monoidal.Comonoids.Category
Library UniMath.CategoryTheory.Monoidal.Comonoids.CommComonoidsCartesian
Library UniMath.CategoryTheory.Monoidal.Comonoids.Monoidal
Library UniMath.CategoryTheory.Monoidal.Comonoids.MonoidalCartesianBuilder
Library UniMath.CategoryTheory.Monoidal.Comonoids.Symmetric
Library UniMath.CategoryTheory.Monoidal.Comonoids.Tensor
Library UniMath.CategoryTheory.Monoidal.Comonoids.TransportComonoidAlongRetraction
Library UniMath.CategoryTheory.Monoidal.Displayed.Monoidal
Library UniMath.CategoryTheory.Monoidal.Displayed.MonoidalFunctorLifting
Library UniMath.CategoryTheory.Monoidal.Displayed.MonoidalSections
Library UniMath.CategoryTheory.Monoidal.Displayed.Symmetric
Library UniMath.CategoryTheory.Monoidal.Displayed.SymmetricMonoidalBuilder
Library UniMath.CategoryTheory.Monoidal.Displayed.TotalMonoidal
Library UniMath.CategoryTheory.Monoidal.Displayed.TransportLemmas
Library UniMath.CategoryTheory.Monoidal.Displayed.WhiskeredDisplayedBifunctors
Library UniMath.CategoryTheory.Monoidal.Examples.BinopCartesianMonoidal
Library UniMath.CategoryTheory.Monoidal.Examples.CartesianMonoidal
Library UniMath.CategoryTheory.Monoidal.Examples.ConstantFunctor
Library UniMath.CategoryTheory.Monoidal.Examples.DiagonalFunctor
Library UniMath.CategoryTheory.Monoidal.Examples.DisplayedCartesianMonoidal
Library UniMath.CategoryTheory.Monoidal.Examples.EndofunctorsMonoidalElementary
Library UniMath.CategoryTheory.Monoidal.Examples.Fullsub
Library UniMath.CategoryTheory.Monoidal.Examples.LiftPoset
Library UniMath.CategoryTheory.Monoidal.Examples.MonadsAsMonoidsElementary
Library UniMath.CategoryTheory.Monoidal.Examples.MonoidalDialgebras
Library UniMath.CategoryTheory.Monoidal.Examples.MonoidalPointedObjects
Library UniMath.CategoryTheory.Monoidal.Examples.PointedSetCartesianMonoidal
Library UniMath.CategoryTheory.Monoidal.Examples.PosetsMonoidal
Library UniMath.CategoryTheory.Monoidal.Examples.Relations
Library UniMath.CategoryTheory.Monoidal.Examples.SetCartesianMonoidal
Library UniMath.CategoryTheory.Monoidal.Examples.SetWithSubset
Library UniMath.CategoryTheory.Monoidal.Examples.Sigma
Library UniMath.CategoryTheory.Monoidal.Examples.SmashProductMonoidal
Library UniMath.CategoryTheory.Monoidal.Examples.StructuresMonoidal
Library UniMath.CategoryTheory.Monoidal.Examples.SymmetricMonoidalCoEilenbergMoore
Library UniMath.CategoryTheory.Monoidal.Examples.SymmetricMonoidalDialgebras
Library UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedAssociator
Library UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedMonoidal
Library UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensor
Library UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensorUnit
Library UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedUnitors
Library UniMath.CategoryTheory.Monoidal.RezkCompletion.MonoidalRezkCompletion
Library UniMath.CategoryTheory.Monoidal.Structure.Cartesian
Library UniMath.CategoryTheory.Monoidal.Structure.Closed
Library UniMath.CategoryTheory.Monoidal.Structure.Symmetric
Library UniMath.CategoryTheory.Monoidal.Structure.SymmetricDiagonal
Library UniMath.CategoryTheory.OppositeCategory.Core
Library UniMath.CategoryTheory.OppositeCategory.LimitsAsColimits
Library UniMath.CategoryTheory.OppositeCategory.OppositeAdjunction
Library UniMath.CategoryTheory.OppositeCategory.OppositeEquivalence
Library UniMath.CategoryTheory.OppositeCategory.OppositeOfFunctorCategory
Library UniMath.CategoryTheory.Profunctors.Collage
- 1. The collage of a profunctor
- 2. The collage is univalent
- 3. The inclusions into the collage
- 4. The squares from the collage
Library UniMath.CategoryTheory.Profunctors.Core
Library UniMath.CategoryTheory.Profunctors.Examples
- 1. The constant profunctor
- 2. The identity profunctor
- 3. Representable profunctors
- 4. Precomposition of a profunctor with functors
- 5. Product of profunctors
- 6. Composition of profunctors
Library UniMath.CategoryTheory.Profunctors.Squares
- 1. Squares of profunctors
- 2. Builder for squares of profunctors
- 3. Transformations to squares
- 4. Standard profunctor squares
- 4.4. Unitors and associators
- 4.5. Companion pairs
- 4.6. Conjoints
Library UniMath.CategoryTheory.Profunctors.Transformation
- 1. Natural transformations between profunctors
- 2. Builder for natural transformations between profunctors
- 3. Equality of natural transformations between profunctors
- 4. Natural isomorphisms between profunctors
- 5. Standard natural transformations between profunctors
- 5.1. Identity and composition
- 5.2. Left unitor
- 5.3. Right unitor
- 5.4. Associator
- 5.5. Inverse laws
- 5.6. Whiskering
- 6. Equality of profunctors
Library UniMath.CategoryTheory.RegularAndExact.ExactCategory
- 1. Internal relations
- 2. The relation on morphisms from an internal relation
- 3. Properties of internal relations
- 3.4. Internal equivalence relations
- 4. Effective internal equivalence relations
- 5. Exact categories
Library UniMath.CategoryTheory.RegularAndExact.RegularCategory
- 1. Coequalizers of kernel pairs
- 2. Regular categories
- 3. Morphisms between kernel pairs (Lemma 2.1.2 in Borceux)
- 4. Factorization in regular categories
Library UniMath.CategoryTheory.RegularAndExact.RegularEpi
- 1. Regular epimorphisms
- 2. Regular epimorphisms are closed under isomorphism
- 3. Regular epis are epimorphisms
- 4. Preservation of regular epimorphisms
- 5. Preservation of regular epimorphisms along chosen pullbacks
- 6. Preservation of regular epimorphisms by identity and composition
Library UniMath.CategoryTheory.RegularAndExact.RegularEpiFacts
- 1. Isomorphisms are regular epimorphisms
- 2. Regular epimorphisms versus effective epimorphisms
- 3. Regular epimorphisms versus strong epimorphisms
- 4. Strong epimorphisms versus extremal epimorphisms
- 5. Regular epimorphisms versus extremal epimorphisms
Library UniMath.CategoryTheory.RepresentableFunctors.Bifunctor
Library UniMath.CategoryTheory.RepresentableFunctors.DirectSum
Library UniMath.CategoryTheory.RepresentableFunctors.Precategories
Library UniMath.CategoryTheory.RepresentableFunctors.RawMatrix
Library UniMath.CategoryTheory.RepresentableFunctors.Representation
Library UniMath.CategoryTheory.RepresentableFunctors.Test
Library UniMath.CategoryTheory.RezkCompletions.Construction
Library UniMath.CategoryTheory.RezkCompletions.RezkCompletions
- 1. The definition and accessors of a Rezk completion
- 2. The definition an initial functor from a category
- 3. The equivalence between the covariant functor categories
- 4. The equivalence between the contravariant functor categories
Library UniMath.CategoryTheory.SkewMonoidal.CategoriesOfMonoids
Library UniMath.CategoryTheory.SkewMonoidal.SkewMonoidalCategories
Library UniMath.CategoryTheory.Subcategory.Core
Library UniMath.CategoryTheory.Subcategory.Full
- Full sub(pre)categories
- Contents
- The inclusion of a full subcategory is fully faithful
- The (full) image of a functor
- Given a functor F : C -> D, we obtain a functor F : C -> Img(F)
- Any full subprecategory of a univalent_category is a univalent_category.
- Proof of the targeted theorem: full subcats of cats are cats
Library UniMath.CategoryTheory.Subcategory.FullEquivalences
Library UniMath.CategoryTheory.Subcategory.Limits
- C has (co)limits of shape F,
- C' : ob C → UU is a proposition on the objects of C, and
- C' is closed under the formation of (co)limits of shape F,
- precategory_object_from_sub_precategory_object
- precategory_morphism_from_sub_precategory_morphism
- precategory_morphisms_in_subcat
- precategory_object_in_subcat.
Library UniMath.CategoryTheory.Subcategory.Reflective
Library UniMath.CategoryTheory.SubobjectClassifier.Operations
Library UniMath.CategoryTheory.SubobjectClassifier.PreservesSubobjectClassifier
- 1. Preserving subobject classifiers
- 2. Preservation of chosen subobject classifiers
- 3. Preservation of subobject classifiers via isomorphisms
- 4. Preservation of subobject classifiers is independent of the choice of terminal object
Library UniMath.CategoryTheory.SubobjectClassifier.SubobjectClassifier
Library UniMath.CategoryTheory.SubobjectClassifier.SubobjectClassifierIso
- 1. Isomorphisms between subobject classifiers
- 2. Being isomorphic to subobject classifiers
- 3. Independence of terminal object
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Discrete
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.DisplayedFunctor
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.DisplayedNatTrans
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Fiber
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Isos
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Strictness
- 1. Strict 2-sided displayed categories
- 2. The total category of a strict 2-sided displayed category
- 3. Equality of 2-sided displayed functors
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Total
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.TransportLaws
- 1. Identity, inverse, and composition
- 2. Composition in a strict 2-sided displayed category
- 3. A special law for composition assuming strictness
- 4. Transporting along paths of objects
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.TwoSidedDispCat
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.TwoSidedFibration
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Univalence
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.Arrow
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.Bimodules
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.Comma
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.Constant
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.DispCatOnTwoSidedDispCat
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.EnrichedRels
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.FiberwiseProduct
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.IsoComma
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.Lenses
- 1. Definition via two-sided displayed categories
- 2. Discreteness and univalence
- 3. Builders and accessors
- 4. Identity and composition of lenses
- 5. Identity and composition laws of lenses
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.Opposites
- 1. The vertical opposite
- 1.1. The construction of the 2-sided displayed category
- 1.2. Isos in the vertical opposite
- 1.3. The univalence of the vertical opposite
- 2. The horizontal opposite
- 2.1. The construction of the 2-sided displayed category
- 2.2. Isos in the horizontal opposite
- 2.3. The univalence of the horizontal opposite
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.ParaTwoSidedDispCat
- 1. The 2-sided displayed category of parametrized morphisms
- 2. Univalence
- 3. Builders and accessors
- 4. Isomorphisms of parametrized morphisms
- 5. The identity parametrized morphism
- 6. The composition of parametrized morphisms
- 7. The left unitor of parametrized morphisms
- 8. The right unitor of parametrized morphisms
- 9. The associator of parametrized morphisms
- 10. Companions and conjoints
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.ProdOfTwosidedDispCat
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.Product
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.Profunctor
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.ProfunctorTwosidedDispCat
- 1. The data of the 2-sided displayed category
- 2. Transport laws for this 2-sided displayed category
- 3. The 2-sided displayed category of profunctors
- 4. Isomorphisms of profunctors
- 5. It is a univalent 2-sided displayed category
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.Reindex
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.Relations
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.Spans
- 1. The definition
- 2. The univalence
- 3. Builders and accessors
- 4. Isomorphisms of spans
- 5. The identity spans
- 6. The composition of spans
- 7. The left unitor of spans
- 8. The right unitor of spans
- 9. The associator of spans
- 10. Companions and conjoints
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.SquaresTwoCat
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.StructuredCospans
- 1. The 2-sided displayed category of structured cospans
- 2. Builders and accessors for structured cospans
- 3. The univalence of the 2-sided displayed category of structured cospans
- 4. Isos of structured cospans
- 5. The identity structured cospans
- 6. The composition of structured cospans
- 7. The left unitor of structured cospans
- 8. The right unitor of structured cospans
- 9. The associator of structured cospans
- 10. Companions and conjoints
- 11. Functors on structured cospans
Library UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.TwoSidedDispCatOnDispCat
- 1. The 2-sided displayed category
- 2. Isomorphisms in this 2-sided displayed category
- 3. Properties of this 2-sided displayed category
Library UniMath.CategoryTheory.WeakEquivalences.Core
Library UniMath.CategoryTheory.WeakEquivalences.Initial
Library UniMath.CategoryTheory.WeakEquivalences.Mono
Library UniMath.CategoryTheory.WeakEquivalences.Terminal
Library UniMath.CategoryTheory.WeakEquivalences.Creation.BinProducts
Library UniMath.CategoryTheory.WeakEquivalences.Creation.Equalizers
Library UniMath.CategoryTheory.WeakEquivalences.Creation.Pullbacks
Library UniMath.CategoryTheory.WeakEquivalences.LiftPreservation.BinProducts
Library UniMath.CategoryTheory.WeakEquivalences.LiftPreservation.Equalizers
Library UniMath.CategoryTheory.WeakEquivalences.LiftPreservation.Pullbacks
Library UniMath.CategoryTheory.WeakEquivalences.LiftPreservation.SubobjectClassifier
Library UniMath.CategoryTheory.WeakEquivalences.Preservation.Bincoproducts
Library UniMath.CategoryTheory.WeakEquivalences.Preservation.Binproducts
Library UniMath.CategoryTheory.WeakEquivalences.Preservation.Equalizers
Library UniMath.CategoryTheory.WeakEquivalences.Preservation.NNO
Library UniMath.CategoryTheory.WeakEquivalences.Preservation.Pullbacks
Library UniMath.CategoryTheory.WeakEquivalences.Preservation.SubobjectClassifier
Library UniMath.CategoryTheory.WeakEquivalences.Reflection.BinProducts
Library UniMath.CategoryTheory.WeakEquivalences.Reflection.Equalizers
Library UniMath.CategoryTheory.WeakEquivalences.Reflection.Pullbacks
Library UniMath.CategoryTheory.WeakEquivalences.Reflection.SubobjectClassifier
Library UniMath.Combinatorics.BoundedSearch
Library UniMath.Combinatorics.CGraph
Library UniMath.Combinatorics.DecSet
Library UniMath.Combinatorics.Equivalence_Relations
Library UniMath.Combinatorics.FiniteSequences
Library UniMath.Combinatorics.FiniteSets
Library UniMath.Combinatorics.Graph
Library UniMath.Combinatorics.GraphPaths
Library UniMath.Combinatorics.KFiniteSubtypes
Library UniMath.Combinatorics.KFiniteTypes
Library UniMath.Combinatorics.Lists
Library UniMath.Combinatorics.Maybe
Library UniMath.Combinatorics.MetricTree
Library UniMath.Combinatorics.MoreLists
Library UniMath.Combinatorics.StandardFiniteSets
- Standard finite sets . Vladimir Voevodsky . Apr. - Sep. 2011 .
- Preamble
- Standard finite sets stn .
- "Boundary" maps dni : stn n -> stn ( S n ) and their properties.
- The order-preserving functions sni n i : stn (S n) -> stn n that take the value i twice.
- Weak equivalences between standard finite sets and constructions on these sets
- The weak equivalence from stn n to the complement of a point j in stn ( S n ) defined by dni j
- Weak equivalence from coprod ( stn n ) unit to stn ( S n ) defined by dni i
- Weak equivalences from stn n for n = 0 , 1 , 2 to empty , unit and bool ( see also the section on nelstruct in finitesets.v ).
- Weak equivalence between the coproduct of stn n and stn m and stn ( n + m )
- Weak equivalence from the total space of a family stn ( f x ) over stn n to stn ( stnsum n f )
- Weak equivalence between the direct product of stn n and stn m and stn n * m
- Weak equivalences between decidable subsets of stn n and stn x
- Weak equivalences between hfibers of functions from stn n over isolated points and stn x
- Weak equivalence between stn n -> stn m and stn ( natpower m n ) ( uses functional extensionality )
- Weak equivalence from the space of functions of a family stn ( f x ) over stn n to stn ( stnprod n f ) ( uses functional extensionality )
- Weak equivalence between ( stn n ) ≃ ( stn n ) and stn ( factorial n ) ( uses functional extensionality )
- Standard finite sets satisfy weak axiom of choice
- Weak equivalence class of stn n determines n .
Library UniMath.Combinatorics.Tests
Library UniMath.Combinatorics.Tuples
- 1. A way to append one element to a tuple
- 2. A couple of lemmas about the elements of an extended tuple
- 3. A lemma specifying when extend_tuple is equal to another tuple
- 4. The tactics
Library UniMath.Combinatorics.Vectors
Library UniMath.Combinatorics.VectorsTests
Library UniMath.Combinatorics.WellFoundedRelations
Library UniMath.Combinatorics.ZFstructures
Library UniMath.Folds.UnicodeNotations
Library UniMath.Folds.folds_isomorphism
- Definition of FOLDS precat isomorphisms
- Lemmas about FOLDS isomorphisms
- A FOLDS isomorphism is determined by the first family of isos
- Identity FOLDS isomorphism
- Inverse of a FOLDS isomorphism
- Composition of FOLDS isomorphisms
- From isomorphisms to FOLDS isomorphisms
- from FOLDS isomorphism to isomorphism
- from FOLDS isos to isos and back, and the other way round
Library UniMath.Folds.folds_pre_2_cat
- The definition of a FOLDS pre-3-category
- FOLDS-2-precategories
- FOLDS-2-isomorphisms
- In FOLDS-2-precats, folds_iso f g <-> E f g
- Univalent FOLDS-2-precategory
- FOLDS precategories
- Univalent FOLDS pre-2-category is a FOLDS precategory
- FOLDS precategory implies univalence
Library UniMath.Folds.folds_precat
Library UniMath.Folds.from_precats_to_folds_and_back
- From precategories to FOLDS precategories
- From FOLDS precategories to precategories
- From FOLDS precats to precats to FOLDS precats
- From precats to FOLDS precats to precats
- Some lemmas to pass from comp to compose and back
- Some lemmas to pass from id to identity and back
Library UniMath.Foundations.All
Library UniMath.Foundations.HLevels
Library UniMath.Foundations.Init
Library UniMath.Foundations.NaturalNumbers
- Natural numbers and their properties. Vladimir Voevodsky. Apr. - Sep. 2011
- Contents
- Preamble
- Equality and inequality on nat
- Inequalities on nat.
- Boolean "less or equal" and "greater or equal" on nat.
- Semi-boolean "greater" on nat or natgth
- Semi-boolean "less" on nat or natlth
- Semi-boolean "less or equal " on nat or natleh
- Semi-boolean "greater or equal" on nat or natgeh.
- Simple implications between comparisons
- Comparison alternatives
- Mixed transitivities
- Two comparisons and S
- Comparision alternatives and S
- Some properties of plus on nat
- The structure of the additive abelian monoid on nat
- Addition and comparisons
- Comparisons and n -> n + 1
- Two comparisons and n -> n + 1
- Comparision alternatives and n -> n + 1
- Cancellation properties of plus on nat
- Some properties of minus on nat
- Comparisons and n -> n - 1
- Basic algebraic properties of mul on nat.
- Cancellation properties of mul on nat
- Multiplication and comparisons
- Division with a remainder on nat
- Exponentiation natpower n m ("n to the power m") on nat
- Factorial on nat
- The order-preserving functions di i : nat -> nat whose image is the complement of one element i.
- The order-preserving functions si i : nat -> nat that take the value i twice.
Library UniMath.Foundations.PartA
- Univalent Foundations, Part A
- Contents
- Preamble
- Some standard constructions not using identity types (paths)
- Canonical functions from empty and to unit
- Functions from unit corresponding to terms
- Identity functions and function composition, curry and uncurry
- Definition of binary operation
- Iteration of an endomorphism
- Basic constructions related to the adjoint evaluation function X -> ((X -> Y) -> Y)
- Pairwise direct products
- Negation and double negation
- Logical equivalence
- Paths and operations on paths
- Associativity of function composition and mutual invertibility of curry/uncurry
- Composition of paths and inverse paths
- Direct product of paths
- The function maponpaths between paths types defined by a function between ambient types
- maponpaths for the identity functions and compositions of functions
- Homotopy between sections
- Equality between functions defines a homotopy
- maponpaths for a function homotopic to the identity
- maponpaths in the case of a projection p with a section s
- Fibrations and paths - the transport functions
- A series of lemmas about paths and total2
- Lemmas about transport adapted from the HoTT library and the HoTT book
- Homotopies between families and the total spaces
- First fundamental notions
- Contractibility iscontr
- Homotopy fibers hfiber
- The functions between the hfibers of homotopic functions over the same point
- Paths in homotopy fibers
- Coconuses: spaces of paths that begin coconusfromt or end coconustot at a given point
- The total paths space of a type - two definitions
- Coconus of a function: the total space of the family of h-fibers
- Weak equivalences
- Basics - isweq and weq
- Weak equivalences and paths spaces (more results in further sections)
- Adjointness property of a weak equivalence and its inverse
- Transport functions are weak equivalences
- Weak equivalences between contractible types (one implication)
- unit and contractibility
- Homotopy equivalence is a weak equivalence
- Some weak equivalences
- The 2-out-of-3 property of weak equivalences
- Any function between contractible types is a weak equivalence
- Composition of weak equivalences
- The 2-out-of-6 (two-out-of-six) property of weak equivalences
- Pairwise direct products of weak equivalences
- Weak equivalence of a type and its direct product with the unit
- Associativity of total2 as a weak equivalence
- Associativity and commutativity of direct products as weak equivalences
- Binary coproducts and their basic properties
- Distributivity of coproducts and direct products as a weak equivalence
- Total space of a family over a coproduct
- Pairwise sum of functions, coproduct associativity and commutativity
- Coproduct with a "negative" type
- Coproduct of two functions
- The equality_cases construction and four applications to ii1 and ii2
- Bool as coproduct
- Pairwise coproducts as dependent sums of families over bool
- Splitting of X into a coproduct defined by a function X -> Y ⨿ Z
- Some properties of bool
- Fibrations with only one non-empty fiber
- Basics about fibration sequences.
- Fibrations sequences and their first "left shifts"
- The structures of a complex and of a fibration sequence on a composable pair of functions
- Construction of the derived fibration sequence
- Explicit description of the first map in the second derived sequence
- Fibration sequences based on tpair P z and pr1 : total2 P -> Z ( the "pr1-case" )
- Fibration sequences based on hfiberpr1 : hfiber g z -> Y and g : Y -> Z (the "g-case")
- Fibration sequence of h-fibers defined by a composable pair of functions (the "hf-case")
- Functions between total spaces of families
- Homotopy fiber squares
Library UniMath.Foundations.PartB
- Univalent Foundations. Vladimir Voevodsky. Feb. 2010 - Sep. 2011.
- Contents
- Preamble
- Basics about h-levels
- h -levels of pr1 , fiber inclusions, fibers, total spaces and bases of fibrations
- Propositions, inclusions and sets
- Basics about types of h-level 1 - "propositions"
- Inclusions - functions of h-level 1
- Basics about types of h-level 2 - "sets"
- Decidable propositions isdecprop
- Types with decidable equality
- Isolated points
- Decidable types are sets
- Decidable equality on a sigma type
- Construction of functions with specified values at a few isolated points
- Splitting of X into a coproduct defined by a function X -> bool
Library UniMath.Foundations.PartC
- Univalent Foundations. Vladimir Voevodsky. Feb. 2010 - Sep. 2011. Port to coq
- Contents
- Preamble
- Isolated points and types with decidable equality.
- Basic results on complements to a point
- Decomposition of a type with an isolated point into two parts weqrecompl
- Theorem saying that recompl commutes up to homotopy with maponcomplweq
- Recomplement on functions
- Equivalence between compl T t1 and compl T t2 for isolated t1 t2
- Transposition of two isolated points
- Semi-boolean hfiber of functions over isolated points
- h-fibers of ii1 and ii2
- ii1 and ii2 map isolated points to isolated points
- h-fibers of coprodf of two functions
- Theorem saying that coproduct of two functions of h-level n is of h-level n
- Theorems about h-levels of coproducts and their component types
- h-fibers of the sum of two functions sumofmaps f g
- Theorem saying that the sum of two functions of h-level (S (S n)) is of hlevel (S (S n))
- The sum of two functions of h-level n with non-intersecting images is of h-level n
- Coproducts and complements
- Decidable propositions and decidable inclusions
Library UniMath.Foundations.PartD
- Univalent Foundations. Vladimir Voevodsky. Feb. 2010 - Sep. 2011.
- Contents
- Preamble
- Sections of "double fibration" (P : T -> UU) (PP : ∏ t : T, P t -> UU) and pairs of sections
- Homotopy fibers of the map ∏ x, P x -> ∏ x, Q x
- The map between section spaces (dependent products) defined by the map between the bases f : Y -> X
- Sections of families over an empty type and over coproducts
- Sections of families over contractible types and over total2 (over dependent sums)
- Theorem saying that if each member of a family is of h-level n then the space of sections of the family is of h-level n.
- Theorems saying that iscontr T , isweq f etc. are of h-level 1
- Theorems saying that various pr1 maps are inclusions
- Various weak equivalences between spaces of weak equivalences
- h-levels of spaces of weak equivalences
- Weak auto-equivalences of a type with an isolated point
Library UniMath.Foundations.Preamble
Library UniMath.Foundations.Propositions
- Generalities on hProp. Vladimir Voevodsky . May - Sep. 2011 .
- Contents
- Preamble
- To upstream files
- The type hProp of types of h-level 1
- The type tildehProp of pairs (P, p : P) where P : hProp
- Intuitionistic logic on hProp
- Images and surjectivity for functions between types
- The two-out-of-three properties of surjections
- A function between types which is an inclusion and a surjection is a weak equivalence
- Intuitionistic logic on hProp.
- Associativity and commutativity of hdisj and hconj up to logical equivalence
- Proof of the only non-trivial axiom of intuitionistic logic for our constructions. For the full list of axioms see e.g. http://plato.stanford.edu/entries/logic-intuitionistic/
- Negation and quantification.
- Negation and conjunction ("and") and disjunction ("or").
- Property of being decidable and hdisj ("or").
- The double negation version of hinhabited (does not require RR1).
- Univalence for hProp
Library UniMath.Foundations.Sets
- Generalities on hSet. Vladimir Voevodsky. Feb. - Sep. 2011
- Contents
- Preamble
- The type of sets i.e. of types of h-level 2 in UU
- Types X which satisfy "weak" axiom of choice for all families P : X -> UU
- The type of monic subtypes of a type (subsets of the set of connected components)
- Relations on types (or equivalently relations on the sets of connected components)
- Relations and boolean relations
- Standard properties of relations
- Elementary implications between properties of relations
- Standard properties of relations and logical equivalences
- Preorderings, partial orderings, and associated types.
- Eqivalence relations and associated types.
- Direct product of two relations
- Negation of a relation and its properties
- Boolean representation of decidable equality
- Boolean representation of decidable relations
- Restriction of a relation to a subtype
- Equivalence classes with respect to a given relation
- Direct product of equivalence classes
- Surjections to sets are epimorphisms
- Epimorphisms are surjections to sets
- Universal property enjoyed by surjections
- Set quotients of types.
- Setquotient defined in terms of equivalence classes
- Universal property of seqtquot R for functions to sets satisfying compatibility condition iscomprelfun
- Functoriality of setquot for functions mapping one relation to another
- Universal property of setquot for predicates of one and several variables
- The case when setquotfun is a surjection, inclusion or a weak equivalence
- setquot with respect to the product of two relations
- Universal property of setquot for functions of two variables
- Functoriality of setquot for functions of two variables mapping one relation to another
- Set quotients with respect to decidable equivalence relations have decidable equality
- Relations on quotient sets
- Subtypes of quotients and quotients of subtypes
- The set of connected components of type.
- Set quotients. Construction 2.
- Consequences of univalence
Library UniMath.Foundations.Tests
Library UniMath.Foundations.UnivalenceAxiom
Library UniMath.Foundations.UnivalenceAxiom2
Library UniMath.HomologicalAlgebra.CohomologyComplex
- Cohomology of complexes
- Cohomology functor
- Alternative definition of Cohomology complex
- Definition of quasi-isomorphisms
- Cohomology functor is an additive functor
- CohomologyFunctor factors through naive homotopy category
- Complex of kernels and complex of cokernels
Library UniMath.HomologicalAlgebra.Complexes
- The category of complexes over an additive category
- Definition of complexes
- Transport of morphisms indexed by integers
- The category of complexes
- The category of complexes over CategoryWithAdditiveStructure is CategoryWithAdditiveStructure
- Complexes over Abelian is Abelian
- Transport binary direct sums
Library UniMath.HomologicalAlgebra.KA
- K(A), the naive homotopy category of C(A)
- Homotopies of complexes and K(A), the naive homotopy category of A.
Library UniMath.HomologicalAlgebra.KAPreTriangulated
Library UniMath.HomologicalAlgebra.KATriangulated
Library UniMath.HomologicalAlgebra.MappingCone
- Mapping cones in C(A)
- Mapping cone
- Results on C(id)
- Rotation
- Inverse rotation
- Extension of morphisms
- Octahedral axiom for K(A)
Library UniMath.HomologicalAlgebra.MappingCylinder
Library UniMath.HomologicalAlgebra.TranslationFunctors
- Translation functors
- Translation funtor for C(A) and for K(A)
Library UniMath.HomologicalAlgebra.Triangulated
- Triangulated categories
- Triangulated categories
- Basic notions
- Data for pretriangulated categories
- Distinguished triangles and extentions
- PreTriangulated categories
- Triangulated categories
- Rotations and inverse rotations of morphisms, Extensions, and DTris
- Composition is zero
Library UniMath.Induction.FunctorAlgebras_legacy
Library UniMath.Induction.FunctorCoalgebras_legacy
Library UniMath.Induction.ImpredicativeInductiveSets
Library UniMath.Induction.PolynomialAlgebras2Cells
Library UniMath.Induction.PolynomialFunctors
Library UniMath.Induction.M.Chains
Library UniMath.Induction.M.ComputationalM
Library UniMath.Induction.M.Core
Library UniMath.Induction.M.Limits
Library UniMath.Induction.M.Uniqueness
Library UniMath.Induction.W.Core
Library UniMath.Induction.W.Fibered
Library UniMath.Induction.W.Naturals
Library UniMath.Induction.W.Uniqueness
Library UniMath.Induction.W.Wtypes
Library UniMath.Induction.W.WtypesAsW
Library UniMath.Ktheory.GrothendieckGroup
Library UniMath.ModelCategories.Examples
Library UniMath.ModelCategories.Helpers
Library UniMath.ModelCategories.Lifting
Library UniMath.ModelCategories.ModelCategory
Library UniMath.ModelCategories.MorphismClass
Library UniMath.ModelCategories.NWFS
Library UniMath.ModelCategories.NWFSisWFS
Library UniMath.ModelCategories.Retract
Library UniMath.ModelCategories.WFS
Library UniMath.ModelCategories.WeakEquivalences
Library UniMath.ModelCategories.Generated.FFMonoidalStructure
Library UniMath.ModelCategories.Generated.GenericFreeMonoid
Library UniMath.ModelCategories.Generated.GenericFreeMonoidSequence
Library UniMath.ModelCategories.Generated.LNWFSClosed
Library UniMath.ModelCategories.Generated.LNWFSCocomplete
Library UniMath.ModelCategories.Generated.LNWFSHelpers
Library UniMath.ModelCategories.Generated.LNWFSMonoidalStructure
Library UniMath.ModelCategories.Generated.LNWFSSmallnessReduction
Library UniMath.ModelCategories.Generated.LiftingWithClass
Library UniMath.ModelCategories.Generated.MonoidalHelpers
Library UniMath.ModelCategories.Generated.OneStepMonad
Library UniMath.ModelCategories.Generated.OneStepMonadSmall
Library UniMath.ModelCategories.Generated.SmallObjectArgument
Library UniMath.MoreFoundations.All
Library UniMath.MoreFoundations.AlternativeProofs
Library UniMath.MoreFoundations.AxiomOfChoice
Library UniMath.MoreFoundations.Bool
Library UniMath.MoreFoundations.DecidablePropositions
- Miscellaneous lemmas
- The Law of Excluded Middle, and equivalent principles
- Complementary pairs
- Decidable Propositions
Library UniMath.MoreFoundations.DoubleNegation
Library UniMath.MoreFoundations.Equivalences
Library UniMath.MoreFoundations.Interval
Library UniMath.MoreFoundations.MoreEquivalences
Library UniMath.MoreFoundations.Nat
- Recursion property
- Discernment family on ℕ
- Distance function on ℕ
- Miscellaneous arithmetic lemmas
- Bounded quantification
Library UniMath.MoreFoundations.NegativePropositions
Library UniMath.MoreFoundations.NoInjectivePairing
Library UniMath.MoreFoundations.Notations
Library UniMath.MoreFoundations.NullHomotopies
Library UniMath.MoreFoundations.Orders
Library UniMath.MoreFoundations.PartA
Library UniMath.MoreFoundations.PartD
Library UniMath.MoreFoundations.PathsOver
Library UniMath.MoreFoundations.Propositions
Library UniMath.MoreFoundations.QuotientSet
Library UniMath.MoreFoundations.Sets
Library UniMath.MoreFoundations.StructureIdentity
Library UniMath.MoreFoundations.Subtypes
Library UniMath.MoreFoundations.Tactics
Library UniMath.MoreFoundations.Test
Library UniMath.MoreFoundations.Univalence
Library UniMath.MoreFoundations.WeakEquivalences
Library UniMath.NumberSystems.Integers
- Generalities on the type of integers and integer arithmetic. Vladimir Voevodsky . Aug. - Sep. 2011.
- Preamble
- The commutative ring hz of integres
- Definition and properties of "greater", "less", "greater or equal" and "less or equal" on hz .
- Definitions and notations
- Decidability
- Properties of individual relations
- Simple implications between comparisons
- Comparison alternatives
- Mixed transitivities
- Addition and comparisons
- Properties of hzgth in the terminology of algebra1.v (continued below)
- Negation and comparisons
- Multiplication and comparisons
- hz as an integral domain
- Comparisons and n -> n + 1
- Two comparisons and n -> n + 1
- Comparsion alternatives and n -> n + 1
- Operations and comparisons on hz and natnattohz
- Canonical rig homomorphism from nat to hz
- Addition and subtraction on nat and hz
- Absolute value on hz
- Some common equalities on integers
- hz is an archimedean ring
Library UniMath.NumberSystems.NaturalNumbersAlgebra
Library UniMath.NumberSystems.NaturalNumbers_le_Inductive
Library UniMath.NumberSystems.RationalNumbers
- Generalities on the type of rationals and rational arithmetic. Vladimir Voevodsky . Aug. - Sep. 2011.
- Preamble
- The commutative ring hq of integres
- Definition and properties of "greater", "less", "greater or equal" and "less or equal" on hq .
- hq is archimedean
- Simple implications between comparisons
- Comparison alternatives
- Mixed transitivities
- Addition and comparisons
- Properties of hqgth in the terminology of algebra1.v
- Negation and comparisons
- Multiplication and comparisons
- Cancellation properties of multiplication on hq
- Positive rationals
- Canonical ring homomorphism from hz to hq
- Integral part of a rational
Library UniMath.NumberSystems.Tests
Library UniMath.OrderTheory.DCPOs
Library UniMath.OrderTheory.Posets
Library UniMath.OrderTheory.Preorders
- 1. The preorder structure on a subtype
- 2. Down- and up-types
- 3. Downward closed subsets
- 4. The downward closure
Library UniMath.OrderTheory.DCPOs.AlternativeDefinitions.Dcpo
Library UniMath.OrderTheory.DCPOs.AlternativeDefinitions.FixedPointTheorems
Library UniMath.OrderTheory.DCPOs.Basis.Algebraic
Library UniMath.OrderTheory.DCPOs.Basis.Basis
Library UniMath.OrderTheory.DCPOs.Basis.CompactBasis
Library UniMath.OrderTheory.DCPOs.Basis.Continuous
Library UniMath.OrderTheory.DCPOs.Core.Basics
Library UniMath.OrderTheory.DCPOs.Core.CoordinateContinuity
Library UniMath.OrderTheory.DCPOs.Core.DirectedSets
Library UniMath.OrderTheory.DCPOs.Core.FubiniTheorem
Library UniMath.OrderTheory.DCPOs.Core.IntrinsicApartness
Library UniMath.OrderTheory.DCPOs.Core.ScottContinuous
Library UniMath.OrderTheory.DCPOs.Core.ScottTopology
Library UniMath.OrderTheory.DCPOs.Core.WayBelow
Library UniMath.OrderTheory.DCPOs.Elements.Maximal
- 1. Maximal elements
- 2. Hausdorff separated elements
- 3. Properties of Hausdorff separated elements
- 4. Hausdorff separatedness in continuous DCPOs
- 5. Strongly maximal elements
- 6. Strongly maximal elements are sharp
- 7. The intrinsic apartness relation on strongly maximal elements
- 8. In a continuous DCPO, strongly maximal elements are maximal
- 9. A simplified strong maximality condition in a continuous DCPO,
- 10. Apartness for strongly maximal elements is Hausdorff separatedness
Library UniMath.OrderTheory.DCPOs.Elements.Sharp
Library UniMath.OrderTheory.DCPOs.Examples.BinaryProducts
- 1. Upperbounds in the product
- 2. The DCPO
- 3. The first projection
- 4. The second projection
- 5. Pairing and (tensor) products of functions
- 6. Swap & associativity functions
- 7. Lemmas on upperbounds in the product
- 8. A basis for the product
- 9. Products of Scott-open sets
- 10. Strongly maximal elements in products
Library UniMath.OrderTheory.DCPOs.Examples.BinarySums
Library UniMath.OrderTheory.DCPOs.Examples.Discrete
Library UniMath.OrderTheory.DCPOs.Examples.Equalizers
Library UniMath.OrderTheory.DCPOs.Examples.Exponentials
Library UniMath.OrderTheory.DCPOs.Examples.Fixpoints
Library UniMath.OrderTheory.DCPOs.Examples.IdealCompletion
Library UniMath.OrderTheory.DCPOs.Examples.Products
Library UniMath.OrderTheory.DCPOs.Examples.Propositions
Library UniMath.OrderTheory.DCPOs.Examples.SubDCPO
Library UniMath.OrderTheory.DCPOs.Examples.Sums
Library UniMath.OrderTheory.DCPOs.Examples.Unit
Library UniMath.OrderTheory.DCPOs.FixpointTheorems.LeastFixpoint
Library UniMath.OrderTheory.DCPOs.FixpointTheorems.Pataraia
Library UniMath.OrderTheory.Lattice.Boolean
Library UniMath.OrderTheory.Lattice.Bounded
Library UniMath.OrderTheory.Lattice.Complement
Library UniMath.OrderTheory.Lattice.CompleteHeyting
- 1. Complete Heyting algebra
- 2. Operations of complete Heyting algebras
- 3. Laws for complete Heyting algebras
- 4. Greatest lower bounds for complete Heyting algebras
- 5. Complete Heyting algebras from greatest upper bounds
- 6. Bases for complete Heyting algebras
- 7. Complete Boolean algebras
Library UniMath.OrderTheory.Lattice.DerivedLawsCompleteHeyting
Library UniMath.OrderTheory.Lattice.Distributive
Library UniMath.OrderTheory.Lattice.Heyting
Library UniMath.OrderTheory.Lattice.Lattice
- Lattice
Library UniMath.OrderTheory.Lattice.Examples.Bool
Library UniMath.OrderTheory.Lattice.Examples.FromPartialOrder
Library UniMath.OrderTheory.Lattice.Examples.RegularElements
- 1. Regular elements
- 2. Examples of regular elements
- 2.2. The double negation
- 3. The lattice of regular elements
- 4. The bounded lattice of regular elements
- 5. The complete lattice of regular elements
- 6. Least upper bounds of regular elements
- 7. Exponentials
- 8. The complete Boolean algebra of regular elements
Library UniMath.OrderTheory.Lattice.Examples.ScottOpen
- 1. Lattice operations
- 2. Top and bottom element
- 3. Suprema
- 4. Exponentials
- 5. The complete Heyting algebra of Scott open sets
- 6. A basis for this complete Heyting algebra
- 7. A basis for the Scott open sets in the rounded ideal completion
Library UniMath.OrderTheory.Lattice.Examples.Sieves
- 1. Sieves
- 2. Operations on sieve
- 3. The Heyting algebra of sieves
- 4. Coverages
- 5. Closed sieves
- 6. Operations on closed sieves
- 7. The complete Heyting algebra of closed sieves
Library UniMath.OrderTheory.Lattice.Examples.Subsets
Library UniMath.OrderTheory.Lattice.Examples.Trivial
Library UniMath.OrderTheory.OrderedSets.OrderedSets
Library UniMath.OrderTheory.OrderedSets.WellOrderedSets
- Well Ordered Sets
Library UniMath.OrderTheory.Posets.Basics
Library UniMath.OrderTheory.Posets.LiftPoset
Library UniMath.OrderTheory.Posets.MonotoneFunctions
Library UniMath.OrderTheory.Posets.PointedPosets
Library UniMath.OrderTheory.Posets.PosetSum
Library UniMath.OrderTheory.Posets.QuotientPoset
Library UniMath.OrderTheory.Posets.Subposets
Library UniMath.OrderTheory.Posets.Examples.StandardFiniteSet
Library UniMath.OrderTheory.Prebilattice.Distributive
Library UniMath.OrderTheory.Prebilattice.Interlaced
Library UniMath.OrderTheory.Prebilattice.Prebilattice
Library UniMath.OrderTheory.Prebilattice.PrebilatticeDisplayedCat
Library UniMath.OrderTheory.Prebilattice.Product
Library UniMath.OrderTheory.Prebilattice.Examples.FOUR
Library UniMath.PAdics.fps
- II. Reindexing along functions i : nat -> nat which are
- III. Formal Power Series
- IV. Apartness relation on formal power series
Library UniMath.PAdics.frac
Library UniMath.PAdics.lemmas
- Notation, terminology
- I. Lemmas on natural numbers
- II. Lemmas on rings
- III. Lemmas on hz
- IV. Generalities on apartness relations
- V. Apartness relations on rings
- VI. Lemmas on logic
Library UniMath.PAdics.padics
- I. Several basic lemmas
- II. The carrying operation and induced equivalence relation on
- III. The apartness relation on p-adic integers
- IV. The apartness domain of p-adic integers and the Heyting field of p-adic numbers
Library UniMath.PAdics.z_mod_p
- I. Divisibility and the division algorithm
- II. QUOTIENTS AND REMAINDERS
- III. THE EUCLIDEAN ALGORITHM
- IV. Bezout's lemma and the commutative ring Z/pZ
- V. Z/nZ
Library UniMath.Paradoxes.GirardsParadox
Library UniMath.RealNumbers.DecidableDedekindCuts
Library UniMath.RealNumbers.DedekindCuts
Library UniMath.RealNumbers.Fields
Library UniMath.RealNumbers.NonnegativeRationals
Library UniMath.RealNumbers.NonnegativeReals
- Definition of Dedekind cuts for non-negative real numbers
- Algebraic structures on Dcuts
- Definition of non-negative real numbers
Library UniMath.RealNumbers.Prelim
Library UniMath.RealNumbers.Reals
Library UniMath.RealNumbers.Sets
Library UniMath.Semantics.EnrichedEffectCalculus.ContinuationModel
Library UniMath.Semantics.EnrichedEffectCalculus.CopowerModel
Library UniMath.Semantics.EnrichedEffectCalculus.EECModel
Library UniMath.Semantics.LinearLogic.LafontCategory
Library UniMath.Semantics.LinearLogic.LiftingModel
Library UniMath.Semantics.LinearLogic.LinearCategory
Library UniMath.Semantics.LinearLogic.LinearCategoryEilenbergMooreAdjunction
Library UniMath.Semantics.LinearLogic.LinearNonLinear
Library UniMath.Semantics.LinearLogic.LinearToLinearNonLinear
Library UniMath.Semantics.LinearLogic.RelationalModel
- 1. The cofree comonoid on a set
- 2. Every comonoid in `REL` gives rise to a monoid in `SET`
- 3. The universal property of the cofree comonoid in `REL`
- 4. The relational model of linear logic
Library UniMath.SubstitutionSystems.ActionBasedStrengthOnHomsInBicat
Library UniMath.SubstitutionSystems.ActionScenarioForGenMendlerIteration_alt
Library UniMath.SubstitutionSystems.ApplicationsGenMendlerIteration_alt
Library UniMath.SubstitutionSystems.BinProductOfSignatures
- Definition of the data of the product of two signatures
- Proof of the laws of the product of two signatures
Library UniMath.SubstitutionSystems.BinSumOfSignatures
Library UniMath.SubstitutionSystems.BindingSigToMonad
- Definition of binding signatures
- Translation from a binding signature to a monad
- Specialized versions of some of the above functions for HSET
Library UniMath.SubstitutionSystems.BindingSigToMonad_actegorical
Library UniMath.SubstitutionSystems.CCS
Library UniMath.SubstitutionSystems.CCS_alt
Library UniMath.SubstitutionSystems.ConstructionOfGHSS
Library UniMath.SubstitutionSystems.EquivalenceLaxLineatorsHomogeneousCase
Library UniMath.SubstitutionSystems.EquivalenceSignaturesWithActegoryMorphisms
Library UniMath.SubstitutionSystems.Forests
Library UniMath.SubstitutionSystems.FromBindingSigsToMonads_Summary
Library UniMath.SubstitutionSystems.GenMendlerIteration
- Generalized Iteration in Mendler-style
- Specialized Mendler Iteration
- Fusion law for Generalized Iteration in Mendler-style
Library UniMath.SubstitutionSystems.GenMendlerIteration_alt
- Generalized Iteration in Mendler-style
- Specialized Mendler Iteration
- Fusion law for Generalized Iteration in Mendler-style
Library UniMath.SubstitutionSystems.GeneralizedSubstitutionSystems
Library UniMath.SubstitutionSystems.Lam
- Definition of a "model" of the flattening arity in pure lambda calculus
- Uniqueness of the bracket operation
- Specification of a morphism from lambda calculus with flattening to pure lambda calculus
Library UniMath.SubstitutionSystems.LamFromBindingSig
Library UniMath.SubstitutionSystems.LamHSET
Library UniMath.SubstitutionSystems.LamSignature
Library UniMath.SubstitutionSystems.LiftingInitial
Library UniMath.SubstitutionSystems.LiftingInitial_alt
Library UniMath.SubstitutionSystems.MLTT79
Library UniMath.SubstitutionSystems.ModulesFromSignatures
Library UniMath.SubstitutionSystems.MonadicSubstitution_alt
Library UniMath.SubstitutionSystems.MonadsFromSubstitutionSystems
Library UniMath.SubstitutionSystems.MonadsMultiSorted
Library UniMath.SubstitutionSystems.MonadsMultiSorted_alt
Library UniMath.SubstitutionSystems.MultiSorted
- Definition of multisorted binding signatures
- Construction of an endofunctor on HSET/sort,HSET/sort from a multisorted signature
- Construction of the strength for the endofunctor on HSET/sort,HSET/sort derived from a
- Proof that the functor obtained from a multisorted signature is omega-cocontinuous
Library UniMath.SubstitutionSystems.MultiSortedBindingSig
Library UniMath.SubstitutionSystems.MultiSortedEmbeddingIndCoindHSET
Library UniMath.SubstitutionSystems.MultiSortedMonadConstruction
Library UniMath.SubstitutionSystems.MultiSortedMonadConstruction_actegorical
Library UniMath.SubstitutionSystems.MultiSortedMonadConstruction_alt
Library UniMath.SubstitutionSystems.MultiSortedMonadConstruction_coind_actegorical
Library UniMath.SubstitutionSystems.MultiSorted_actegorical
Library UniMath.SubstitutionSystems.MultiSorted_alt
- Definition of multisorted binding signatures
- Construction of an endofunctor on C^sort,C^sort from a multisorted signature
- Construction of the strength for the endofunctor on C^sort,C^sort
- Proof that the functor obtained from a multisorted signature is omega-cocontinuous
Library UniMath.SubstitutionSystems.Notation
Library UniMath.SubstitutionSystems.PCF_alt
Library UniMath.SubstitutionSystems.STLC
Library UniMath.SubstitutionSystems.STLC_actegorical
Library UniMath.SubstitutionSystems.STLC_actegorical_abstractcat
Library UniMath.SubstitutionSystems.STLC_alt
Library UniMath.SubstitutionSystems.SigmaMonoids
Library UniMath.SubstitutionSystems.SignatureCategory
- The category of signatures with strength
- Binary products in the category of signatures
- Coproducts in the category of signatures
Library UniMath.SubstitutionSystems.SignatureExamples
Library UniMath.SubstitutionSystems.Signatures
- Definition of signatures
- Two alternative versions of the strength laws are defined and seen as equivalent
- Definition of encapsulations of strength (locally/globally, with/without laws
Library UniMath.SubstitutionSystems.SignaturesEquivRelativeStrength
Library UniMath.SubstitutionSystems.SortIndexing
Library UniMath.SubstitutionSystems.SubstitutionSystems
Library UniMath.SubstitutionSystems.SubstitutionSystems_Summary
- Generalized Iteration in Mendler-style and fusion law
- Heterogeneous Substitution Systems
- Monads from hss
- Lifting initiality
- Sum of signatures
- Arities of signatures for lambda calculus
- Evaluation of explicit substitution as initial morphism
Library UniMath.SubstitutionSystems.SumOfSignatures
- Definition of the data of the sum of signatures
- Proof of the strength laws of the sum of two signatures
Library UniMath.SubstitutionSystems.UntypedForests
Library UniMath.SubstitutionSystems.ContinuitySignature.CommutingOfOmegaLimitsAndCoproducts
Library UniMath.SubstitutionSystems.ContinuitySignature.ContinuityOfMultiSortedSigToFunctor
Library UniMath.SubstitutionSystems.ContinuitySignature.GeneralLemmas
Library UniMath.SubstitutionSystems.ContinuitySignature.InstantiateHSET
Library UniMath.SubstitutionSystems.ContinuitySignature.MultiSortedSignatureFunctorEquivalence
Library UniMath.SubstitutionSystems.SimplifiedHSS.BindingSigToMonad
- Definition of binding signatures
- Translation from a binding signature to a monad
- Specialized versions of some of the above functions for HSET
Library UniMath.SubstitutionSystems.SimplifiedHSS.CCS
Library UniMath.SubstitutionSystems.SimplifiedHSS.CCS_alt
Library UniMath.SubstitutionSystems.SimplifiedHSS.FromBindingSigsToMonads_Summary
Library UniMath.SubstitutionSystems.SimplifiedHSS.Lam
Library UniMath.SubstitutionSystems.SimplifiedHSS.LamFromBindingSig
Library UniMath.SubstitutionSystems.SimplifiedHSS.LamHSET
Library UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial
Library UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial_alt
Library UniMath.SubstitutionSystems.SimplifiedHSS.MLTT79
Library UniMath.SubstitutionSystems.SimplifiedHSS.ModulesFromSignatures
Library UniMath.SubstitutionSystems.SimplifiedHSS.MonadicSubstitution_alt
Library UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems
Library UniMath.SubstitutionSystems.SimplifiedHSS.MultiSortedMonadConstruction
Library UniMath.SubstitutionSystems.SimplifiedHSS.MultiSortedMonadConstruction_alt
Library UniMath.SubstitutionSystems.SimplifiedHSS.PCF_alt
Library UniMath.SubstitutionSystems.SimplifiedHSS.STLC
Library UniMath.SubstitutionSystems.SimplifiedHSS.STLC_alt
Library UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems
Library UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems_Summary
- Generalized Iteration in Mendler-style and fusion law
- Heterogeneous Substitution Systems
- Monads from hss
- Lifting initiality
- Sum of signatures
- Arities of signatures for lambda calculus
- Evaluation of explicit substitution as initial morphism
Library UniMath.SyntheticHomotopyTheory.AffineLine
Library UniMath.SyntheticHomotopyTheory.Circle
Library UniMath.SyntheticHomotopyTheory.Circle2
Library UniMath.SyntheticHomotopyTheory.Coproduct
Library UniMath.SyntheticHomotopyTheory.Halfline
Library UniMath.SyntheticHomotopyTheory.Test
Library UniMath.Tactics.Abmonoids_Tactics
Library UniMath.Tactics.EnsureStructuredProofs
Library UniMath.Tactics.Groups_Tactics
Library UniMath.Tactics.Monoids_Tactics
Library UniMath.Tactics.Nat_Tactics
- Basic definitions and hints.
- Tactics for rearranging subterms of goals and hypotheses.
- Tactics pertaining to inequalities.
- Tactics for deriving contradictions.
- Several somewhat devious experimental tactics.
- Tactics for solving equations.
- Combined tactics for solving equations and inequalities of natural numbers.
- TESTS
Library UniMath.Tactics.Simplify
Library UniMath.Tactics.Utilities
Library UniMath.Topology.CategoryTop
Library UniMath.Topology.Filters
Library UniMath.Topology.Prelim
Library UniMath.Topology.Topology
This page has been generated by coqdoc