Library UniMath.Algebra.AbelianMonoids

Abelian (Commutative) Monoids
For some examples, see UniMath.NumberSystems.NaturalNumbersAlgebra.
Contents 1. Basic definitions 2. Subobjects 3. Quotient objects 4. Direct products 5. Monoid of fractions of an abelian monoid 6. Canonical homomorphism to the monoid of fractions 7. Abelian monoid of fractions in the case when elements of the localization submonoid are cancelable 8. Relations on the abelian monoid of fractions 9. Relations and canonical homomorphism to abmonoidfrac
Require Import UniMath.MoreFoundations.Sets.
Require Import UniMath.MoreFoundations.Orders.

Require Import UniMath.CategoryTheory.Categories.Magma.
Require Import UniMath.CategoryTheory.Core.Categories.

Require Import UniMath.Algebra.Monoids2.

Declare Scope addmonoid.
Delimit Scope addmonoid with addmonoid.
Notation "x + y" := (op x y) : addmonoid.
Notation "0" := (unel _) : addmonoid.

1. Basic definitions


Local Open Scope addmonoid.

Definition abmonoid : UU := abelian_monoid_category.

Definition make_abmonoid (t : setwithbinop) (H : isabmonoidop (@op t))
  : abmonoid
  := t ,, H.

Definition abmonoidtomonoid : abmonoid monoid :=
  λ X, make_monoid (pr1 X) (pr1 (pr2 X)).
Coercion abmonoidtomonoid : abmonoid >-> monoid.

Definition commax (X : abmonoid) : iscomm (@op X) := pr2 (pr2 X).

Definition abmonoidrer (X : abmonoid) (a b c d : X) :
  (a + b) + (c + d) = (a + c) + (b + d) := abmonoidoprer (pr2 X) a b c d.

Definition abmonoid_of_monoid (X : monoid) (H : iscomm (@op X)) : abmonoid :=
  make_abmonoid X (make_isabmonoidop (pr2 X) H).

Definition abelian_monoid_morphism
  (X Y : abmonoid)
  : UU
  := abelian_monoid_categoryX, Y%cat.

Definition abelian_monoid_morphism_to_monoidfun
  {X Y : abmonoid}
  (f : abelian_monoid_morphism X Y)
  : monoidfun X Y.
Proof.
  use make_monoidfun.
  - exact (pr1 f : binopfun _ _).
  - apply make_ismonoidfun.
    + apply binopfunisbinopfun.
    + exact (pr212 f).
Defined.

Coercion abelian_monoid_morphism_to_monoidfun : abelian_monoid_morphism >-> monoidfun.

Definition make_abelian_monoid_morphism
  {X Y : abmonoid}
  (f : X Y)
  (H : ismonoidfun f)
  : abelian_monoid_morphism X Y
  := (f ,, pr1 H) ,, ((tt ,, pr2 H) ,, tt).

Definition monoidfun_to_abelian_monoid_morphism
  {X Y : abmonoid}
  (f : monoidfun X Y)
  : abelian_monoid_morphism X Y
  := make_abelian_monoid_morphism f (ismonoidfun_monoidfun f).

Lemma abelian_monoid_morphism_paths
  {X Y : abmonoid}
  (f g : abelian_monoid_morphism X Y)
  (H : (f : X Y) = g)
  : f = g.
Proof.
  apply subtypePath.
  {
    refine (λ (h : magma_morphism _ _), _).
    refine (isapropdirprod _ _ _ isapropunit).
    refine (isapropdirprod _ _ isapropunit _).
    apply setproperty.
  }
  apply binopfun_paths.
  exact H.
Qed.

Definition abelian_monoid_morphism_eq
  {X Y : abmonoid}
  {f g : abelian_monoid_morphism X Y}
  : (f = g) ( x, f x = g x).
Proof.
  use weqimplimpl.
  - intros e x.
    exact (maponpaths (λ (f : abelian_monoid_morphism _ _), f x) e).
  - intro e.
    apply abelian_monoid_morphism_paths, funextfun.
    exact e.
  - abstract apply homset_property.
  - abstract (
      apply impred_isaprop;
      intro;
      apply setproperty
    ).
Defined.

Definition identity_abelian_monoid_morphism
  (X : abmonoid)
  : abelian_monoid_morphism X X
  := identity X.

Definition composite_abelian_monoid_morphism
  {X Y Z : abmonoid}
  (f : abelian_monoid_morphism X Y)
  (g : abelian_monoid_morphism Y Z)
  : abelian_monoid_morphism X Z
  := (f · g)%cat.

Construction of the trivial abmonoid consisting of one element given by unit.


Definition unitabmonoid_isabmonoid : isabmonoidop (@op unitmonoid).
Proof.
  use make_isabmonoidop.
  - exact unitmonoid_ismonoid.
  - intros x x'. use isProofIrrelevantUnit.
Qed.

Definition unitabmonoid : abmonoid := make_abmonoid unitmonoid unitabmonoid_isabmonoid.

Lemma unelabmonoidfun_ismonoidfun (X Y : abmonoid) : ismonoidfun (Y := Y) (λ x : X, 0).
Proof.
  use make_ismonoidfun.
  - use make_isbinopfun. intros x x'. exact (!lunax _ _).
  - use idpath.
Qed.

Definition unelabmonoidfun (X Y : abmonoid) : monoidfun X Y :=
  make_monoidfun (unelabmonoidfun_ismonoidfun X Y).

Abelian monoid structure on homsets

If f g : X → Y are morphisms of abelian monoids, then we define f + g to be the morphism (f + g)(x) = f(x) + g(x).

Lemma abmonoidshombinop_ismonoidfun {X Y : abmonoid} (f g : monoidfun X Y) :
  @ismonoidfun X Y (λ x : X, f x + g x).
Proof.
  use make_ismonoidfun.
  - use make_isbinopfun.
    intros x x'. cbn.
    rewrite (monoidfunmul f).
    rewrite (monoidfunmul g).
    rewrite (assocax Y). rewrite (assocax Y). use maponpaths.
    rewrite <- (assocax Y). rewrite <- (assocax Y).
    use (maponpaths (λ y : Y, y + g x')).
    use (commax Y).
  - refine (maponpaths (λ h : Y, f 0 + h) (monoidfununel g) @ _).
    rewrite runax. exact (monoidfununel f).
Qed.

Definition abmonoidshombinop {X Y : abmonoid} : binop (monoidfun X Y) :=
  (λ f g, make_monoidfun (abmonoidshombinop_ismonoidfun f g)).

Lemma abmonoidsbinop_runax {X Y : abmonoid} (f : monoidfun X Y) :
  abmonoidshombinop f (unelmonoidfun X Y) = f.
Proof.
  use monoidfun_paths. use funextfun. intros x. use (runax Y).
Qed.

Lemma abmonoidsbinop_lunax {X Y : abmonoid} (f : monoidfun X Y) :
  abmonoidshombinop (unelmonoidfun X Y) f = f.
Proof.
  use monoidfun_paths. use funextfun. intros x. use (lunax Y).
Qed.

Lemma abmonoidshombinop_assoc {X Y : abmonoid} (f g h : monoidfun X Y) :
  abmonoidshombinop (abmonoidshombinop f g) h = abmonoidshombinop f (abmonoidshombinop g h).
Proof.
  use monoidfun_paths. use funextfun. intros x. use assocax.
Qed.

Lemma abmonoidshombinop_comm {X Y : abmonoid} (f g : monoidfun X Y) :
  abmonoidshombinop f g = abmonoidshombinop g f.
Proof.
  use monoidfun_paths. use funextfun. intros x. use (commax Y).
Qed.

Lemma abmonoidshomabmonoid_ismonoidop (X Y : abmonoid) :
  @ismonoidop (make_hSet (monoidfun X Y) (isasetmonoidfun X Y))
              (λ f g : monoidfun X Y, abmonoidshombinop f g).
Proof.
  use make_ismonoidop.
  - intros f g h. exact (abmonoidshombinop_assoc f g h).
  - use make_isunital.
    + exact (unelmonoidfun X Y).
    + use make_isunit.
      * intros f. exact (abmonoidsbinop_lunax f).
      * intros f. exact (abmonoidsbinop_runax f).
Defined.

Lemma abmonoidshomabmonoid_isabmonoid (X Y : abmonoid) :
  @isabmonoidop (make_hSet (monoidfun X Y) (isasetmonoidfun X Y))
                (λ f g : monoidfun X Y, abmonoidshombinop f g).
Proof.
  use make_isabmonoidop.
  - exact (abmonoidshomabmonoid_ismonoidop X Y).
  - intros f g. exact (abmonoidshombinop_comm f g).
Defined.

Definition abmonoidshomabmonoid (X Y : abmonoid) : abmonoid.
Proof.
  use make_abmonoid.
  - use make_setwithbinop.
    + use make_hSet.
      * exact (monoidfun X Y).
      * exact (isasetmonoidfun X Y).
    + intros f g. exact (abmonoidshombinop f g).
  - exact (abmonoidshomabmonoid_isabmonoid X Y).
Defined.

2. Subobjects


Definition subabmonoid (X : abmonoid) := submonoid X.
Identity Coercion id_subabmonoid : subabmonoid >-> submonoid.

Lemma iscommcarrier {X : abmonoid} (A : submonoid X) : iscomm (@op A).
Proof.
  intros a a'.
  apply (invmaponpathsincl _ (isinclpr1carrier A)).
  simpl. apply commax.
Qed.

Definition isabmonoidcarrier {X : abmonoid} (A : submonoid X) :
  isabmonoidop (@op A) := ismonoidcarrier A ,, iscommcarrier A.

Definition carrierofsubabmonoid {X : abmonoid} (A : subabmonoid X) : abmonoid.
Proof.
  use make_abmonoid.
  - exact A.
  - apply isabmonoidcarrier.
Defined.
Coercion carrierofsubabmonoid : subabmonoid >-> abmonoid.

Definition subabmonoid_incl {X : abmonoid} (A : subabmonoid X) : monoidfun A X :=
submonoid_incl A.

3. Quotient objects


Lemma iscommquot {X : abmonoid} (R : binopeqrel X) : iscomm (@op (setwithbinopquot R)).
Proof.
  intros.
  set (X0 := setwithbinopquot R).
  intros x x'.
  apply (setquotuniv2prop R (λ x x' : X0, make_hProp _ (setproperty X0 (x + x') (x' + x)))).
  intros x0 x0'.
  apply (maponpaths (setquotpr R) ((commax X) x0 x0')).
Qed.

Definition isabmonoidquot {X : abmonoid} (R : binopeqrel X) :
  isabmonoidop (@op (setwithbinopquot R)) := ismonoidquot R ,, iscommquot R.

Definition abmonoidquot {X : abmonoid} (R : binopeqrel X) : abmonoid.
Proof. exists (setwithbinopquot R). apply isabmonoidquot. Defined.

4. Direct products


Lemma iscommdirprod (X Y : abmonoid) : iscomm (@op (setwithbinopdirprod X Y)).
Proof.
  intros xy xy'.
  induction xy as [ x y ]. induction xy' as [ x' y' ]. simpl.
  apply pathsdirprod.
  - apply (commax X).
  - apply (commax Y).
Qed.

Definition isabmonoiddirprod (X Y : abmonoid) : isabmonoidop (@op (setwithbinopdirprod X Y)) :=
  ismonoiddirprod X Y ,, iscommdirprod X Y.

Definition abmonoiddirprod (X Y : abmonoid) : abmonoid.
Proof. exists (setwithbinopdirprod X Y). apply isabmonoiddirprod. Defined.

5. Monoid of fractions of an abelian monoid

Note : the following construction uses onbly associativity and commutativity of the abmonoid operations but does not use the unit element.

Definition abmonoidfracopint (X : abmonoid) (A : submonoid X) :
  binop (X × A) := @op (setwithbinopdirprod X A).

Definition hrelabmonoidfrac (X : abmonoid) (A : submonoid X) : hrel (setwithbinopdirprod X A) :=
  λ xa yb, (a0 : A), (pr1 xa + pr1 (pr2 yb)) + pr1 a0 = (pr1 yb + pr1 (pr2 xa) + pr1 a0).

Lemma iseqrelabmonoidfrac (X : abmonoid) (A : submonoid X) : iseqrel (hrelabmonoidfrac X A).
Proof.
  intros.
  set (assoc := assocax X). set (comm := commax X).
  set (R := hrelabmonoidfrac X A).
  apply iseqrelconstr.
  - unfold istrans. intros ab cd ef. simpl. apply hinhfun2.
    induction ab as [ a b ]. induction cd as [ c d ]. induction ef as [ e f ].
    induction b as [ b isb ]. induction d as [ d isd ]. induction f as [ f isf ].
    intros eq1 eq2. induction eq1 as [ x1 eq1 ]. induction eq2 as [ x2 eq2 ].
    simpl in *. exists (@op A (d ,, isd) (@op A x1 x2)).
    induction x1 as [ x1 isx1 ]. induction x2 as [ x2 isx2 ].
    induction A as [ A ax ].
    simpl in *.
    rewrite (assoc a f (d + (x1 + x2))). rewrite (comm f (d + (x1 + x2))).
    induction (assoc a (d + (x1 + x2)) f). induction (assoc a d (x1 + x2)).
    induction (assoc (a + d) x1 x2).
    rewrite eq1. rewrite (comm x1 x2). rewrite (assoc e b (d + (x2 + x1))).
    rewrite (comm b (d + (x2 + x1))).
    induction (assoc e (d + (x2 + x1)) b). induction (assoc e d (x2 + x1)).
    induction (assoc (e + d) x2 x1). induction eq2. rewrite (assoc (c + b) x1 x2).
    rewrite (assoc (c + f) x2 x1). rewrite (comm x1 x2).
    rewrite (assoc (c + b) (x2 + x1) f). rewrite (assoc (c + f) (x2 + x1) b).
    rewrite (comm (x2 + x1) f). rewrite (comm (x2 + x1) b).
    induction (assoc (c + b) f (x2 + x1)). induction (assoc (c + f) b (x2 + x1)).
    rewrite (assoc c b f). rewrite (assoc c f b). rewrite (comm b f).
    apply idpath.
  - intro xa. simpl. apply hinhpr. exists (pr2 xa). apply idpath.
  - intros xa yb. unfold R. simpl. apply hinhfun. intro eq1.
    induction eq1 as [ x1 eq1 ]. exists x1. induction x1 as [ x1 isx1 ].
    simpl. apply (!eq1).
Qed.

Definition eqrelabmonoidfrac (X : abmonoid) (A : submonoid X) : eqrel (setwithbinopdirprod X A) :=
  make_eqrel (hrelabmonoidfrac X A) (iseqrelabmonoidfrac X A).

Lemma isbinophrelabmonoidfrac (X : abmonoid) (A : submonoid X) :
  @isbinophrel (setwithbinopdirprod X A) (eqrelabmonoidfrac X A).
Proof.
  intros.
  apply (isbinopreflrel (eqrelabmonoidfrac X A) (eqrelrefl (eqrelabmonoidfrac X A))).
  set (rer := abmonoidoprer (pr2 X)). intros a b c d. simpl.
  apply hinhfun2.
  induction a as [ a a' ]. induction a' as [ a' isa' ].
  induction b as [ b b' ]. induction b' as [ b' isb' ].
  induction c as [ c c' ]. induction c' as [ c' isc' ].
  induction d as [ d d' ]. induction d' as [ d' isd' ].
  intros ax ay.
  induction ax as [ a1 eq1 ]. induction ay as [ a2 eq2 ].
  exists (@op A a1 a2).
  induction a1 as [ a1 aa1 ]. induction a2 as [ a2 aa2 ].
  simpl in *.
  refine (maponpaths (λ x, x + _) (rer a c b' d') @ !_).
  refine (maponpaths (λ x, x + _) (rer b d a' c') @ !_).
  refine (rer (a + b') (c + d') a1 a2 @ !_).
  refine (rer (b + a') (d + c') a1 a2 @ !_).
  exact (maponpaths (λ x, x + _) eq1 @ maponpaths _ eq2).
Qed.

Definition abmonoidfracop (X : abmonoid) (A : submonoid X) :
  binop (setquot (hrelabmonoidfrac X A)) :=
  setquotfun2 (hrelabmonoidfrac X A) (eqrelabmonoidfrac X A) (abmonoidfracopint X A)
              ((iscompbinoptransrel _ (eqreltrans _) (isbinophrelabmonoidfrac X A))).

Definition binopeqrelabmonoidfrac (X : abmonoid) (A : subabmonoid X) :
  binopeqrel (abmonoiddirprod X A) :=
  @make_binopeqrel (setwithbinopdirprod X A) (eqrelabmonoidfrac X A) (isbinophrelabmonoidfrac X A).

Definition abmonoidfrac (X : abmonoid) (A : submonoid X) : abmonoid :=
  abmonoidquot (binopeqrelabmonoidfrac X A).

Definition prabmonoidfrac (X : abmonoid) (A : submonoid X) : X A abmonoidfrac X A :=
  λ (x : X) (a : A), setquotpr (eqrelabmonoidfrac X A) (x ,, a).


Lemma invertibilityinabmonoidfrac (X : abmonoid) (A : submonoid X) :
   a a' : A, isinvertible (@op (abmonoidfrac X A)) (prabmonoidfrac X A (pr1 a) a').
Proof.
  intros a a'.
  set (R := eqrelabmonoidfrac X A). unfold isinvertible.
  assert (isl : islinvertible (@op (abmonoidfrac X A))
                              (prabmonoidfrac X A (pr1 a) a')).
  {
    unfold islinvertible.
    set (f := λ x0 : abmonoidfrac X A, prabmonoidfrac X A (pr1 a) a' + x0).
    set (g := λ x0 : abmonoidfrac X A, prabmonoidfrac X A (pr1 a') a + x0).
    assert (egf : x0, g (f x0) = x0).
    {
      apply (setquotunivprop R (λ x, _ = _)%logic).
      intro xb. simpl.
      apply (iscompsetquotpr
               R (pr1 a' + (pr1 a + pr1 xb) ,, (@op A) a ((@op A) a' (pr2 xb)))).
      simpl. apply hinhpr. exists (unel A). unfold pr1carrier. simpl.
      set (e := assocax X (pr1 a) (pr1 a') (pr1 (pr2 xb))).
      simpl in e. induction e.
      set (e := assocax X (pr1 xb) (pr1 a + pr1 a') (pr1 (pr2 xb))).
      simpl in e. induction e.
      set (e := assocax X (pr1 a') (pr1 a) (pr1 xb)).
      simpl in e. induction e.
      set (e := commax X (pr1 a) (pr1 a')).
      simpl in e. induction e.
      set (e := commax X (pr1 a + pr1 a') (pr1 xb)).
      simpl in e. induction e.
      apply idpath.
    }
    assert (efg : x0, f (g x0) = x0).
    {
      apply (setquotunivprop R (λ x0, _ = _)%logic).
      intro xb. simpl.
      apply (iscompsetquotpr
               R (pr1 a + (pr1 a' + pr1 xb) ,, (@op A) a' ((@op A) a (pr2 xb)))).
      simpl. apply hinhpr. exists (unel A). unfold pr1carrier. simpl.
      set (e := assocax X (pr1 a') (pr1 a) (pr1 (pr2 xb))).
      simpl in e. induction e.
      set (e := assocax X (pr1 xb) (pr1 a' + pr1 a) (pr1 (pr2 xb))).
      simpl in e. induction e.
      set (e := assocax X (pr1 a) (pr1 a') (pr1 xb)).
      simpl in e. induction e.
      set (e := commax X (pr1 a') (pr1 a)).
      simpl in e. induction e.
      set (e := commax X (pr1 a' + pr1 a) (pr1 xb)).
      simpl in e. induction e.
      apply idpath.
    }
    apply (isweq_iso _ _ egf efg).
  }
  exact (
    isl ,,
    weqlinvertiblerinvertible op (commax (abmonoidfrac X A)) (prabmonoidfrac X A (pr1 a) a') isl
  ).
Defined.

6. Canonical homomorphism to the monoid of fractions


Definition toabmonoidfrac (X : abmonoid) (A : submonoid X) (x : X) : abmonoidfrac X A :=
  setquotpr _ (x ,, unel A).

Lemma isbinopfuntoabmonoidfrac (X : abmonoid) (A : submonoid X) : isbinopfun (toabmonoidfrac X A).
Proof.
  unfold isbinopfun. intros x1 x2.
  change (setquotpr _ (x1 + x2 ,, @unel A)
          = setquotpr (eqrelabmonoidfrac X A) (x1 + x2 ,, unel A + unel A)).
  apply (maponpaths (setquotpr _)).
  apply (@pathsdirprod X A).
  apply idpath.
  exact (!lunax A 0).
Defined.

Lemma isunitalfuntoabmonoidfrac (X : abmonoid) (A : submonoid X) :
  toabmonoidfrac X A 0 = 0.
Proof. apply idpath. Defined.

Definition ismonoidfuntoabmonoidfrac (X : abmonoid) (A : submonoid X) :
  ismonoidfun (toabmonoidfrac X A) :=
  isbinopfuntoabmonoidfrac X A ,, isunitalfuntoabmonoidfrac X A.

7. Abelian monoid of fractions in the case when elements of the localization submonoid are cancelable


Definition hrel0abmonoidfrac (X : abmonoid) (A : submonoid X) : hrel (X × A) :=
  λ xa yb : setdirprod X A, (pr1 xa + pr1 (pr2 yb) = pr1 yb + pr1 (pr2 xa))%logic.

Lemma weqhrelhrel0abmonoidfrac (X : abmonoid) (A : submonoid X)
      (iscanc : a : A, isrcancelable (@op X) (pr1carrier _ a))
      (xa xa' : X × A) : (eqrelabmonoidfrac X A xa xa') (hrel0abmonoidfrac X A xa xa').
Proof.
  unfold eqrelabmonoidfrac. unfold hrelabmonoidfrac. simpl.
  apply weqimplimpl.
  apply (@hinhuniv _ (pr1 xa + pr1 (pr2 xa') = pr1 xa' + pr1 (pr2 xa))%logic).
  intro ae. induction ae as [ a eq ].
  apply (invmaponpathsincl _ (iscanc a) _ _ eq).
  intro eq. apply hinhpr. exists (unel A). rewrite (runax X).
  rewrite (runax X). apply eq. apply (isapropishinh _).
  apply (setproperty X).
Defined.

Lemma isinclprabmonoidfrac (X : abmonoid) (A : submonoid X)
      (iscanc : a : A, isrcancelable (@op X) (pr1carrier _ a)) :
   a' : A, isincl (λ x, prabmonoidfrac X A x a').
Proof.
  intro a'. apply isinclbetweensets.
  - apply (setproperty X).
  - apply (setproperty (abmonoidfrac X A)).
  - intros x x'. intro e.
    set (e' := invweq (weqpathsinsetquot (eqrelabmonoidfrac X A) (x ,, a')
                                         (x' ,, a')) e).
    set (e'' := weqhrelhrel0abmonoidfrac X A iscanc (_ ,, _) (_ ,, _) e').
    simpl in e''.
    apply (invmaponpathsincl _ (iscanc a')).
    apply e''.
Defined.

Definition isincltoabmonoidfrac (X : abmonoid) (A : submonoid X)
           (iscanc : a : A, isrcancelable (@op X) (pr1carrier _ a)) :
  isincl (toabmonoidfrac X A) := isinclprabmonoidfrac X A iscanc (unel A).

Lemma isdeceqabmonoidfrac (X : abmonoid) (A : submonoid X)
      (iscanc : a : A, isrcancelable (@op X) (pr1carrier _ a)) (is : isdeceq X) :
  isdeceq (abmonoidfrac X A).
Proof.
  apply (isdeceqsetquot (eqrelabmonoidfrac X A)). intros xa xa'.
  apply (isdecpropweqb (weqhrelhrel0abmonoidfrac X A iscanc xa xa')).
  apply isdecpropif. unfold isaprop. simpl.
  set (int := setproperty X (pr1 xa + pr1 (pr2 xa')) (pr1 xa' + pr1 (pr2 xa))).
  simpl in int. apply int. unfold hrel0abmonoidfrac.
  simpl. apply (is _ _).
Defined.

8. Relations on the abelian monoid of fractions


Definition abmonoidfracrelint (X : abmonoid) (A : subabmonoid X) (L : hrel X) :
  hrel (setwithbinopdirprod X A) :=
  λ xa yb, (c0 : A), L (((pr1 xa) + (pr1 (pr2 yb))) + (pr1 c0))
                                  (((pr1 yb) + (pr1 (pr2 xa))) + (pr1 c0)).

Lemma iscomprelabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) : iscomprelrel (eqrelabmonoidfrac X A) (abmonoidfracrelint X A L).
Proof.
  set (assoc := (assocax X) : isassoc (@op X)).
  unfold isassoc in assoc. set (comm := commax X). unfold iscomm in comm.
  set (rer := abmonoidrer X). apply iscomprelrelif.
  apply (eqrelsymm (eqrelabmonoidfrac X A)).
  - intros xa xa' yb. unfold hrelabmonoidfrac. simpl. apply (@hinhfun2).
    intros t2e t2l.
    induction t2e as [ c1a e ]. induction t2l as [ c0a l ].
    set (x := pr1 xa). set (a := pr1 (pr2 xa)).
    set (x' := pr1 xa'). set (a' := pr1 (pr2 xa')).
    set (y := pr1 yb). set (b := pr1 (pr2 yb)).
    set (c0 := pr1 c0a). set (c1 := pr1 c1a).
    exists ((pr2 xa) + c1a + c0a).
    change (L ((x' + b) + ((a + c1) + c0)) ((y + a') + ((a + c1) + c0))).
    change (x + a' + c1 = x' + a + c1) in e.
    rewrite (rer x' _ _ c0).
    induction (assoc x' a c1). induction e.
    rewrite (assoc x a' c1). rewrite (rer x _ _ c0). rewrite (assoc a c1 c0).
    rewrite (rer _ a' a _). rewrite (assoc a' c1 c0). rewrite (comm a' _).
    rewrite (comm c1 _). rewrite (assoc c0 c1 a').
    induction (assoc (x + b) c0 (@op X c1 a')).
    induction (assoc (y + a) c0 (@op X c1 a')).
    apply ((pr2 is) _ _ _ (pr2 (@op A c1a (pr2 xa'))) l).
  - intros xa yb yb'. unfold hrelabmonoidfrac. simpl. apply (@hinhfun2).
    intros t2e t2l.
    induction t2e as [ c1a e ]. induction t2l as [ c0a l ].
    set (x := pr1 xa). set (a := pr1 (pr2 xa)).
    set (y' := pr1 yb'). set (b' := pr1 (pr2 yb')).
    set (y := pr1 yb). set (b := pr1 (pr2 yb)).
    set (c0 := pr1 c0a). set (c1 := pr1 c1a).
    exists ((pr2 yb) + c1a + c0a).
    change (L ((x + b') + ((b + c1) + c0)) ((y' + a) + ((b + c1) + c0))).
    change (y + b' + c1 = y' + b + c1) in e.
    rewrite (rer y' _ _ c0).
    induction (assoc y' b c1). induction e.
    rewrite (assoc y b' c1). rewrite (rer y _ _ c0).
    rewrite (assoc b c1 c0). rewrite (rer _ b' b _).
    rewrite (assoc b' c1 c0). rewrite (comm b' _).
    rewrite (comm c1 _). rewrite (assoc c0 c1 b').
    induction (assoc (x + b) c0 (@op X c1 b')).
    induction (assoc (y + a) c0 (@op X c1 b')).
    apply ((pr2 is) _ _ _ (pr2 (@op A c1a (pr2 yb'))) l).
Qed.

Definition abmonoidfracrel (X : abmonoid) (A : submonoid X) {L : hrel X}
           (is : ispartbinophrel A L) := quotrel (iscomprelabmonoidfracrelint X A is).

Lemma istransabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : istrans L) : istrans (abmonoidfracrelint X A L).
Proof.
  intros.
  set (assoc := (assocax X) : isassoc (@op X)). unfold isassoc in assoc.
  set (comm := commax X). unfold iscomm in comm. set (rer := abmonoidrer X).
  intros xa1 xa2 xa3. unfold abmonoidfracrelint. simpl.
  apply hinhfun2. intros t2l1 t2l2.
  set (c1a := pr1 t2l1). set (l1 := pr2 t2l1).
  set (c2a := pr1 t2l2). set (l2 := pr2 t2l2).
  set (x1 := pr1 xa1). set (a1 := pr1 (pr2 xa1)).
  set (x2 := pr1 xa2). set (a2 := pr1 (pr2 xa2)).
  set (x3 := pr1 xa3). set (a3 := pr1 (pr2 xa3)).
  set (c1 := pr1 c1a). set (c2 := pr1 c2a).
  exists ((pr2 xa2) + (@op A c1a c2a)).
  change (L ((x1 + a3) + (a2 + (c1 + c2))) ((x3 + a1) + (a2 + (c1 + c2)))).
  assert (ll1 : L ((x1 + a3) + (a2 + (@op X c1 c2)))
                  (((x2 + a1) + c1) + (c2 + a3))).
  {
    rewrite (rer _ a3 a2 _). rewrite (comm a3 (@op X c1 c2)).
    rewrite (assoc c1 c2 a3).
    induction (assoc (x1 + a2) c1 (@op X c2 a3)).
    apply ((pr2 is) _ _ _ (pr2 (@op A c2a (pr2 xa3))) l1).
  }
  assert (ll2 : L (((x2 + a3) + c2) + (@op X a1 c1))
                  ((x3 + a1) + (a2 + (@op X c1 c2)))).
  {
    rewrite (rer _ a1 a2 _). induction (assoc a1 c1 c2).
    rewrite (comm (a1 + c1) c2).
    induction (assoc (x3 + a2) c2 (@op X a1 c1)).
    apply ((pr2 is) _ _ _ (pr2 (@op A (pr2 xa1) c1a)) l2).
  }
  assert (e : x2 + a1 + c1 + (c2 + a3) =
              x2 + a3 + c2 + (a1 + c1)).
  {
    rewrite (assoc (x2 + a1) c1 _). rewrite (assoc (x2 + a3) c2 _).
    rewrite (assoc x2 a1 _). rewrite (assoc x2 a3 _).
    induction (assoc a1 c1 (c2 + a3)). induction (assoc a3 c2 (a1 + c1)).
    induction (comm (c2 + a3) (a1 + c1)).
    rewrite (comm a3 c2). apply idpath.
  }
  induction e. apply (isl _ _ _ ll1 ll2).
Qed.

Lemma istransabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : istrans L) : istrans (abmonoidfracrel X A is).
Proof.
  apply istransquotrel. apply istransabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma issymmabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : issymm L) : issymm (abmonoidfracrelint X A L).
Proof.
  intros xa1 xa2. unfold abmonoidfracrelint. simpl.
  apply hinhfun. intros t2l1.
  set (c1a := pr1 t2l1). set (l1 := pr2 t2l1).
  exists (c1a). apply (isl _ _ l1).
Qed.

Lemma issymmabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : issymm L) : issymm (abmonoidfracrel X A is).
Proof.
  apply issymmquotrel. apply issymmabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma isreflabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isrefl L) : isrefl (abmonoidfracrelint X A L).
Proof.
  intro xa. unfold abmonoidfracrelint. simpl. apply hinhpr.
  exists (unel A). apply (isl _).
Defined.

Lemma isreflabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isrefl L) : isrefl (abmonoidfracrel X A is).
Proof.
  apply isreflquotrel. apply isreflabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma ispoabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : ispreorder L) : ispreorder (abmonoidfracrelint X A L).
Proof.
  exists (istransabmonoidfracrelint X A is (pr1 isl)).
  apply (isreflabmonoidfracrelint X A is (pr2 isl)).
Defined.

Lemma ispoabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : ispreorder L) : ispreorder (abmonoidfracrel X A is).
Proof.
  apply ispoquotrel. apply ispoabmonoidfracrelint.
  apply is. apply isl.
Defined.

Lemma iseqrelabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : iseqrel L) : iseqrel (abmonoidfracrelint X A L).
Proof.
  exists (ispoabmonoidfracrelint X A is (pr1 isl)).
  apply (issymmabmonoidfracrelint X A is (pr2 isl)).
Defined.

Lemma iseqrelabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : iseqrel L) : iseqrel (abmonoidfracrel X A is).
Proof.
  apply iseqrelquotrel. apply iseqrelabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma isirreflabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isirrefl L) : isirrefl (abmonoidfracrelint X A L).
Proof.
  unfold isirrefl. intro xa. unfold abmonoidfracrelint. simpl.
  unfold neg. apply (@hinhuniv _ (make_hProp _ isapropempty)).
  intro t2. apply (isl _ (pr2 t2)).
Defined.

Lemma isirreflabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isirrefl L) : isirrefl (abmonoidfracrel X A is).
Proof.
  apply isirreflquotrel. apply isirreflabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma isasymmabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isasymm L) : isasymm (abmonoidfracrelint X A L).
Proof.
  intros.
  set (assoc := (assocax X) : isassoc (@op X)).
  unfold isassoc in assoc. set (comm := commax X).
  unfold iscomm in comm. unfold isasymm.
  intros xa1 xa2. unfold abmonoidfracrelint. simpl.
  apply (@hinhuniv2 _ _ (make_hProp _ isapropempty)).
  intros t2l1 t2l2.
  set (c1a := pr1 t2l1). set (l1 := pr2 t2l1).
  set (c2a := pr1 t2l2). set (l2 := pr2 t2l2).
  set (c1 := pr1 c1a). set (c2 := pr1 c2a).
  set (x1 := pr1 xa1). set (a1 := pr1 (pr2 xa1)).
  set (x2 := pr1 xa2). set (a2 := pr1 (pr2 xa2)).
  assert (ll1 : L ((x1 + a2) + (@op X c1 c2)) ((x2 + a1) + (@op X c1 c2))).
  {
    induction (assoc (x1 + a2) c1 c2). induction (assoc (x2 + a1) c1 c2).
    apply ((pr2 is) _ _ _ (pr2 c2a)). apply l1.
  }
  assert (ll2 : L ((x2 + a1) + (@op X c1 c2)) ((x1 + a2) + (@op X c1 c2))).
  {
    induction (comm c2 c1). induction (assoc (x1 + a2) c2 c1).
    induction (assoc (x2 + a1) c2 c1).
    apply ((pr2 is) _ _ _ (pr2 c1a)).
    apply l2.
  }
  apply (isl _ _ ll1 ll2).
Qed.

Lemma isasymmabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isasymm L) : isasymm (abmonoidfracrel X A is).
Proof.
  apply isasymmquotrel. apply isasymmabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma iscoasymmabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : iscoasymm L) : iscoasymm (abmonoidfracrelint X A L).
Proof.
  intros.
  set (assoc := (assocax X) : isassoc (@op X)). unfold isassoc in assoc.
  set (comm := commax X). unfold iscomm in comm. unfold iscoasymm.
  intros xa1 xa2. intro nl0.
  set (nl := neghexisttoforallneg _ nl0 (unel A)).
  simpl in nl.
  set (l := isl _ _ nl).
  apply hinhpr.
  exists (unel A).
  apply l.
Qed.

Lemma iscoasymmabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : iscoasymm L) : iscoasymm (abmonoidfracrel X A is).
Proof.
  apply iscoasymmquotrel. apply iscoasymmabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma istotalabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : istotal L) : istotal (abmonoidfracrelint X A L).
Proof.
  unfold istotal. intros x1 x2. unfold abmonoidfracrelint.
  set (int := isl (pr1 x1 + pr1 (pr2 x2)) (pr1 x2 + pr1 (pr2 x1))).
  generalize int. clear int. simpl.
  apply hinhfun. apply coprodf. intro l.
  apply hinhpr.
  exists (unel A). rewrite (runax X _).
  rewrite (runax X _). apply l. intro l.
  apply hinhpr. exists (unel A).
  rewrite (runax X _). rewrite (runax X _).
  apply l.
Defined.

Lemma istotalabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : istotal L) : istotal (abmonoidfracrel X A is).
Proof.
  apply istotalquotrel. apply istotalabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma iscotransabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : iscotrans L) : iscotrans (abmonoidfracrelint X A L).
Proof.
  intros.
  set (assoc := (assocax X) : isassoc (@op X)). unfold isassoc in assoc.
  set (comm := (commax X) : iscomm (@op X)). unfold iscomm in comm.
  set (rer := abmonoidrer X). unfold iscotrans.
  intros xa1 xa2 xa3. unfold abmonoidfracrelint. simpl.
  apply (@hinhuniv _ (ishinh _)).
  intro t2.
  set (c0a := pr1 t2). set (l0 := pr2 t2).
  set (x1 := pr1 xa1). set (a1 := pr1 (pr2 xa1)).
  set (x2 := pr1 xa2). set (a2 := pr1 (pr2 xa2)).
  set (x3 := pr1 xa3). set (a3 := pr1 (pr2 xa3)).
  set (c0 := pr1 c0a).
  set (z1 := (x1 + a3 + (a2 + c0))).
  set (z2 := x2 + a1 + (a3 + c0)).
  set (z3 := x3 + a1 + (a2 + c0)).
  assert (int : L z1 z3).
  {
    unfold z1. unfold z3. rewrite (comm a2 c0).
    rewrite <- (assoc _ _ a2).
    rewrite <- (assoc _ _ a2).
    apply ((pr2 is) _ _ _ (pr2 (pr2 xa2)) l0).
  }
  set (int' := isl z1 z2 z3 int). generalize int'. clear int'.
  simpl. apply hinhfun. intro cc.
  induction cc as [ l12 | l23 ].
  - apply ii1. apply hinhpr. exists ((pr2 xa3) + c0a).
    change (L (x1 + a2 + (a3 + c0)) (x2 + a1 + (a3 + c0))).
    rewrite (rer _ a2 a3 _). apply l12.
  - apply ii2. apply hinhpr. exists ((pr2 xa1) + c0a).
    change (L (x2 + a3 + (a1 + c0)) (x3 + a2 + (a1 + c0))).
    rewrite (rer _ a3 a1 _). rewrite (rer _ a2 a1 _).
    apply l23.
Qed.

Lemma iscotransabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : iscotrans L) : iscotrans (abmonoidfracrel X A is).
Proof.
  apply iscotransquotrel. apply iscotransabmonoidfracrelint.
  - apply is.
  - apply isl.
Defined.

Lemma isStrongOrder_abmonoidfrac {X : abmonoid} (Y : @submonoid X) (gt : hrel X)
      (Hgt : ispartbinophrel Y gt) :
  isStrongOrder gt isStrongOrder (abmonoidfracrel X Y Hgt).
Proof.
  intros H.
  split ; [ | split].
  - apply istransabmonoidfracrel, (istrans_isStrongOrder H).
  - apply iscotransabmonoidfracrel, (iscotrans_isStrongOrder H).
  - apply isirreflabmonoidfracrel, (isirrefl_isStrongOrder H).
Qed.

Definition StrongOrder_abmonoidfrac {X : abmonoid} (Y : @submonoid X) (gt : StrongOrder X)
           (Hgt : ispartbinophrel Y gt) : StrongOrder (abmonoidfrac X Y) :=
  abmonoidfracrel X Y Hgt,, isStrongOrder_abmonoidfrac Y gt Hgt (pr2 gt).

Lemma isantisymmnegabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isantisymmneg L) : isantisymmneg (abmonoidfracrel X A is).
Proof.
  intros.
  assert (int : x1 x2, isaprop (neg (abmonoidfracrel X A is x1 x2)
                                  neg (abmonoidfracrel X A is x2 x1)
                                  x1 = x2)).
  {
    intros x1 x2.
    apply impred. intro.
    apply impred. intro.
    apply (isasetsetquot _ x1 x2).
  }
  unfold isantisymmneg.
  apply (setquotuniv2prop _ (λ x1 x2, make_hProp _ (int x1 x2))).
  intros xa1 xa2. intros r r'. apply (weqpathsinsetquot _).
  generalize r r'. clear r r'.
  change (neg (abmonoidfracrelint X A L xa1 xa2)
          neg (abmonoidfracrelint X A L xa2 xa1)
          (eqrelabmonoidfrac X A xa1 xa2)).
  intros nr12 nr21.
  set (nr12' := neghexisttoforallneg _ nr12 (unel A)).
  set (nr21' := neghexisttoforallneg _ nr21 (unel A)).
  set (int' := isl _ _ nr12' nr21').
  simpl. apply hinhpr. exists (unel A). apply int'.
Qed.

Lemma isantisymmabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (isl : isantisymm L) : isantisymm (abmonoidfracrel X A is).
Proof.
  intros.
  set (assoc := (assocax X) : isassoc (@op X)). unfold isassoc in assoc.
  set (comm := commax X). unfold iscomm in comm. unfold isantisymm.
  assert (int : x1 x2, isaprop ((abmonoidfracrel X A is x1 x2)
                                  (abmonoidfracrel X A is x2 x1)
                                  x1 = x2)).
  {
    intros x1 x2.
    apply impred. intro.
    apply impred. intro.
    apply (isasetsetquot _ x1 x2).
  }
  apply (setquotuniv2prop _ (λ x1 x2, make_hProp _ (int x1 x2))).
  intros xa1 xa2. intros r r'. apply (weqpathsinsetquot _).
  generalize r r'. clear r r'.
  change ((abmonoidfracrelint X A L xa1 xa2)
          (abmonoidfracrelint X A L xa2 xa1)
          (eqrelabmonoidfrac X A xa1 xa2)).
  unfold abmonoidfracrelint. unfold eqrelabmonoidfrac. simpl.
  apply hinhfun2. intros t2l1 t2l2.
  set (c1a := pr1 t2l1). set (l1 := pr2 t2l1).
  set (c2a := pr1 t2l2). set (l2 := pr2 t2l2).
  set (c1 := pr1 c1a). set (c2 := pr1 c2a).
  exists (@op A c1a c2a).
  set (x1 := pr1 xa1). set (a1 := pr1 (pr2 xa1)).
  set (x2 := pr1 xa2). set (a2 := pr1 (pr2 xa2)).
  change (x1 + a2 + (c1 + c2) = x2 + a1 + (@op X c1 c2)).
  assert (ll1 : L ((x1 + a2) + (@op X c1 c2)) ((x2 + a1) + (@op X c1 c2))).
  {
    induction (assoc (x1 + a2) c1 c2).
    induction (assoc (x2 + a1) c1 c2).
    apply ((pr2 is) _ _ _ (pr2 c2a)).
    apply l1.
  }
  assert (ll2 : L ((x2 + a1) + (@op X c1 c2)) ((x1 + a2) + (@op X c1 c2))).
  {
    induction (comm c2 c1).
    induction (assoc (x1 + a2) c2 c1).
    induction (assoc (x2 + a1) c2 c1).
    apply ((pr2 is) _ _ _ (pr2 c1a)).
    apply l2.
  }
  apply (isl _ _ ll1 ll2).
Qed.

Lemma ispartbinopabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) :
  @ispartbinophrel (setwithbinopdirprod X A) (λ xa, A (pr1 xa)) (abmonoidfracrelint X A L).
Proof.
  intros.
  set (assoc := (assocax X) : isassoc (@op X)). unfold isassoc in assoc.
  set (comm := commax X). unfold iscomm in comm.
  set (rer := abmonoidrer X).
  apply ispartbinophrelif. apply (commax (abmonoiddirprod X A)).
  intros xa yb zc s. unfold abmonoidfracrelint. simpl.
  apply (@hinhfun). intro t2l. induction t2l as [ c0a l ].
  set (x := pr1 xa). set (a := pr1 (pr2 xa)).
  set (y := pr1 yb). set (b := pr1 (pr2 yb)).
  set (z := pr1 zc). set (c := pr1 (pr2 zc)).
  set (c0 := pr1 c0a).
  exists c0a.
  change (L (((z + x) + (c + b)) + c0) (((z + y) + (c + a)) + c0)).
  change (pr1 (L ((x + b) + c0) ((y + a) + c0))) in l.
  rewrite (rer z _ _ b). rewrite (assoc (z + c) _ _).
  rewrite (rer z _ _ a). rewrite (assoc (z + c) _ _).
  apply ((pr1 is) _ _ _ (pr2 (@op A (make_carrier A z s) (pr2 zc)))).
  apply l.
Qed.

Lemma ispartlbinopabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (aa aa' : A) (z z' : abmonoidfrac X A)
      (l : abmonoidfracrel X A is z z') :
  abmonoidfracrel X A is
                  ((prabmonoidfrac X A (pr1 aa) aa') + z) ((prabmonoidfrac X A (pr1 aa) aa') + z').
Proof.
  revert z z' l.
  set (assoc := (assocax X) : isassoc (@op X)). unfold isassoc in assoc.
  set (comm := commax X). unfold iscomm in comm.
  set (rer := abmonoidrer X).
  assert (int : z z', isaprop (abmonoidfracrel X A is z z'
                                 abmonoidfracrel
                                   X A is (prabmonoidfrac X A (pr1 aa) aa' + z)
                                   (prabmonoidfrac X A (pr1 aa) aa' + z'))).
  {
    intros z z'.
    apply impred. intro.
    apply (pr2 (abmonoidfracrel _ _ _ _ _)).
  }
  apply (setquotuniv2prop _ (λ z z', make_hProp _ (int z z'))).
  intros xa1 xa2.
  change (abmonoidfracrelint X A L xa1 xa2
          abmonoidfracrelint X A L
                             (@op (abmonoiddirprod X A) (pr1 aa ,, aa') xa1)
                             (@op (abmonoiddirprod X A) (pr1 aa ,, aa') xa2)).
  unfold abmonoidfracrelint. simpl. apply hinhfun. intro t2l.
  set (a := pr1 aa). set (a' := pr1 aa').
  set (c0a := pr1 t2l). set (l := pr2 t2l).
  set (c0 := pr1 c0a). set (x1 := pr1 xa1).
  set (a1 := pr1 (pr2 xa1)). set (x2 := pr1 xa2).
  set (a2 := pr1 (pr2 xa2)). exists c0a.

  change (L (a + x1 + (a' + a2) + c0) (a + x2 + (a' + a1) + c0)).
  rewrite (rer _ x1 a' _). rewrite (rer _ x2 a' _).
  rewrite (assoc _ (x1 + a2) c0). rewrite (assoc _ (x2 + a1) c0).
  apply ((pr1 is) _ _ _ (pr2 (@op A aa aa'))). apply l.
Qed.

Lemma ispartrbinopabmonoidfracrel (X : abmonoid) (A : subabmonoid X) {L : hrel X}
      (is : ispartbinophrel A L) (aa aa' : A) (z z' : abmonoidfrac X A)
      (l : abmonoidfracrel X A is z z') :
  abmonoidfracrel X A is
                  (z + (prabmonoidfrac X A (pr1 aa) aa')) (z' + (prabmonoidfrac X A (pr1 aa) aa')).
Proof.
  revert z z' l.
  set (assoc := (assocax X) : isassoc (@op X)). unfold isassoc in assoc.
  set (comm := commax X). unfold iscomm in comm.
  set (rer := abmonoidrer X).
  assert (int : (z z' : abmonoidfrac X A),
                isaprop (abmonoidfracrel X A is z z'
                         abmonoidfracrel X A is
                                         (z + (prabmonoidfrac X A (pr1 aa) aa'))
                                         (z' + prabmonoidfrac X A (pr1 aa) aa'))).
  {
    intros z z'.
    apply impred. intro.
    apply (pr2 (abmonoidfracrel _ _ _ _ _)).
  }
  apply (setquotuniv2prop _ (λ z z', make_hProp _ (int z z'))).
  intros xa1 xa2.
  change (abmonoidfracrelint X A L xa1 xa2
          abmonoidfracrelint X A L
                             (@op (abmonoiddirprod X A) xa1 (pr1 aa ,, aa'))
                             (@op (abmonoiddirprod X A) xa2 (pr1 aa ,, aa'))).
  unfold abmonoidfracrelint. simpl. apply hinhfun. intro t2l.
  set (a := pr1 aa). set (a' := pr1 aa').
  set (c0a := pr1 t2l). set (l := pr2 t2l).
  set (c0 := pr1 c0a). set (x1 := pr1 xa1).
  set (a1 := pr1 (pr2 xa1)). set (x2 := pr1 xa2).
  set (a2 := pr1 (pr2 xa2)). exists c0a.

  change (L (x1 + a + (a2 + a') + c0) (x2 + a + (a1 + a') + c0)).
  rewrite (rer _ a a2 _). rewrite (rer _ a a1 _).
  rewrite (assoc (x1 + a2) _ c0). rewrite (assoc (x2 + a1) _ c0).
  rewrite (comm _ c0).
  induction (assoc (x1 + a2) c0 (a + a')).
  induction (assoc (x2 + a1) c0 (a + a')).
  apply ((pr2 is) _ _ _ (pr2 (@op A aa aa'))).
  apply l.
Qed.

Lemma abmonoidfracrelimpl (X : abmonoid) (A : subabmonoid X) {L L' : hrel X}
      (is : ispartbinophrel A L) (is' : ispartbinophrel A L')
      (impl : x x', L x x' L' x x') (x x' : abmonoidfrac X A)
      (ql : abmonoidfracrel X A is x x') : abmonoidfracrel X A is' x x'.
Proof.
  generalize ql. apply quotrelimpl. intros x0 x0'.
  unfold abmonoidfracrelint. simpl. apply hinhfun.
  intro t2. exists (pr1 t2). apply (impl _ _ (pr2 t2)).
Qed.

Lemma abmonoidfracrellogeq (X : abmonoid) (A : subabmonoid X) {L L' : hrel X}
      (is : ispartbinophrel A L) (is' : ispartbinophrel A L')
      (lg : x x', L x x' <-> L' x x') (x x' : abmonoidfrac X A) :
  (abmonoidfracrel X A is x x') <-> (abmonoidfracrel X A is' x x').
Proof.
  apply quotrellogeq. intros x0 x0'. split.
  - unfold abmonoidfracrelint. simpl. apply hinhfun. intro t2.
    exists (pr1 t2). apply (pr1 (lg _ _) (pr2 t2)).
  - unfold abmonoidfracrelint. simpl. apply hinhfun. intro t2.
    exists (pr1 t2). apply (pr2 (lg _ _) (pr2 t2)).
Qed.

Definition isdecabmonoidfracrelint (X : abmonoid) (A : subabmonoid X) {L : hrel X}
           (is : ispartinvbinophrel A L) (isl : isdecrel L) : isdecrel (abmonoidfracrelint X A L).
Proof.
  intros xa1 xa2.
  set (x1 := pr1 xa1). set (a1 := pr1 (pr2 xa1)).
  set (x2 := pr1 xa2). set (a2 := pr1 (pr2 xa2)).
  assert (int : coprod (L (x1 + a2) (x2 + a1)) (neg (L (x1 + a2) (x2 + a1)))) by apply (isl _ _).
  induction int as [ l | nl ].
  - apply ii1. unfold abmonoidfracrelint.
    apply hinhpr. exists (unel A).
    rewrite (runax X _). rewrite (runax X _).
    apply l.
  - apply ii2. generalize nl. clear nl. apply negf.
    unfold abmonoidfracrelint. simpl.
    apply (@hinhuniv _ (make_hProp _ (pr2 (L _ _)))).
    intro t2l. induction t2l as [ c0a l ].
    simpl.
    apply ((pr2 is) _ _ _ (pr2 c0a) l).
Defined.

Definition isdecabmonoidfracrel (X : abmonoid) (A : submonoid X) {L : hrel X}
           (is : ispartbinophrel A L) (isi : ispartinvbinophrel A L)
           (isl : isdecrel L) : isdecrel (abmonoidfracrel X A is).
Proof.
  apply isdecquotrel. apply isdecabmonoidfracrelint.
  - apply isi.
  - apply isl.
Defined.

9. Relations and canonical homomorphism to abmonoidfrac


Lemma iscomptoabmonoidfrac (X : abmonoid) (A : submonoid X) {L : hrel X}
      (is : ispartbinophrel A L) : iscomprelrelfun L (abmonoidfracrel X A is) (toabmonoidfrac X A).
Proof.
  unfold iscomprelrelfun. intros x x' l.
  change (abmonoidfracrelint X A L (x ,, unel A) (x' ,, unel A)).
  simpl. apply (hinhpr). exists (unel A). apply ((pr2 is) _ _ 0).
  apply (pr2 (unel A)). apply ((pr2 is) _ _ 0). apply (pr2 (unel A)).
  apply l.
Qed.