Library UniMath.AlgebraicTheories.Combinators
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.Combinatorics.Tuples.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.Combinatorics.Vectors.
Require Import UniMath.AlgebraicTheories.LambdaTheories.
Require Import UniMath.AlgebraicTheories.AlgebraicTheories.
Require Import Ltac2.Ltac2.
Local Open Scope vec.
Local Open Scope stn.
Local Open Scope algebraic_theories.
Local Open Scope lambda_calculus.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.Combinatorics.Tuples.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.Combinatorics.Vectors.
Require Import UniMath.AlgebraicTheories.LambdaTheories.
Require Import UniMath.AlgebraicTheories.AlgebraicTheories.
Require Import Ltac2.Ltac2.
Local Open Scope vec.
Local Open Scope stn.
Local Open Scope algebraic_theories.
Local Open Scope lambda_calculus.
Ltac2 Type state := {
left : string list;
right : string list;
side : int;
}.
Ltac2 print_refine (s : state) (t : string) :=
let (short: bool) := match s.(left), s.(right) with
| [], [] => true
| _, _ => false
end in
let (beginning, ending) := match (s.(side)), short with
| 0, true => ("refine '(", " @ _).")
| 0, false => ("refine '(maponpaths (λ x, ", ") @ _).")
| _, true => ("refine '(_ @ !", ").")
| _, false => ("refine '(_ @ !maponpaths (λ x, ", ")).")
end in
let navigation := match short with
| true => []
| false => [
String.concat "" (List.rev (s.(left))) ;
"x" ;
String.concat "" (s.(right)) ;
") ("
]
end in
Message.print (Message.of_string (String.concat "" [
beginning ;
String.concat "" navigation ;
t ;
ending
])).
Ltac2 mutable traversals () : ((unit -> unit) * string * string) list := [].
Ltac2 rec traverse_left (s : state) (t : state -> unit) () :=
t s;
List.iter (
fun (m, l, r) =>
try (m () ; Control.focus 2 2 (
traverse_left {
s with
left := (l :: "(" :: s.(left));
right := (r :: ")" :: s.(right))
} t
))) (List.rev (traversals ()));
apply idpath.
Ltac2 traverse (t : state -> unit) :=
refine '(_ @ !_);
Control.focus 2 2 (traverse_left {
side := 0;
left := [];
right := [];
} t);
refine '(_ @ !_);
Control.focus 2 2 (traverse_left {
side := 1;
left := [];
right := [];
} t).
Ltac2 generate_refine' (p : pattern) (t : string) := traverse
(fun s => match! goal with
| [ |- $pattern:p = _] => print_refine s t
| [ |- _ = _ ] => ()
end).
Ltac2 Notation "generate_refine" p(pattern) := generate_refine' p.
Ltac2 mutable rewrites () : ((unit -> unit) * string) list := [].
Ltac2 propagate_subst () := repeat (progress (traverse (fun s =>
List.iter (fun (r, t) => try (r (); print_refine s t)) (List.rev (rewrites ()))
))).
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- abs _ = _ ] => refine '(maponpaths abs _ @ _) end),
"abs ",
""
) :: traversals0 ().
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- app _ _ = _ ] => refine '(maponpaths (λ x, app x _) _ @ _) end),
"app ",
" _"
) :: traversals0 ().
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- app _ _ = _ ] => refine '(maponpaths (λ x, app _ x) _ @ _) end),
"app _ ",
""
) :: traversals0 ().
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- _ • _ = _ ] => refine '(maponpaths (λ x, x • _) _ @ _) end),
"",
" • _"
) :: traversals0 ().
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- inflate _ = _ ] => refine '(maponpaths inflate _ @ _) end),
"inflate ",
""
) :: traversals0 ().
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- (var ?a) • ?b = _] => refine '(var_subst _ $a $b)
end), "var_subst _ _ _") :: rewrites0 ().
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- (abs ?a) • ?b = _] => refine '(subst_abs _ $a $b)
end), "subst_abs _ _ _") :: rewrites0 ().
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- (app ?a ?b) • ?c = _] => refine '(subst_app _ $a $b $c)
end), "subst_app _ _ _ _") :: rewrites0 ().
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- (?a • ?b) • ?c = _] => refine '(subst_subst _ $a $b $c)
end), "subst_subst _ _ _ _") :: rewrites0 ().
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- app (abs ?a) ?b = _] => refine '(beta_equality _ _ $a $b); assumption
end), "beta_equality _ Lβ _ _") :: rewrites0 ().
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate ?a • ?b = _] => refine '(subst_inflate _ $a $b)
end), "subst_inflate _ _ _") :: rewrites0 ().
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate (var ?a) = _] => refine '(inflate_var _ $a)
end), "inflate_var _ _") :: rewrites0 ().
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate (abs ?a) = _] => refine '(inflate_abs _ $a)
end), "inflate_abs _ _") :: rewrites0 ().
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate (app ?a ?b) = _] => refine '(inflate_app _ $a $b)
end), "inflate_app _ _ _") :: rewrites0 ().
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate (?a • ?b) = _] => refine '(inflate_subst _ $a $b)
end), "inflate_subst _ _ _") :: rewrites0 ().
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- extend_tuple ?a ?b (_ (inl ?c)) = _] => refine '(extend_tuple_inl $a $b $c)
end), "extend_tuple_inl _ _ _") :: rewrites0 ().
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- extend_tuple ?a ?b (_ (inr ?c)) = _] => refine '(extend_tuple_inr $a $b $c)
end), "extend_tuple_inr _ _ _") :: rewrites0 ().
Definition compose
{L : lambda_theory}
{n : nat}
(a b : L n)
: L n
:= abs
(app
(inflate a)
(app
(inflate b)
(var (stnweq (inr tt))))).
Notation "a ∘ b" :=
(compose a b)
(at level 40, left associativity)
: lambda_calculus.
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- _ ∘ _ = _ ] => refine '(maponpaths (λ x, x ∘ _) _ @ _) end),
"",
" ∘ _"
) :: traversals0 ().
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- _ ∘ _ = _ ] => refine '(maponpaths (λ x, _ ∘ x) _ @ _) end),
"_ ∘ ",
""
) :: traversals0 ().
Lemma subst_compose
(L : lambda_theory)
{m n : nat}
(a b : L m)
(c : stn m → L n)
: subst (a ∘ b) c = compose (subst a c) (subst b c).
Proof.
refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app x _)))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ x)))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ x)))) (extend_tuple_inr _ _ _) @ _).
refine '(_ @ !maponpaths (λ x, (abs (app x _))) (inflate_subst _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ (app x _)))) (inflate_subst _ _ _)).
refine '(
maponpaths (λ x, abs (app (a • x) _)) _ @
maponpaths (λ x, abs (app _ (app (b • x) _))) _
);
apply funextfun;
intro i;
exact (extend_tuple_inl _ _ _).
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- (?a ∘ ?b) • ?c = _] => refine '(subst_compose _ $a $b $c)
end), "subst_compose _ _ _ _") :: rewrites0 ().
Definition inflate_compose
(L : lambda_theory)
{n : nat}
(a b : L n)
: inflate (a ∘ b) = inflate a ∘ inflate b
:= subst_compose L _ _ _.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate (?a ∘ ?b) = _] => refine '(inflate_compose _ $a $b)
end), "inflate_compose _ _ _") :: rewrites0 ().
Lemma app_compose
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b c : L n)
: app (a ∘ b) c = app a (app b c).
Proof.
refine '(_ @ (_
: subst (app (compose (var (● 0 : stn 3)) (var (● 1 : stn 3))) (var (● 2 : stn 3))) (weqvecfun _ [(a ; b ; c)])
= subst (app (var (● 0 : stn 3)) (app (var (● 1 : stn 3)) (var (● 2 : stn 3)))) (weqvecfun _ [(a ; b ; c)]))
@ _).
- refine '(_ @ !subst_app _ _ _ _).
refine '(_ @ !maponpaths (λ x, (app x _)) (subst_compose _ _ _ _)).
refine '(_ @ !maponpaths (λ x, (app _ x)) (var_subst _ _ _)).
refine '(_ @ !maponpaths (λ x, (app (x ∘ _) _)) (var_subst _ _ _)).
exact (!maponpaths (λ x, (app (_ ∘ x) _)) (var_subst _ _ _)).
- apply (maponpaths (λ x, subst x _)).
refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_app _ _ _ _ @ _).
refine '(maponpaths (λ x, (app x _)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app x _))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app _ x))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app x _))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app _ x))) (extend_tuple_inr _ _ _) @ _).
exact (maponpaths (λ x, (app _ (app x _))) (extend_tuple_inl _ _ _)).
- refine '(subst_app L (var _) _ _ @ _).
refine '(maponpaths (λ x, (app x _)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app x _))) (var_subst _ _ _) @ _).
exact (maponpaths (λ x, (app _ (app _ x))) (var_subst _ _ _)).
Qed.
Lemma compose_abs
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a : L n)
(b : L (S n))
: a ∘ abs b = abs (app (inflate a) b).
Proof.
refine '(maponpaths (λ x, (abs (app _ (app x _)))) (inflate_abs _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (subst_subst L b _ _) @ _).
apply (maponpaths (λ x, abs (app _ x))).
refine '(_ @ subst_var _ b).
apply maponpaths.
apply funextfun.
intro i.
rewrite <- (homotweqinvweq stnweq i).
induction (invmap stnweq i) as [i' | i'].
- refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
exact (extend_tuple_inl _ _ _).
- refine '(maponpaths (λ x, (x • _)) (extend_tuple_inr _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
exact (extend_tuple_inr _ _ _).
Qed.
Lemma abs_compose
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a : L (S n))
(b : L n)
: abs a ∘ b
= abs
(subst
a
(extend_tuple
(λ i, var (stnweq (inl i)))
(app
(inflate b)
(var (stnweq (inr tt)))))).
Proof.
refine '(maponpaths (λ x, (abs (app x _))) (inflate_abs _ _) @ _).
refine '(maponpaths (λ x, (abs x)) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (abs x)) (subst_subst _ _ _ _) @ _).
refine '(maponpaths (λ x, _ (_ • x)) (!_)).
apply extend_tuple_eq.
- intro i.
refine '(_ @ !maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _)).
refine '(_ @ !var_subst _ _ _).
exact (!extend_tuple_inl _ _ _).
- refine '(_ @ !maponpaths (λ x, (x • _)) (extend_tuple_inr _ _ _)).
refine '(_ @ !var_subst _ _ _).
exact (!extend_tuple_inr _ _ _).
Qed.
Lemma compose_assoc
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b c : L n)
: a ∘ (b ∘ c) = a ∘ b ∘ c.
Proof.
set (f := weqvecfun _ [(a ; b ; c)]).
refine '(_ @ (_
: subst (var (● 0 : stn 3) ∘ (var (● 1 : stn 3) ∘ var (● 2 : stn 3))) f
= subst (var (● 0 : stn 3) ∘ var (● 1 : stn 3) ∘ var (● 2 : stn 3)) f
) @ _).
- refine '(_ @ !subst_compose _ _ _ _).
refine '(_ @ !maponpaths (λ x, (x ∘ _)) (var_subst _ _ _)).
refine '(_ @ !maponpaths (λ x, (_ ∘ x)) (subst_compose _ _ _ _)).
refine '(_ @ !maponpaths (λ x, (_ ∘ (x ∘ _))) (var_subst _ _ _)).
exact (!maponpaths (λ x, (_ ∘ (_ ∘ x))) (var_subst _ _ _)).
- apply (maponpaths (λ x, x • f)).
refine '(maponpaths (λ x, (abs (app x _))) (inflate_var _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app x _)))) (inflate_abs _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (subst_subst _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app x _)))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ x)))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app x _)))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app x _))))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app _ x))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app (x • _) _)))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app x _))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app _ (x • _)))))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app x _)))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app (x • _) _))))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app _ x))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app x _)))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app x _))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app _ x))))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app x _))))) (extend_tuple_inl _ _ _) @ _).
refine '(_ @ !maponpaths (λ x, (abs (app x _))) (inflate_abs _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ (app x _)))) (inflate_var _ _)).
refine '(_ @ !maponpaths (λ x, (abs x)) (beta_equality _ Lβ _ _)).
refine '(_ @ !maponpaths (λ x, (abs x)) (subst_subst _ _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs x)) (subst_app _ _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app x _))) (subst_inflate _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ x))) (subst_app _ _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app x _))) (var_subst _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ (app x _)))) (subst_inflate _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ (app _ x)))) (var_subst _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app (x • _) _))) (extend_tuple_inl _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ (app x _)))) (var_subst _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ (app _ (x • _))))) (extend_tuple_inr _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app x _))) (var_subst _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ (app (x • _) _)))) (extend_tuple_inl _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ (app _ x)))) (var_subst _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app x _))) (extend_tuple_inl _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ (app x _)))) (var_subst _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ (app _ x)))) (extend_tuple_inr _ _ _)).
exact (!maponpaths (λ x, (abs (app _ (app x _)))) (extend_tuple_inl _ _ _)).
- refine '(subst_compose _ (_ ∘ _) _ _ @ _).
refine '(maponpaths (λ x, (x ∘ _)) (subst_compose _ _ _ _) @ _).
refine '(maponpaths (λ x, (_ ∘ x)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, ((x ∘ _) ∘ _)) (var_subst _ _ _) @ _).
exact (maponpaths (λ x, ((_ ∘ x) ∘ _)) (var_subst _ _ _)).
Qed.
Lemma subst_is_compose
(L : lambda_theory)
(Lβ : has_β L)
(A B : L 0)
: appx A • (λ _, appx B) = appx (A ∘ B).
Proof.
refine '(maponpaths (λ x, x • _) (appx_to_app _) @ _).
refine '(maponpaths (λ x, _ • (λ _, x)) (appx_to_app _) @ _).
refine '(subst_app _ _ _ _ @ _).
refine '(maponpaths (λ x, (app x _)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (var_subst _ _ _) @ !_).
refine '(appx_to_app _ @ _).
refine '(maponpaths (λ x, (app x _)) (inflate_compose _ _ _) @ _).
refine '(app_compose _ Lβ _ _ _ @ _).
apply (maponpaths (λ x, app (A • x) _)).
apply funextfun.
intro i.
apply fromempty.
apply (negstn0 i).
Qed.
Lemma compose_is_subst
(L : lambda_theory)
(Lβ : has_β L)
(A B : L 1)
: abs A ∘ abs B = abs (A • (λ _, B)).
Proof.
refine '(_ @ maponpaths (λ x, abs (x • _)) (Lβ _ _)).
refine '(_ @ maponpaths (λ x, abs (_ • (λ _, x))) (Lβ _ _)).
refine '(_ @ !maponpaths _ (subst_is_compose _ Lβ _ _)).
exact (maponpaths _ (!Lβ _ _)).
Qed.
Definition pair
{L : lambda_theory}
{n : nat}
(a b : L n)
: L n
:= abs
(app
(app
(var (stnweq (inr tt)))
(inflate a))
(inflate b)).
Notation "⟨ a , b ⟩" :=
(pair a b)
: lambda_calculus.
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- ⟨_, _⟩ = _ ] => refine '(maponpaths (λ x, ⟨x, _⟩) _ @ _) end),
"⟨",
", _⟩"
) :: traversals0 ().
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- ⟨_, _⟩ = _ ] => refine '(maponpaths (λ x, ⟨_, x⟩) _ @ _) end),
"⟨_, ",
"⟩"
) :: traversals0 ().
Lemma subst_pair
(L : lambda_theory)
{m n : nat}
(a b : L m)
(c : stn m → L n)
: subst (⟨a, b⟩) c = (⟨subst a c, subst b c⟩).
Proof.
refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app (app x _) _))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app (app _ x) _))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app (app x _) _))) (extend_tuple_inr _ _ _) @ _).
refine '(_ @ !maponpaths (λ x, (abs (app (app _ x) _))) (inflate_subst _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ x))) (inflate_subst _ _ _)).
refine '(
maponpaths (λ x, abs (app (app _ (a • x)) _)) _ @
maponpaths (λ x, abs (app _ (b • x))) _
);
apply funextfun;
intro i;
exact (extend_tuple_inl _ _ _).
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- (⟨?a , ?b⟩) • ?c = _] => refine '(subst_pair _ $a $b $c)
end), "subst_pair _ _ _ _") :: rewrites0 ().
Definition inflate_pair
(L : lambda_theory)
{n : nat}
(a b : L n)
: inflate (⟨a, b⟩) = ⟨inflate a, inflate b⟩
:= subst_pair _ _ _ _.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate (⟨?a , ?b⟩) = _] => refine '(inflate_pair _ $a $b)
end), "inflate_pair _ _ _") :: rewrites0 ().
Definition pair_arrow
{L : lambda_theory}
{n : nat}
(a b : L n)
: L n
:= abs
(pair
(app
(inflate a)
(var (stnweq (inr tt))))
(app
(inflate b)
(var (stnweq (inr tt))))).
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- pair_arrow _ _ = _ ] => refine '(maponpaths (λ x, pair_arrow x _) _ @ _) end),
"pair_arrow ",
" _"
) :: traversals0 ().
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- pair_arrow _ _ = _ ] => refine '(maponpaths (λ x, pair_arrow _ x) _ @ _) end),
"pair_arrow _ ",
""
) :: traversals0 ().
Lemma subst_pair_arrow
(L : lambda_theory)
{m n : nat}
(a b : L m)
(c : stn m → L n)
: (pair_arrow a b) • c = pair_arrow (a • c) (b • c).
Proof.
refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (subst_pair _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨x, _⟩))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨_, x⟩))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨(app x _), _⟩))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨(app _ x), _⟩))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨_, (app x _)⟩))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨_, (app _ x)⟩))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨(app _ x), _⟩))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨_, (app _ x)⟩))) (extend_tuple_inr _ _ _) @ _).
refine '(_ @ !maponpaths (λ x, (abs (⟨(app x _), _⟩))) (inflate_subst _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (⟨_, (app x _)⟩))) (inflate_subst _ _ _)).
refine '(maponpaths (λ x, abs (⟨ app (_ • x) _ , _ ⟩)) _ @ maponpaths (λ x, abs (⟨ _ , app (_ • x) _ ⟩)) _);
apply funextfun;
intro i;
exact (extend_tuple_inl _ _ _).
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- (pair_arrow ?a ?b) • ?c = _] => refine '(subst_pair_arrow _ $a $b $c)
end), "subst_pair_arrow _ _ _ _") :: rewrites0 ().
Definition inflate_pair_arrow
(L : lambda_theory)
{n : nat}
(a b : L n)
: inflate (pair_arrow a b) = pair_arrow (inflate a) (inflate b)
:= subst_pair_arrow _ _ _ _.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate (pair_arrow ?a ?b) = _] => refine '(inflate_pair_arrow _ $a $b)
end), "inflate_pair_arrow _ _ _") :: rewrites0 ().
Lemma app_pair_arrow
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b c : L n)
: app (pair_arrow a b) c = (⟨app a c, app b c⟩).
Proof.
refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_pair _ _ _ _ @ _).
refine '(maponpaths (λ x, (⟨x, _⟩)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (⟨_, x⟩)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (⟨(app x _), _⟩)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (⟨(app _ x), _⟩)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (⟨_, (app x _)⟩)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (⟨_, (app _ x)⟩)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (⟨(app _ x), _⟩)) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (⟨_, (app _ x)⟩)) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (⟨ app x c , _ ⟩)) _ @ maponpaths (λ x, (⟨ _ , app x c ⟩)) _);
refine '(_ @ subst_var _ (_ c));
apply maponpaths;
apply funextfun;
intro i;
exact (extend_tuple_inl _ _ _).
Qed.
Lemma pair_arrow_compose
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b c : L n)
: (pair_arrow a b) ∘ c = pair_arrow (a ∘ c) (b ∘ c).
Proof.
refine '(abs_compose _ Lβ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (subst_pair _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨x, _⟩))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨_, x⟩))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨(app x _), _⟩))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨(app _ x), _⟩))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨_, (app x _)⟩))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨_, (app _ x)⟩))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨(app _ x), _⟩))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (⟨_, (app _ x)⟩))) (extend_tuple_inr _ _ _) @ _).
refine '(_ @ !maponpaths (λ x, (abs (⟨(app x _), _⟩))) (inflate_compose _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (⟨_, (app x _)⟩))) (inflate_compose _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (⟨x, _⟩))) (app_compose _ Lβ _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (⟨_, x⟩))) (app_compose _ Lβ _ _ _)).
refine '(maponpaths (λ x, abs (⟨ app (_ • x) _ , _ ⟩)) _ @ maponpaths (λ x, abs (⟨ _ , app (_ • x) _ ⟩)) _);
apply funextfun;
intro i;
exact (extend_tuple_inl _ _ _).
Qed.
Definition π1
{L : lambda_theory}
{n : nat}
: L n
:= abs
(app
(var (stnweq (inr tt)))
(abs
(abs
(var (stnweq (inl (stnweq (inr tt)))))))).
Lemma subst_π1
(L : lambda_theory)
{m n : nat}
(t : stn m → L n)
: subst π1 t = π1.
Proof.
refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (abs x)))) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (abs (abs x))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (abs (abs x))))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (abs (abs (inflate x)))))) (extend_tuple_inr _ _ _) @ _).
exact (maponpaths (λ x, (abs (app _ (abs (abs x))))) (inflate_var _ _)).
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- π1 • ?a = _] => refine '(subst_π1 _ $a)
end), "subst_π1 _ _") :: rewrites0 ().
Definition inflate_π1
(L : lambda_theory)
{n : nat}
: inflate (π1 : L n) = π1
:= subst_π1 _ _.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate π1 = _] => refine '(inflate_π1 _)
end), "inflate_π1 _") :: rewrites0 ().
Lemma π1_pair
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b : L n)
: app π1 (⟨a, b⟩) = a.
Proof.
refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_app _ _ _ _ @ _).
refine '(maponpaths (λ x, (app x _)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (abs x))) (subst_abs _ _ _) @ _).
refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_app _ _ _ _ @ _).
refine '(maponpaths (λ x, (app x _)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app (app x _) _)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app (app _ x) _)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app (app x _) _)) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (subst_abs _ _ _) @ _).
refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_subst _ (_ • _) _ (extend_tuple _ _) @ _).
refine '(subst_subst _ (var _) _ _ @ _).
refine '(var_subst _ _ _ @ _).
refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(subst_inflate _ _ _ @ _).
refine '(maponpaths (λ x, (x • _)) (extend_tuple_inr _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(subst_inflate _ _ _ @ _).
refine '(maponpaths (λ x, (x • _)) (extend_tuple_inr _ _ _) @ _).
refine '(subst_subst _ a _ _ @ _).
refine '(_ @ subst_var _ a).
apply maponpaths.
apply funextfun.
intro i.
refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
exact (extend_tuple_inl _ _ _).
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- app π1 (⟨?a , ?b⟩) = _] => refine '(π1_pair _ _ $a $b); assumption
end), "π1_pair _ Lβ _ _") :: rewrites0 ().
Lemma π1_pair_arrow
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b : L n)
: π1 ∘ pair_arrow a b = abs (app (inflate a) (var (stnweq (inr tt)))).
Proof.
refine '(compose_abs _ Lβ _ _ @ _).
refine '(maponpaths (λ x, (abs (app x _))) (inflate_π1 _) @ _).
apply (maponpaths abs).
apply π1_pair.
exact Lβ.
Qed.
Lemma abs_app_abs_var
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a : L (S n))
: abs
(app
(inflate (abs a))
(var (stnweq (inr tt))))
= abs a.
Proof.
refine '(maponpaths (λ x, (abs (app x _))) (inflate_abs _ _) @ _).
refine '(maponpaths (λ x, (abs x)) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (abs x)) (subst_subst _ _ _ _) @ _).
apply maponpaths.
refine '(_ @ subst_var _ a).
apply maponpaths.
apply funextfun.
intro j.
refine '(!maponpaths (λ x, extend_tuple _ _ x • _) (homotweqinvweq stnweq _) @ _).
refine '(_ @ maponpaths (λ x, var x) (homotweqinvweq stnweq _)).
induction (invmap stnweq j) as [j' | j'].
- refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
apply extend_tuple_inl.
- refine '(maponpaths (λ x, (x • _)) (extend_tuple_inr _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
apply extend_tuple_inr.
Qed.
Lemma π1_pair_arrow_alt
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a : L (S n))
(b : L n)
: π1 ∘ (pair_arrow (abs a) b) = abs a.
Proof.
refine '(π1_pair_arrow _ Lβ _ _ @ _).
apply abs_app_abs_var.
exact Lβ.
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- π1 ∘ (pair_arrow ?a ?b) = _] => refine '(π1_pair_arrow_alt _ _ _ $b); assumption
end), "π1_pair_arrow_alt _ Lβ _ _") :: rewrites0 ().
Definition π2
{L : lambda_theory}
{n : nat}
: L n
:= abs
(app
(var (stnweq (inr tt)))
(abs
(abs
(var (stnweq (inr tt)))))).
Lemma subst_π2
(L : lambda_theory)
{m n : nat}
(t : stn m → L n)
: subst π2 t = π2.
Proof.
refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (abs x)))) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (abs (abs x))))) (var_subst _ _ _) @ _).
exact (maponpaths (λ x, (abs (app _ (abs (abs x))))) (extend_tuple_inr _ _ _)).
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- π2 • ?c = _] => refine '(subst_π2 _ $c)
end), "subst_π2 _ _") :: rewrites0 ().
Definition inflate_π2
(L : lambda_theory)
{n : nat}
: inflate (π2 : L n) = π2
:= subst_π2 _ _.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate π2 = _] => refine '(inflate_π2 _)
end), "inflate_π2 _") :: rewrites0 ().
Lemma π2_pair
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b : L n)
: app π2 (⟨a, b⟩) = b.
Proof.
refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_app _ _ _ _ @ _).
refine '(maponpaths (λ x, (app x _)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (abs x))) (subst_abs _ _ _) @ _).
refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_app _ _ _ _ @ _).
refine '(maponpaths (λ x, (app x _)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app (app x _) _)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app (app _ x) _)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app (app x _) _)) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (subst_abs _ _ _) @ _).
refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_subst _ (_ • _) _ (extend_tuple _ _) @ _).
refine '(subst_subst _ (var _) _ _ @ _).
refine '(var_subst _ _ _ @ _).
refine '(maponpaths (λ x, (x • _)) (extend_tuple_inr _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
refine '(maponpaths (λ x, (x • _)) (extend_tuple_inr _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
refine '(extend_tuple_inr _ _ _ @ _).
refine '(_ @ subst_var _ b).
apply maponpaths.
apply funextfun.
intro i.
exact (extend_tuple_inl _ _ _).
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- app π2 (⟨?a , ?b⟩) = _] => refine '(π2_pair _ _ $a $b); assumption
end), "π2_pair _ Lβ _ _") :: rewrites0 ().
Lemma π2_pair_arrow
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b : L n)
: π2 ∘ pair_arrow a b = abs (app (inflate b) (var (stnweq (inr tt)))).
Proof.
refine '(compose_abs _ Lβ _ _ @ _).
refine '(maponpaths (λ x, (abs (app x _))) (inflate_π2 _) @ _).
apply (maponpaths abs).
apply π2_pair.
exact Lβ.
Qed.
Lemma π2_pair_arrow_alt
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a : L n)
(b : L (S n))
: π2 ∘ pair_arrow a (abs b) = abs b.
Proof.
refine '(π2_pair_arrow _ Lβ _ _ @ _).
apply abs_app_abs_var.
exact Lβ.
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- π2 ∘ (pair_arrow ?a ?b) = _] => refine '(π2_pair_arrow_alt _ _ $a _); assumption
end), "π2_pair_arrow_alt _ Lβ _ _") :: rewrites0 ().
Definition union_arrow
{L : lambda_theory}
{n : nat}
(a b : L n)
: L n
:= abs
(app
(app
(var (stnweq (inr tt)))
(inflate a))
(inflate b)).
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- union_arrow _ _ = _ ] => refine '(maponpaths (λ x, union_arrow x _) _ @ _) end),
"union_arrow ",
" _"
) :: traversals0 ().
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- union_arrow _ _ = _ ] => refine '(maponpaths (λ x, union_arrow _ x) _ @ _) end),
"union_arrow _ ",
""
) :: traversals0 ().
Lemma subst_union_arrow
(L : lambda_theory)
{n m : nat}
(a b : L n)
(c : stn n → L m)
: union_arrow a b • c = union_arrow (a • c) (b • c).
Proof.
refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app (app x _) _))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app (app _ x) _))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app (app x _) _))) (extend_tuple_inr _ _ _) @ _).
refine '(_ @ !maponpaths (λ x, (abs (app (app _ x) _))) (inflate_subst _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ x))) (inflate_subst _ _ _)).
refine '(maponpaths (λ x, (abs (app (app _ (_ • x)) _))) _ @ maponpaths (λ x, (abs (app _ (_ • x)))) _);
apply funextfun;
intro i;
exact (extend_tuple_inl _ _ _).
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- union_arrow ?a ?b • ?c = _] => refine '(subst_union_arrow _ $a $b $c)
end), "subst_union_arrow _ _ _ _") :: rewrites0 ().
Definition inflate_union_arrow
(L : lambda_theory)
{n : nat}
(a b : L n)
: inflate (union_arrow a b) = union_arrow (inflate a) (inflate b)
:= subst_union_arrow _ _ _ _.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate (union_arrow ?a ?b) = _] => refine '(inflate_union_arrow _ $a $b)
end), "inflate_union_arrow _ _ _") :: rewrites0 ().
Lemma app_union_arrow
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b c : L n)
: app (union_arrow a b) c = app (app c a) b.
Proof.
refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_app _ _ _ _ @ _).
refine '(maponpaths (λ x, (app x _)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app (app x _) _)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app (app _ x) _)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app (app x _) _)) (extend_tuple_inr _ _ _) @ _).
refine '(_ @ maponpaths (λ x, (app (app _ x) _)) (subst_var _ _)).
refine '(_ @ maponpaths (λ x, (app _ x)) (subst_var _ _)).
refine '(maponpaths (λ x, (app (app _ (_ • x)) _)) _ @ maponpaths (λ x, (app _ (_ • x))) _);
apply funextfun;
intro i;
apply extend_tuple_inl.
Qed.
Definition ι1
{L : lambda_theory}
{n : nat}
: L n
:= abs (abs (abs
(app
(var (stnweq (inl (stnweq (inr tt)))))
(var (stnweq (inl (stnweq (inl (stnweq (inr tt))))))))
)).
Lemma subst_ι1
(L : lambda_theory)
{n m : nat}
(a : stn n → L m)
: ι1 • a = ι1.
Proof.
refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs x))) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs x)))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app x _))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app _ x))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app x _))))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app _ x))))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app (inflate x) _))))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app _ (inflate x)))))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app x _))))) (inflate_var _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app _ (inflate (inflate x))))))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app _ (inflate x)))))) (inflate_var _ _) @ _).
exact (maponpaths (λ x, (abs (abs (abs (app _ x))))) (inflate_var _ _)).
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- ι1 • ?a = _] => refine '(subst_ι1 _ $a)
end), "subst_ι1 _ _") :: rewrites0 ().
Definition inflate_ι1
(L : lambda_theory)
{n : nat}
: inflate (ι1 : L n) = ι1
:= subst_ι1 _ _.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate ι1 = _] => refine '(inflate_ι1 _)
end), "inflate_ι1 _") :: rewrites0 ().
Lemma app_ι1
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b c : L n)
: app (app (app ι1 a) b) c = app b a.
Proof.
refine '(maponpaths (λ x, (app (app x _) _)) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (app (app x _) _)) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (subst_subst _ _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (subst_abs _ _ _) @ _).
refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_subst _ (app _ _) _ _ @ _).
refine '(subst_app _ _ _ _ @ _).
refine '(maponpaths (λ x, (app x _)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app (x • _) _)) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (x • _))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app ((x • _) • _) _)) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (app _ ((x • _) • _))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (subst_subst _ _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_subst _ _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app (x • _) _)) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (x • _))) (extend_tuple_inr _ _ _) @ _).
refine '(_ @ maponpaths (λ x, app x _) (subst_var _ _)).
refine '(_ @ maponpaths (λ x, app _ x) (subst_var _ _)).
refine '(maponpaths (λ x, app (_ • x) _) _ @ maponpaths (λ x, app _ (_ • x)) _);
apply funextfun;
intro i.
- apply extend_tuple_inl.
- refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
exact (extend_tuple_inl _ _ _).
Qed.
Lemma union_arrow_ι1
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a : L (S n))
(b : L n)
: union_arrow (abs a) b ∘ ι1 = abs a.
Proof.
refine '(maponpaths (λ x, (abs (app x _))) (inflate_union_arrow _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app x _)))) (inflate_ι1 _) @ _).
refine '(maponpaths _ (app_union_arrow _ Lβ _ _ _) @ _).
refine '(maponpaths _ (app_ι1 _ Lβ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (inflate_abs _ _) @ _).
refine '(maponpaths (λ x, (abs x)) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (abs x)) (subst_subst _ _ _ _) @ _).
refine '(_ @ maponpaths abs (subst_var _ _)).
apply (maponpaths (λ x, abs (a • x))).
apply funextfun.
intro i.
rewrite <- (homotweqinvweq stnweq i).
induction (invmap stnweq i) as [i' | i'].
- refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
apply extend_tuple_inl.
- refine '(maponpaths (λ x, (x • _)) (extend_tuple_inr _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
apply extend_tuple_inr.
Qed.
Definition ι2
{L : lambda_theory}
{n : nat}
: L n
:= abs (abs (abs
(app
(var (stnweq (inr tt)))
(var (stnweq (inl (stnweq (inl (stnweq (inr tt))))))))
)).
Lemma subst_ι2
(L : lambda_theory)
{n m : nat}
(a : stn n → L m)
: ι2 • a = ι2.
Proof.
refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs x))) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs x)))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app x _))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app _ x))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app x _))))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app _ x))))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app _ (inflate x)))))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app _ (inflate (inflate x))))))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (abs (app _ (inflate x)))))) (inflate_var _ _) @ _).
exact (maponpaths (λ x, (abs (abs (abs (app _ x))))) (inflate_var _ _)).
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- ι2 • ?a = _] => refine '(subst_ι2 _ $a)
end), "subst_ι2 _ _") :: rewrites0 ().
Definition inflate_ι2
(L : lambda_theory)
{n : nat}
: inflate (ι2 : L n) = ι2
:= subst_ι2 _ _.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate ι2 = _] => refine '(inflate_ι2 _)
end), "inflate_ι2 _") :: rewrites0 ().
Lemma app_ι2
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b c : L n)
: app (app (app ι2 a) b) c = app c a.
Proof.
refine '(maponpaths (λ x, (app (app x _) _)) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (app (app x _) _)) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (subst_subst _ _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (subst_abs _ _ _) @ _).
refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_subst _ (app _ _) _ _ @ _).
refine '(subst_app _ _ _ _ @ _).
refine '(maponpaths (λ x, (app x _)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app (x • _) _)) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (x • _))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app x _)) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (app _ ((x • _) • _))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_subst _ _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (x • _))) (extend_tuple_inr _ _ _) @ _).
refine '(_ @ maponpaths (λ x, app _ x) (subst_var _ _)).
refine '(maponpaths (λ x, app _ (_ • x)) _).
apply funextfun.
intro i.
refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
exact (extend_tuple_inl _ _ _).
Qed.
Lemma union_arrow_ι2
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a : L n)
(b : L (S n))
: union_arrow a (abs b) ∘ ι2 = abs b.
Proof.
refine '(maponpaths (λ x, (abs (app x _))) (inflate_union_arrow _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app x _)))) (inflate_ι2 _) @ _).
refine '(maponpaths _ (app_union_arrow _ Lβ _ _ _) @ _).
refine '(maponpaths _ (app_ι2 _ Lβ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (inflate_abs _ _) @ _).
refine '(maponpaths (λ x, (abs x)) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (abs x)) (subst_subst _ _ _ _) @ _).
refine '(_ @ maponpaths abs (subst_var _ _)).
apply (maponpaths (λ x, abs (b • x))).
apply funextfun.
intro i.
rewrite <- (homotweqinvweq stnweq i).
induction (invmap stnweq i) as [i' | i'].
- refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
apply extend_tuple_inl.
- refine '(maponpaths (λ x, (x • _)) (extend_tuple_inr _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
apply extend_tuple_inr.
Qed.
Definition ev
{L : lambda_theory}
{m : nat}
(a b : L m)
: L m
:= abs
(app
(inflate a)
(app
(app
π1
(var (stnweq (inr tt))))
(app
(inflate b)
(app
π2
(var (stnweq (inr tt))))))).
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- ev _ _ = _ ] => refine '(maponpaths (λ x, ev x _) _ @ _) end),
"ev ",
" _"
) :: traversals0 ().
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- ev _ _ = _ ] => refine '(maponpaths (λ x, ev _ x) _ @ _) end),
"ev _ ",
""
) :: traversals0 ().
Lemma subst_ev
(L : lambda_theory)
{m m' : nat}
(a b : L m)
(c : stn m → L m')
: (ev a b) • c = ev (a • c) (b • c).
Proof.
refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app x _)))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ x)))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app (app x _) _)))) (subst_π1 _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app (app _ x) _)))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app x _))))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app _ x))))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app (app _ x) _)))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app _ (app x _)))))) (subst_π2 _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app _ (app _ x)))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app _ (app _ x)))))) (extend_tuple_inr _ _ _) @ _).
refine '(_ @ !maponpaths (λ x, (abs (app x _))) (inflate_subst _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ (app _ (app x _))))) (inflate_subst _ _ _)).
refine '(maponpaths (λ x, abs (app (_ • x) _)) _ @ maponpaths (λ x, abs (app _ (app _ (app (_ • x) _)))) _);
apply funextfun;
intro i;
exact (extend_tuple_inl _ _ _).
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- (ev ?a ?b) • ?c = _] => refine '(subst_ev _ $a $b $c)
end), "subst_ev _ _ _ _") :: rewrites0 ().
Definition inflate_ev
(L : lambda_theory)
{n : nat}
(a b : L n)
: inflate (ev a b) = ev (inflate a) (inflate b)
:= subst_ev _ _ _ _.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate (ev ?a ?b) = _] => refine '(inflate_ev _ $a $b)
end), "inflate_ev _ _ _") :: rewrites0 ().
Lemma app_ev
(L : lambda_theory)
(Lβ : has_β L)
{m : nat}
(a b c : L m)
: app (ev a b) c
= app
a
(app
(app
π1
c)
(app
b
(app
π2
c))).
Proof.
refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_app _ _ _ _ @ _).
refine '(maponpaths (λ x, (app x _)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app x _))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app _ x))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app (app x _) _))) (subst_π1 _ _) @ _).
refine '(maponpaths (λ x, (app _ (app (app _ x) _))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app _ (app x _)))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app _ (app _ x)))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app (app _ x) _))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app _ (app _ (app x _))))) (subst_π2 _ _) @ _).
refine '(maponpaths (λ x, (app _ (app _ (app _ (app _ x))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app _ (app _ (app _ x))))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, app x _) _ @ maponpaths (λ x, app _ (app _ (app x _))) _).
- refine '(_ @ subst_var L a).
apply maponpaths.
apply funextfun.
intro i.
exact (extend_tuple_inl _ _ _).
- refine '(_ @ subst_var L b).
apply maponpaths.
apply funextfun.
intro i.
exact (extend_tuple_inl _ _ _).
Qed.
Lemma app_ev_pair
(L : lambda_theory)
(Lβ : has_β L)
{m : nat}
(a b c d : L m)
: app (ev a b) (⟨c, d⟩)
= app
a
(app
c
(app
b
d)).
Proof.
refine '(app_ev _ Lβ _ _ _ @ _).
refine '(maponpaths (λ x, (app _ (app _ (app _ x)))) (π2_pair _ Lβ _ _) @ _).
exact (maponpaths (λ x, (app _ (app x _))) (π1_pair _ Lβ _ _)).
Qed.
Lemma ev_compose_pair_arrow
(L : lambda_theory)
(Lβ : has_β L)
{m : nat}
(a b c d : L m)
: ev a b ∘ (pair_arrow c d)
= abs
(app
(inflate a)
(app
(app
(inflate c)
(var (stnweq (inr tt))))
(app
(inflate b)
(app
(inflate d)
(var (stnweq (inr tt))))))).
Proof.
refine '(maponpaths (λ x, (abs (app x _))) (inflate_ev _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app x _)))) (inflate_pair_arrow _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (app_pair_arrow _ Lβ _ _ _) @ _).
exact (maponpaths (λ x, (abs x)) (app_ev_pair _ Lβ _ _ _ _)).
Qed.
Definition curry
{L : lambda_theory}
{m : nat}
(a : L m)
: L m
:= abs
(abs
(app
(inflate (inflate a))
(⟨
var (stnweq (inl (stnweq (inr tt)))),
var (stnweq (inr tt))
⟩))).
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- curry _ = _ ] => refine '(maponpaths (λ x, curry x) _ @ _) end),
"curry ",
""
) :: traversals0 ().
Lemma subst_curry
(L : lambda_theory)
{m m' : nat}
(a : L m)
(b : stn m → L m')
: curry a • b = curry (a • b).
Proof.
refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs x))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app x _)))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ x)))) (subst_pair _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app x _)))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (⟨x, _⟩))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (⟨_, x⟩))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (⟨x, _⟩))))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (⟨_, x⟩))))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (⟨(inflate x), _⟩))))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (⟨x, _⟩))))) (inflate_var _ _) @ _).
refine '(_ @ !maponpaths (λ x, (abs (abs (app (inflate x) _)))) (inflate_subst _ _ _)).
refine '(_ @ !maponpaths (λ x, (abs (abs (app x _)))) (inflate_subst _ _ _)).
apply (maponpaths (λ x, abs (abs (app (a • x) _)))).
apply funextfun.
intro i.
refine '(extend_tuple_inl _ _ _ @ _).
exact (maponpaths (λ x, (inflate x)) (extend_tuple_inl _ _ _)).
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- (curry ?a) • ?b = _] => refine '(subst_curry _ $a $b)
end), "subst_curry _ _ _") :: rewrites0 ().
Definition inflate_curry
(L : lambda_theory)
{n : nat}
(a : L n)
: inflate (curry a) = curry (inflate a)
:= subst_curry _ _ _.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate (curry ?a) = _] => refine '(inflate_curry _ $a)
end), "inflate_curry _ _") :: rewrites0 ().
Lemma app_curry
(L : lambda_theory)
(Lβ : has_β L)
{m : nat}
(a b : L m)
: app (curry a) b
= abs
(app
(inflate a)
(⟨ inflate b,
var (stnweq (inr tt))⟩)).
Proof.
refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (subst_pair _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (⟨x, _⟩)))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (⟨_, x⟩)))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (⟨x, _⟩)))) (extend_tuple_inl _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (⟨_, x⟩)))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (⟨(inflate x), _⟩)))) (extend_tuple_inr _ _ _) @ _).
apply (maponpaths (λ x, abs (app (a • x) _))).
apply funextfun.
intro i.
refine '(extend_tuple_inl _ _ _ @ _).
refine '(maponpaths (λ x, (inflate x)) (extend_tuple_inl _ _ _) @ _).
exact (inflate_var _ _).
Qed.
Lemma curry_compose
(L : lambda_theory)
(Lβ : has_β L)
{m : nat}
(a : L (S m))
(b : L m)
: curry b ∘ abs a
= abs (abs
(app
(inflate (inflate b))
(⟨
inflate a,
var (stnweq (inr tt))
⟩))).
Proof.
refine '(maponpaths (λ x, (abs (app x _))) (inflate_curry _ _) @ _).
refine '(maponpaths abs (app_curry _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (⟨x, _⟩))))) (inflate_app _ _ _ : app (inflate _) _ • _ = _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (⟨(app (inflate x) _), _⟩))))) (inflate_abs _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (⟨(app _ x), _⟩))))) (inflate_var _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (⟨(app x _), _⟩))))) (inflate_abs _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (⟨x, _⟩))))) (beta_equality _ Lβ _ _) @ _).
do 2 (refine '(maponpaths (λ x, (abs (abs (app _ (⟨x, _⟩))))) (subst_subst _ _ _ _) @ _)).
apply (maponpaths (λ x, abs (abs (app _ (⟨a • x, _⟩))))).
apply funextfun.
intro i.
rewrite <- (homotweqinvweq stnweq i).
induction (invmap stnweq i) as [i' | i'].
- refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
exact (extend_tuple_inl _ _ _).
- refine '(maponpaths (λ x, (x • _)) (extend_tuple_inr _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
refine '(maponpaths (λ x, (x • _)) (extend_tuple_inr _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
exact (extend_tuple_inr _ _ _).
Qed.
Definition uncurry
{L : lambda_theory}
{m : nat}
(a : L m)
: L m
:= abs
(app
(app
(inflate a)
(app
π1
(var (stnweq (inr tt)))))
(app
π2
(var (stnweq (inr tt))))).
Ltac2 Set traversals as traversals0 := fun _ => (
(fun () => match! goal with | [ |- uncurry _ = _ ] => refine '(maponpaths (λ x, uncurry x) _ @ _) end),
"uncurry ",
""
) :: traversals0 ().
Lemma subst_uncurry
(L : lambda_theory)
{m m' : nat}
(a : L m)
(b : stn m → L m')
: uncurry a • b = uncurry (a • b).
Proof.
refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app (app x _) _))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app (app _ x) _))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app x _)))) (subst_π2 _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ x)))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app (app _ (app x _)) _))) (subst_π1 _ _) @ _).
refine '(maponpaths (λ x, (abs (app (app _ (app _ x)) _))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ x)))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app (app _ (app _ x)) _))) (extend_tuple_inr _ _ _) @ _).
refine '(_ @ !maponpaths (λ x, (abs (app (app x _) _))) (inflate_subst _ _ _)).
refine '(maponpaths (λ x, (abs (app (app (_ • x) _) _))) _).
apply funextfun.
intro i.
exact (extend_tuple_inl _ _ _).
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- (uncurry ?a) • ?b = _] => refine '(subst_uncurry _ $a $b)
end), "subst_uncurry _ _ _") :: rewrites0 ().
Definition inflate_uncurry
(L : lambda_theory)
{n : nat}
(a : L n)
: inflate (uncurry a) = uncurry (inflate a)
:= subst_uncurry _ _ _.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate (uncurry ?a) = _] => refine '(inflate_uncurry _ $a)
end), "inflate_uncurry _ _") :: rewrites0 ().
Lemma app_uncurry
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b : L n)
: app (uncurry a) b
= app
(app
a
(app π1 b))
(app π2 b).
Proof.
refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_app _ _ _ _ @ _).
refine '(maponpaths (λ x, (app x _)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (app (app x _) _)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app (app _ x) _)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app x _))) (subst_π2 _ _) @ _).
refine '(maponpaths (λ x, (app _ (app _ x))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app (app _ (app x _)) _)) (subst_π1 _ _) @ _).
refine '(maponpaths (λ x, (app (app _ (app _ x)) _)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (app _ x))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (app (app _ (app _ x)) _)) (extend_tuple_inr _ _ _) @ _).
refine '(_ @ maponpaths (λ x, (app (app x _) _)) (subst_var _ _)).
refine '(maponpaths (λ x, (app (app (_ • x) _) _)) _).
apply funextfun.
intro i.
exact (extend_tuple_inl _ _ _).
Qed.
Lemma app_uncurry_pair
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b c : L n)
: app (uncurry a) (⟨b, c⟩)
= app
(app
a
b)
c.
Proof.
refine '(app_uncurry _ Lβ _ _ @ _).
refine '(maponpaths (λ x, (app (app _ x) _)) (π1_pair _ Lβ _ _) @ _).
exact (maponpaths (λ x, (app _ x)) (π2_pair _ Lβ _ _)).
Qed.
Lemma uncurry_compose
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b : L n)
: uncurry a ∘ b
= abs
(app
(app
(inflate a)
(app
π1
(app
(inflate b)
(var (stnweq (inr tt))))))
(app
π2
(app
(inflate b)
(var (stnweq (inr tt)))))).
Proof.
refine '(maponpaths (λ x, (abs (app x _))) (inflate_uncurry _ _) @ _).
exact (maponpaths (λ x, (abs x)) (app_uncurry _ Lβ _ _)).
Qed.
Lemma uncurry_compose_pair_arrow
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a b c : L n)
: uncurry a ∘ (pair_arrow b c)
= abs
(app
(app
(inflate a)
(app
(inflate b)
(var (stnweq (inr tt)))))
(app
(inflate c)
(var (stnweq (inr tt))))).
Proof.
refine '(uncurry_compose _ Lβ _ _ @ _).
refine '(maponpaths (λ x, (abs (app (app _ (app _ (app x _))) _))) (inflate_pair_arrow _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ (app x _))))) (inflate_pair_arrow _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app (app _ (app _ x)) _))) (app_pair_arrow _ Lβ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (app _ x)))) (app_pair_arrow _ Lβ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app (app _ x) _))) (π1_pair _ Lβ _ _) @ _).
exact (maponpaths (λ x, (abs (app _ x))) (π2_pair _ Lβ _ _)).
Qed.
Lemma curry_uncurry
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a : L (S (S n)))
: curry (uncurry (abs (abs a))) = abs (abs a).
Proof.
refine '(maponpaths (λ x, (abs (abs (app (inflate x) _)))) (inflate_abs _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app x _)))) (inflate_abs _ _) @ _).
refine '(maponpaths (λ x, (abs (abs x))) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs x))) (subst_subst _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs x))) (subst_subst _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs x))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app x _)))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ x)))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app (app x _) _)))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app (app _ x) _)))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (app x _))))) (subst_π2 _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (app _ x))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app (app x _) _)))) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app (app _ (app x _)) _)))) (subst_π1 _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app (app _ (app _ x)) _)))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (app _ (x • _)))))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app x _)))) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (app _ x))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app x _)))) (subst_subst _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (app _ (x • _)))))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app x _)))) (subst_abs _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs (app _ (app _ x))))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs x))) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (abs (abs x))) (subst_subst _ _ _ _) @ _).
refine '(_ @ maponpaths (λ x, abs (abs x)) (subst_var _ _)).
apply (maponpaths (λ x, abs (abs (a • x)))).
apply funextfun.
intro i.
rewrite <- (homotweqinvweq stnweq i).
induction (invmap stnweq i) as [i' | i'].
- refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(subst_inflate _ _ _ @ _).
refine '(subst_subst _ (extend_tuple _ _ i') _ _ @ _).
rewrite <- (homotweqinvweq stnweq i').
induction (invmap stnweq i') as [i'' | i''].
+ refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(subst_inflate _ _ _ @ _).
refine '(subst_subst _ (extend_tuple _ _ _) _ _ @ _).
refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
refine '(maponpaths (λ x, ((x • _) • _)) (extend_tuple_inl _ _ _) @ _).
refine '(subst_subst _ (var _) _ _ @ _).
refine '(var_subst _ _ _ @ _).
refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
refine '(maponpaths (λ x, (x • _)) (extend_tuple_inl _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
exact (extend_tuple_inl _ _ _).
+ refine '(maponpaths (λ x, (x • _)) (extend_tuple_inr _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
refine '(maponpaths (λ x, (x • _)) (extend_tuple_inr _ _ _) @ _).
refine '(subst_app _ _ _ _ @ _).
refine '(maponpaths (λ x, (app x _)) (subst_π1 _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_subst _ _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (x • _))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ ((x • _) • _))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_subst _ _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ (x • _))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (subst_pair _ _ _ _) @ _).
refine '(π1_pair _ Lβ _ _ @ _).
refine '(var_subst _ _ _ @ _).
refine '(extend_tuple_inl _ _ _ @ _).
now induction i''.
- refine '(maponpaths (λ x, (x • _)) (extend_tuple_inr _ _ _) @ _).
refine '(var_subst _ _ _ @ _).
refine '(extend_tuple_inr _ _ _ @ _).
refine '(maponpaths (λ x, (app _ x)) (extend_tuple_inr _ _ _) @ _).
exact (π2_pair _ Lβ _ _).
Qed.
Lemma uncurry_curry
(L : lambda_theory)
(Lβ : has_β L)
{n : nat}
(a : L n)
: uncurry (curry a) = a ∘ (pair_arrow π1 π2).
Proof.
refine '(maponpaths (λ x, (abs (app (app x _) _))) (inflate_curry _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (app_curry _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (abs x)) (beta_equality _ Lβ _ _) @ _).
refine '(maponpaths (λ x, (abs x)) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ x))) (subst_pair _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app x _))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (⟨x, _⟩)))) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (⟨_, x⟩)))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (⟨x, _⟩)))) (subst_app _ _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (⟨_, x⟩)))) (extend_tuple_inr _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (⟨(app x _), _⟩)))) (subst_π1 _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (⟨(app _ x), _⟩)))) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (abs (app _ (⟨(app _ x), _⟩)))) (extend_tuple_inl _ _ _) @ _).
refine '(_ @ !compose_abs _ Lβ _ _).
refine '(_ @ !maponpaths (λ x, (abs (app _ (⟨(app x _), _⟩)))) (inflate_π1 _)).
refine '(_ @ !maponpaths (λ x, (abs (app _ (⟨_, (app x _)⟩)))) (inflate_π2 _)).
apply (maponpaths (λ x, (abs (app (a • x) _)))).
apply funextfun.
intro i.
apply extend_tuple_inl.
Qed.
Definition n_tuple
{L : lambda_theory}
{m n : nat}
(a : stn m → L n)
: L n.
Proof.
induction m as [ | m IHm].
- exact (abs (var (stnweq (inr tt)))).
- apply pair.
+ apply IHm.
intro i.
apply a.
apply stnweq.
apply inl.
exact i.
+ apply a.
apply stnweq.
apply inr.
exact tt.
Defined.
Lemma subst_n_tuple
(L : lambda_theory)
{l m n : nat}
(a : stn l → L m)
(b : stn m → L n)
: (n_tuple a) • b = n_tuple (λ i, a i • b).
Proof.
induction l as [| l IHl].
- refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (var_subst _ _ _) @ _).
apply (maponpaths abs).
apply extend_tuple_inr.
- refine '(subst_pair _ _ _ _ @ _).
apply (maponpaths (λ x, ⟨x, _⟩)).
apply IHl.
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- n_tuple ?a • ?b = _] => refine '(subst_n_tuple _ $a $b)
end), "subst_n_tuple _ _ _") :: rewrites0 ().
Definition inflate_n_tuple
(L : lambda_theory)
{m n : nat}
(a : stn m → L n)
: inflate (n_tuple a) = n_tuple (λ i, inflate (a i))
:= subst_n_tuple _ _ _.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate (n_tuple ?a) = _] => refine '(inflate_n_tuple _ $a)
end), "inflate_n_tuple _ _") :: rewrites0 ().
Definition n_tuple_arrow
{L : lambda_theory}
{m n : nat}
(a : stn m → L n)
: L n
:= abs
(n_tuple
(λ i, app
(inflate (a i))
(var (stnweq (inr tt))))).
Lemma subst_n_tuple_arrow
(L : lambda_theory)
{l m n : nat}
(a : stn l → L m)
(b : stn m → L n)
: (n_tuple_arrow a) • b = n_tuple_arrow (λ i, a i • b).
Proof.
refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (subst_n_tuple _ _ _) @ _).
apply (maponpaths (λ x, abs (n_tuple x))).
apply funextfun.
intro i.
refine '(subst_app _ _ _ _ @ _).
refine '(_ @ !maponpaths (λ x, (app x _)) (inflate_subst _ _ _)).
refine '(maponpaths (λ x, (app x _)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (extend_tuple_inr _ _ _) @ _).
apply (maponpaths (λ x, app (_ • x) _)).
apply funextfun.
intro j.
exact (extend_tuple_inl _ _ _).
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- n_tuple_arrow ?a • ?b = _] => refine '(subst_n_tuple_arrow _ $a $b)
end), "subst_n_tuple_arrow _ _ _") :: rewrites0 ().
Definition inflate_n_tuple_arrow
(L : lambda_theory)
{m n : nat}
(a : stn m → L n)
: inflate (n_tuple_arrow a) = n_tuple_arrow (λ i, inflate (a i))
:= subst_n_tuple_arrow _ _ _.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate (n_tuple_arrow ?a) = _] => refine '(inflate_n_tuple_arrow _ $a)
end), "inflate_n_tuple_arrow _ _") :: rewrites0 ().
Lemma app_n_tuple_arrow
(L : lambda_theory)
(Lβ : has_β L)
{m n : nat}
(a : stn m → L n)
(b : L n)
: app (n_tuple_arrow a) b = n_tuple (λ i, app (a i) b).
Proof.
induction m as [ | m IHm].
- refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_abs _ _ _ @ _).
refine '(maponpaths (λ x, (abs x)) (var_subst _ _ _) @ _).
apply (maponpaths (λ x, (abs x))).
apply extend_tuple_inr.
- refine '(beta_equality _ Lβ _ _ @ _).
refine '(subst_n_tuple _ _ _ @ _).
apply maponpaths.
apply funextfun.
intro i.
refine '(subst_app _ _ _ _ @ _).
refine '(maponpaths (λ x, (app x _)) (subst_inflate _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (var_subst _ _ _) @ _).
refine '(maponpaths (λ x, (app _ x)) (extend_tuple_inr _ _ _) @ _).
apply (maponpaths (λ x, app x _)).
refine '(_ @ subst_var _ (a i)).
apply maponpaths.
apply funextfun.
intro j.
apply extend_tuple_inl.
Qed.
Lemma n_tuple_arrow_compose
(L : lambda_theory)
(Lβ : has_β L)
{m n : nat}
(a : stn m → L n)
(b : L n)
: (n_tuple_arrow a) ∘ b = n_tuple_arrow (λ i, (a i ∘ b)).
Proof.
refine '(maponpaths (λ x, (abs (app x _))) (inflate_n_tuple_arrow _ _) @ _).
apply (maponpaths abs).
refine '(app_n_tuple_arrow _ Lβ _ _ @ _).
apply maponpaths.
apply funextfun.
intro i.
refine '(_ @ !maponpaths (λ x, (app x _)) (inflate_compose _ _ _)).
exact (!app_compose _ Lβ _ _ _).
Qed.
Definition n_π
{L : lambda_theory}
{m n : nat}
(i : stn m)
: L n.
Proof.
induction m as [ | m IHm].
- apply fromempty.
apply negstn0.
exact i.
- induction (invmap stnweq i) as [i' | i'].
+ exact (IHm i' ∘ π1).
+ exact π2.
Defined.
Lemma subst_n_π
(L : lambda_theory)
{l m n : nat}
(i : stn l)
(a : stn m → L n)
: n_π i • a = n_π i.
Proof.
induction l as [ | l IHl].
- apply fromempty.
apply negstn0.
apply i.
- unfold n_π, nat_rect.
induction (invmap stnweq i) as [i' | i'].
+ refine '(subst_compose _ _ _ _ @ _).
refine '(maponpaths (λ x, _ ∘ x) (subst_π1 _ _) @ _).
apply (maponpaths (λ x, x ∘ _)).
apply IHl.
+ apply subst_π2.
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- n_π ?a • ?b = _] => refine '(subst_n_π _ $a $b)
end), "subst_n_π _ _ _") :: rewrites0 ().
Definition inflate_n_π
(L : lambda_theory)
{m n : nat}
(i : stn m)
: inflate (n_π i) = n_π i
:= subst_n_π L (m := n) _ _.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- inflate (n_π ?a) = _] => refine '(inflate_n_π _ $a)
end), "inflate_n_π _ _") :: rewrites0 ().
Lemma n_π_tuple
(L : lambda_theory)
(Lβ : has_β L)
{m n : nat}
(i : stn n)
(a : stn n → L m)
: app (n_π i) (n_tuple a) = a i.
Proof.
induction n.
- apply fromempty.
apply negstn0.
exact i.
- refine '(_ @ maponpaths _ (homotweqinvweq stnweq i)).
unfold n_π, nat_rect.
induction (invmap stnweq i) as [i' | i'].
+ refine '(app_compose _ Lβ _ _ _ @ _).
refine '(maponpaths (λ x, (app _ x)) (π1_pair _ Lβ _ _) @ _).
apply IHn.
+ apply π2_pair.
exact Lβ.
Qed.
Ltac2 Set rewrites as rewrites0 := fun () =>
((fun () => match! goal with
| [ |- app (n_π ?a) (n_tuple ?b) = _] => refine '(n_π_tuple _ _ $a $b); assumption
end), "n_π_tuple _ Lβ _ _") :: rewrites0 ().
Lemma n_π_tuple_arrow
(L : lambda_theory)
(Lβ : has_β L)
{m n : nat}
(i : stn m)
(a : stn m → L n)
: n_π i ∘ n_tuple_arrow a
= abs
(app
(inflate (a i))
(var (stnweq (inr tt)))).
Proof.
refine '(compose_abs _ Lβ _ _ @ _).
refine '(maponpaths (λ x, (abs (app x _))) (inflate_n_π _ _) @ _).
apply maponpaths.
apply n_π_tuple.
exact Lβ.
Qed.