Library UniMath.AlgebraicTheories.RepresentationTheorem

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.Categories.HSET.Core.
Require Import UniMath.CategoryTheory.Categories.HSET.Limits.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Examples.Cartesian.
Require Import UniMath.CategoryTheory.DisplayedCats.Examples.Sigma.
Require Import UniMath.CategoryTheory.DisplayedCats.Fiber.
Require Import UniMath.CategoryTheory.DisplayedCats.Total.
Require Import UniMath.CategoryTheory.exponentials.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.Limits.BinProducts.
Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits.
Require Import UniMath.CategoryTheory.Limits.Graphs.Limits.
Require Import UniMath.CategoryTheory.Limits.Products.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.IdempotentsAndSplitting.Retracts.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.Combinatorics.Tuples.

Require Import UniMath.AlgebraicTheories.AlgebraicTheories.
Require Import UniMath.AlgebraicTheories.AlgebraicTheoryCategory.
Require Import UniMath.AlgebraicTheories.AlgebraicTheoryMorphisms.
Require Import UniMath.AlgebraicTheories.Examples.EndomorphismTheory.
Require Import UniMath.AlgebraicTheories.Examples.Plus1Presheaf.
Require Import UniMath.AlgebraicTheories.LambdaTheories.
Require Import UniMath.AlgebraicTheories.LambdaTheoryCategory.
Require Import UniMath.AlgebraicTheories.LambdaTheoryMorphisms.
Require Import UniMath.AlgebraicTheories.PresheafCategory.
Require Import UniMath.AlgebraicTheories.PresheafMorphisms.
Require Import UniMath.AlgebraicTheories.Presheaves.
Require Import UniMath.AlgebraicTheories.ReflexiveObjects.

Local Open Scope algebraic_theories.
Local Open Scope cat.
Local Open Scope mor_disp.

1. A proof that the object (theory_presheaf) can be exponentiated


Section RepresentationTheorem.

  Context (L : β_lambda_theory).

  Let pow
    (n : nat)
    : Product (stn n) (presheaf_cat L) (λ _, theory_presheaf L)
    := bin_product_power (presheaf_cat L) (theory_presheaf L) (terminal_presheaf_cat _) (bin_products_presheaf_cat _) n.

  Let PO
    (n : nat)
    : presheaf L
    := ProductObject _ _ (pow n).

  Let pow'
    (n : nat)
    : Product (stn n) (presheaf_cat L) (λ _, theory_presheaf L)
    := products_presheaf_cat L (stn n) (λ _, (theory_presheaf L)).

  Let PO'
    (n : nat)
    : presheaf L
    := ProductObject _ _ (pow' n).

  Let pow_iso
    (n : nat)
    : z_iso (pow n) (pow' n)
    := z_iso_between_Product (pow n) (pow' n).

  Let pow_f
    (n : nat)
    : presheaf_morphism (PO n) (PO' n)
    := morphism_from_z_iso _ _ (pow_iso n).

  Let pow_f_inv
    (n : nat)
    : presheaf_morphism (PO' n) (PO n)
    := inv_from_z_iso (pow_iso n).

  Local Definition BPO
    (P P' : presheaf L)
    : presheaf L
    := BinProductObject _ (bin_products_presheaf_cat _ P P').

  Section Exponentiable.

    Definition presheaf_exponent_morphism_data
      (P : presheaf L)
      (n : nat)
      (t : (BPO (plus_1_presheaf P) (theory_presheaf L) n : hSet))
      : (P n : hSet).
    Proof.
      refine (op (P := P) (pr1 t) _).
      intro i.
      induction (invmap stnweq i) as [i' | i'].
      - exact (var i').
      - exact (pr2 t).
    Defined.

    Lemma presheaf_exponent_is_morphism
      (P : presheaf L)
      (m n : nat)
      (a : (BPO (plus_1_presheaf P) (theory_presheaf L) m : hSet))
      (f : stn m L n)
      : presheaf_exponent_morphism_data P n (op a f)
      = op (presheaf_exponent_morphism_data P m a) f.
    Proof.
      refine (op_op P (pr1 a) _ _ @ !_).
      refine (op_op P (l := S m) (m := m) _ _ _ @ !_).
      apply (maponpaths (op (pr1 a : (P _ : hSet)))).
      apply funextfun.
      intro i.
      induction (invmap stnweq i) as [i' | i'].
      - refine (subst_subst _ (f i') _ _ @ !_).
        refine (var_subst _ _ _ @ _).
        refine (!subst_var _ _ @ !_).
        apply maponpaths.
        apply funextfun.
        intro j.
        refine (var_subst _ _ _ @ _).
        exact (maponpaths _ (homotinvweqweq stnweq _)).
      - refine (var_subst _ _ _ @ _).
        exact (maponpaths _ (homotinvweqweq stnweq _)).
    Qed.

    Definition presheaf_exponent_morphism
      (P : presheaf L)
      : presheaf_morphism (BPO (plus_1_presheaf P) (theory_presheaf L)) P
      := make_presheaf_morphism _ (presheaf_exponent_is_morphism P).

    Definition presheaf_exponent_induced_morphism_data
      {P P' : presheaf L}
      (F : presheaf_morphism (BPO P' (theory_presheaf L)) P)
      (n : nat)
      (t : (P' n : hSet))
      : plus_1_presheaf P n : hSet.
    Proof.
      refine (F (1 + n) _).
      split.
      - apply (op t).
        intro i.
        exact (var (stnweq (inl i))).
      - exact (var (stnweq (inr tt))).
    Defined.

    Lemma presheaf_exponent_induced_is_morphism
      {P P' : presheaf L}
      (F : presheaf_morphism (BPO P' (theory_presheaf L)) P)
      (m n : nat)
      (a : P' m : hSet)
      (f : ( m )%stn L n : hSet)
      : presheaf_exponent_induced_morphism_data F n (op a f)
      = op (presheaf_exponent_induced_morphism_data F m a) f.
    Proof.
      refine (!_ @ mor_op (P := BPO P' (theory_presheaf L)) F _ _).
      refine (maponpaths (F (1 + n)) _).
      apply pathsdirprod.
      - refine (op_op P' a _ _ @ !_).
        refine (op_op P' a f _ @ !_).
        apply maponpaths.
        apply funextfun.
        intro i.
        refine (var_subst _ _ _ @ _).
        exact (maponpaths _ (homotinvweqweq stnweq (inl i))).
      - refine (var_subst _ _ _ @ _).
        exact (maponpaths _ (homotinvweqweq stnweq (inr tt))).
    Qed.

    Definition presheaf_exponent_induced_morphism
      {P P' : presheaf L}
      (F : presheaf_morphism (BPO P' (theory_presheaf L)) P)
      : presheaf_morphism P' (plus_1_presheaf P)
      := make_presheaf_morphism _ (presheaf_exponent_induced_is_morphism F).

    Lemma presheaf_exponent_induced_morphism_commutes
      {P P' : presheaf L}
      (F : presheaf_morphism (BPO P' (theory_presheaf L)) P)
      : F
      = # (constprod_functor2 (bin_products_presheaf_cat L) (theory_presheaf L))
        (presheaf_exponent_induced_morphism F) · presheaf_exponent_morphism P.
    Proof.
      apply (presheaf_morphism_eq F _).
      intro n.
      refine (!(presheaf_mor_comp (P := BPO _ _) _ _ _ @ _)).
      apply funextfun.
      intro t.
      refine (maponpaths
        (λ x, op (P := P) (x t) _)
        (presheaf_mor_comp (P := BPO _ _) (P'' := plus_1_presheaf P) _ _ _)
      @ _).
      refine (!mor_op F _ _ @ _).
      apply maponpaths.
      apply pathsdirprod.
      - refine (op_op P' (pr1 t) _ _ @ _).
        refine (_ @ op_var _ _).
        apply maponpaths.
        apply funextfun.
        intro i.
        refine (var_subst _ _ _ @ _).
        exact (maponpaths _ (homotinvweqweq stnweq _)).
      - refine (var_subst _ _ _ @ _).
        refine (maponpaths _ (homotinvweqweq stnweq _) @ _).
        exact (maponpaths
          (λ x, pr1 x n t)
          (id_right (BinProductPr2 _ ((bin_products_presheaf_cat L) _ _)))
        ).
    Qed.

    Lemma presheaf_exponent_induced_morphism_unique
      {P P' : presheaf L}
      (F : presheaf_morphism (BPO P' (theory_presheaf L)) P)
      (F' : (f' : presheaf_morphism P' (plus_1_presheaf P)),
        F
        = # (constprod_functor2 (bin_products_presheaf_cat _) (theory_presheaf L))
        (f' : presheaf_cat L P', plus_1_presheaf P⟧)
        · presheaf_exponent_morphism P
      )
      : F'
      = presheaf_exponent_induced_morphism F,, presheaf_exponent_induced_morphism_commutes F.
    Proof.
      apply subtypePairEquality.
      {
        intro.
        apply (homset_property (presheaf_cat L)).
      }
      apply (presheaf_morphism_eq (pr1 F') _).
      intro n.
      apply funextfun.
      intro t.
      refine (_ @ maponpaths (λ x, pr1 x _ _) (!pr2 F')).
      refine (!(maponpaths (λ x, x _) (presheaf_mor_comp (P := BPO _ _) _ _ _) @ _)).
      refine (maponpaths
        (λ x, op (x _ : P _ : hSet) _)
        (presheaf_mor_comp _ (pr1 F' : presheaf_cat L P', plus_1_presheaf P) _)
      @ _).
      refine (maponpaths
        (λ x, (pr12 P) _ _ (x : P _ : hSet) _)
        (mor_op (pr1 F') _ _)
      @ _).
      refine (op_op P (pr1 F' n t) _ _ @ _).
      refine (_ @ op_var _ _).
      apply maponpaths.
      apply funextfun.
      intro i.
      refine (_ @ maponpaths var (homotweqinvweq stnweq i)).
      induction (invmap stnweq i) as [i' | i'].
      - refine (subst_subst L (var _) _ _ @ _).
        refine (var_subst _ _ _ @ _).
        refine (var_subst L (stnweq (inl (dni lastelement i'))) _ @ _).
        exact (maponpaths _ (homotinvweqweq stnweq _)).
      - refine (var_subst _ _ _ @ _).
        refine (maponpaths _ (homotinvweqweq stnweq _) @ _).
        refine (maponpaths
          (λ x, pr1 x _ _)
          (id_right (BinProductPr2 _ ((bin_products_presheaf_cat _) P' (theory_presheaf L))))
        @ _).
        apply (maponpaths (λ x, (var (stnweq (inr x))))).
        exact (!pr2 iscontrunit i').
    Qed.

    Definition theory_presheaf_exponentiable
      : is_exponentiable (bin_products_presheaf_cat _) (theory_presheaf L).
    Proof.
      apply is_exponentiable'_to_is_exponentiable.
      use left_adjoint_from_partial.
      - exact plus_1_presheaf.
      - exact presheaf_exponent_morphism.
      - intros P P' F.
        use make_iscontr.
        + use tpair.
          * exact (presheaf_exponent_induced_morphism F).
          * exact (presheaf_exponent_induced_morphism_commutes F).
        + exact (presheaf_exponent_induced_morphism_unique F).
    Defined.

    Lemma invmap_hom_weq_eq
      {m n : nat}
      (G : presheaf_cat L pow n, pr1 theory_presheaf_exponentiable (theory_presheaf L))
      (l : ((PO (S n)) m : hSet))
      : (exp_app_alt theory_presheaf_exponentiable G : presheaf_morphism _ _) m l
      = (G : presheaf_morphism _ _) m (pr1 l) (extend_tuple var (pr2 l)).
    Proof.
      refine (maponpaths (λ (x : presheaf_morphism _ _), x m l)
        (is_exponentiable'_to_is_exponentiable'_app _ _ ) @ _).
      refine (maponpaths (λ x, x _) (presheaf_mor_comp (P'' := theory_presheaf L) _ _ _) @ _).
      refine (maponpaths (λ x, x _) _ @ maponpaths (λ x, (pr1 G) m (pr1 l) x) _).
      - exact (maponpaths (λ x, x _) (presheaf_mor_comp _ G _)).
      - refine (!extend_tuple_eq _ _).
        + intro i.
          exact (!maponpaths _ (homotinvweqweq _ (inl i))).
        + refine (!_ @ !maponpaths _ (homotinvweqweq _ (inr tt))).
          exact (maponpaths
            (λ x, pr1 x _ _)
            (id_right (BinProductPr2 _ (bin_products_presheaf_cat _ _ (theory_presheaf L))))
          ).
    Qed.

    Lemma hom_weq_eq
      {m n : nat}
      (G : presheaf_cat L pow (S n), theory_presheaf L)
      (l : ((PO n) m : hSet))
      : (exp_lam_alt theory_presheaf_exponentiable G : presheaf_morphism _ _) m l
      = (G : presheaf_morphism _ _) (S m) (op l (λ i, var (stnweq (inl i))) ,, var (stnweq (n := m) (inr tt))).
    Proof.
      refine (maponpaths (λ (x : presheaf_morphism (PO n) _), x m l)
        (is_exponentiable'_to_is_exponentiable'_lam _ _ ) @ _).
      exact (maponpaths (λ (x : presheaf_morphism (PO n) _), x _ _) (φ_adj_from_partial (constprod_functor2 _ (theory_presheaf L)) _ _ _ _ _ _)).
    Qed.

  End Exponentiable.

2. A construction of the lambda endomorphism theory of theory_presheaf


  Lemma presheaf_lambda_theory_aux
    {m n : nat}
    (f : stn m (L _ : hSet))
    : extend_tuple (λ i : stn m, f i (λ j, var (dni lastelement j))) (var lastelement)
    = (λ i, let c := invmap (stnweq) i in
        coprod_rect (λ _, (L (1 + n) : hSet))
          (λ i', f i' (λ j, var (stnweq (inl j))))
          (λ i', var (stnweq (inr i'))) c).
  Proof.
    apply extend_tuple_eq.
    - intro i.
      symmetry.
      exact (maponpaths _ (homotinvweqweq _ _)).
    - exact (!maponpaths (λ x, let c := x in _) (homotinvweqweq _ _)).
  Qed.

  Definition reflexive_presheaf_abs
    : presheaf_morphism
      (exp theory_presheaf_exponentiable (theory_presheaf L))
      (theory_presheaf L).
  Proof.
    use make_presheaf_morphism.
    - intro.
      apply abs.
    - abstract (
        intros m n a f;
        refine (_ @ abs_subst _ _ _);
        apply (maponpaths (λ x, abs (a x)));
        symmetry;
        apply presheaf_lambda_theory_aux
      ).
  Defined.

  Definition reflexive_presheaf_app
    : presheaf_morphism
      (theory_presheaf L)
      (exp theory_presheaf_exponentiable (theory_presheaf L)).
  Proof.
    use make_presheaf_morphism.
    - intros n.
      apply appx.
    - abstract (
        intros m n a f;
        refine (app_subst _ _ _ @ _);
        apply (maponpaths (λ x, appx a x));
        apply presheaf_lambda_theory_aux
      ).
  Defined.

  Lemma reflexive_presheaf_is_reflexive
    : is_retraction
      reflexive_presheaf_abs
      reflexive_presheaf_app.
  Proof.
    apply presheaf_morphism_eq.
    intro n.
    refine (presheaf_mor_comp _ _ _ @ _).
    apply funextfun.
    exact (β_lambda_theory_has_β L n).
  Qed.

  Definition lambda_theory_to_reflexive_object
    : reflexive_object.
  Proof.
    use make_reflexive_object.
    - exact (presheaf_cat L).
    - exact (terminal_presheaf_cat L).
    - exact (bin_products_presheaf_cat L).
    - exact (theory_presheaf L).
    - exact theory_presheaf_exponentiable.
    - exact reflexive_presheaf_abs.
    - exact reflexive_presheaf_app.
    - exact reflexive_presheaf_is_reflexive.
  Defined.

3. An isomorphism between the two λ-theories


  Section Iso.

    Definition presheaf_lambda_theory
      : β_lambda_theory
      := reflexive_object_to_lambda_theory lambda_theory_to_reflexive_object.

    Definition presheaf_to_L
      : algebraic_theory_morphism_data presheaf_lambda_theory L.
    Proof.
      intros n f.
      refine ((f : presheaf_morphism (PO n) (theory_presheaf L)) n _).
      refine (pow_f_inv n n _).
      exact var.
    Defined.

    Definition L_to_presheaf
      : algebraic_theory_morphism_data L presheaf_lambda_theory.
    Proof.
      intros n s.
      unfold presheaf_lambda_theory.
      use (make_presheaf_morphism (P := PO n) (P' := (theory_presheaf L))).
      - intros n' t.
        refine (s _).
        intro i.
        exact (pow_f n n' t i).
      - abstract (
          intros;
          refine (_ @ !subst_subst _ s _ _);
          apply maponpaths;
          apply funextfun;
          intro;
          now rewrite mor_op
        ).
    Defined.

    Lemma L_to_presheaf_to_L
      (n : nat)
      (l : (L n : hSet))
      : presheaf_to_L n (L_to_presheaf n l) = l.
    Proof.
      refine (_ @ subst_var _ _).
      apply (maponpaths (subst l)).
      apply funextfun.
      intro i.
      refine (maponpaths
        (λ x, x _ _)
        (!presheaf_mor_comp _ (pow_f n : presheaf_cat LPO n, PO' n) _)
      @ _).
      exact (maponpaths (λ x, pr1 x _ _ _) (z_iso_after_z_iso_inv (pow_iso n))).
    Qed.

    Lemma presheaf_to_L_to_presheaf
      (n : nat)
      (l : (presheaf_lambda_theory n : hSet))
      : L_to_presheaf n (presheaf_to_L n l) = l.
    Proof.
      apply (presheaf_morphism_eq _ (l : presheaf_morphism (PO n) ((theory_presheaf L)))).
      intro m.
      apply funextfun.
      intro x.
      refine (!mor_op _ _ _ @ _).
      apply maponpaths.
      refine (!mor_op _ _ _ @ _).
      refine (!_ @ maponpaths (λ x, pr1 x _ _) (z_iso_inv_after_z_iso (pow_iso n))).
      refine (maponpaths (λ x, x _) (presheaf_mor_comp _ _ _) @ _).
      apply (maponpaths (pow_f_inv n _)).
      apply funextsec.
      intro.
      exact (!var_subst _ _ _).
    Qed.

    Lemma L_to_presheaf_preserves_var
      (n : nat)
      (i : stn n)
      : mor_var_ax L_to_presheaf n i.
    Proof.
      apply (presheaf_morphism_eq (P := PO n) (P' := theory_presheaf L)).
      intro m.
      apply funextfun.
      intro t.
      apply var_subst.
    Qed.

    Lemma L_to_presheaf_preserves_subst
      (m n : nat)
      (f : (L m : hSet))
      (g : stn m (L n : hSet))
      : mor_subst_ax L_to_presheaf m n f g.
    Proof.
      apply (presheaf_morphism_eq (P := PO n) (P' := theory_presheaf L)).
      intro l.
      refine (_ @ !presheaf_mor_comp (P'' := theory_presheaf L) _ _ _).
      apply funextfun.
      intro t.
      refine (subst_subst _ f g _ @ !_).
      apply (maponpaths (subst f)).
      apply funextfun.
      intro i.
      exact (maponpaths (λ x, x t) (!presheaf_mor_comp _ _ _) @
          maponpaths (λ x, pr1 x l t) (ProductPrCommutes _ _ _ (pow m) _ _ i)).
    Qed.

    Local Lemma aux2
      (n : nat)
      : pr1 (pow_f_inv (S n) (S n) var)
      = op (P := PO n) (pow_f_inv n n var) (λ i, var (stnweq (inl i))).
    Proof.
      do 2 refine (maponpaths (λ x, pr1 x _ _) (!z_iso_inv_after_z_iso (pow_iso n)) @ !_).
      do 2 refine (maponpaths (λ x, x _) (presheaf_mor_comp _ _ _) @ !_).
      apply (maponpaths (pr11 _ (S n))).
      apply funextsec.
      intro i.
      refine (maponpaths
        (λ x, x var)
        (!presheaf_mor_comp (P := PO' (S n)) (P'' := theory_presheaf L) _ _ _)
      @ _).
      refine (maponpaths (λ x, pr1 x _ _) (ProductPrCommutes _ _ _ (pow n) (pow' (S n)) _ i) @ !_).
      refine (eqtohomot (mor_op (pow_f n) _ _) i @ _).
      refine (maponpaths
        (λ x, op (P := PO' n) (x var) _ _)
        (!presheaf_mor_comp (P := PO' n) (P'' := PO' n) _ (pow_f _) _)
      @ _).
      refine (maponpaths
        (λ (x : presheaf_morphism (PO' n : presheaf L) (PO' n : presheaf L)), op (P := PO' n) (pr1 x n var) _ _)
        (z_iso_after_z_iso_inv (pow_iso n))
      @ _).
      exact (var_subst _ _ _).
    Qed.

    Lemma presheaf_to_L_preserves_app
      (n : nat)
      (s : (presheaf_lambda_theory n : hSet))
      : presheaf_to_L (S n) (appx s) = appx (presheaf_to_L n s).
    Proof.
      refine (invmap_hom_weq_eq _ _ @ _).
      refine (maponpaths (λ x, pr1 (s · make_presheaf_morphism
        (P := theory_presheaf L)
        (P' := plus_1_presheaf (theory_presheaf L))
        (@appx L) _) _ x _) (aux2 n) @ _).
      refine (maponpaths (λ x, x _) (mor_op
        (s · make_presheaf_morphism
        (P := theory_presheaf L)
        (P' := plus_1_presheaf (theory_presheaf L))
        (@appx L) _)
      _ _) @ _).
      refine (subst_subst L (l := S n) (m := S (S n)) _ _ _ @ _).
      refine (maponpaths
        (λ x, x _ _)
        (presheaf_mor_comp (P'' := plus_1_presheaf (theory_presheaf L)) _ _ _)
      @ _).
      refine (_ @ subst_var _ _).
      apply maponpaths.
      apply funextfun.
      intro i.
      refine (_ @ maponpaths _ (homotweqinvweq stnweq i)).
      induction (invmap stnweq i) as [i' | i'].
      - refine (maponpaths (λ x, x _) (var_subst _ _ _) @ _).
        refine (var_subst _ _ _ @ _).
        refine (extend_tuple_i _ _ _ _ (dni_last_lt _) @ _).
        apply maponpaths.
        apply stn_eq.
        apply di_eq1.
        exact (stnlt (dni lastelement i')).
      - refine (var_subst _ _ _ @ _).
        exact (maponpaths _ (homotinvweqweq _ _)).
    Qed.

    Lemma presheaf_to_L_preserves_abs
      (n : nat)
      (s : (presheaf_lambda_theory (S n) : hSet))
      : presheaf_to_L n (abs s) = abs (presheaf_to_L (S n) s).
    Proof.
      refine (maponpaths (λ x, x _) (presheaf_mor_comp (P'' := theory_presheaf L) _ _ _) @ _).
      apply (maponpaths abs).
      refine (hom_weq_eq _ _ @ _).
      apply (maponpaths (λ x, pr1 s _ x)).
      refine (maponpaths (λ x, pr1 x _ _) (!z_iso_inv_after_z_iso (pow_iso _)) @ _).
      refine (maponpaths (λ x, x _) (presheaf_mor_comp (P'' := PO (S n)) _ _ _) @ _).
      apply (maponpaths (pow_f_inv (S n) _)).
      apply funextsec.
      intro i.
      do 2 refine (!_ @ maponpaths _ (homotweqinvweq stnweq i)).
      refine (maponpaths (λ x, (_ x : presheaf_morphism _ _) _ _) (homotinvweqweq stnweq _) @ _).
      induction (invmap stnweq i) as [i' | i'].
      - refine (maponpaths (λ x, x _) (presheaf_mor_comp (P'' := theory_presheaf L) _ _ _) @ _).
        refine (mor_op
          (ProductPr _ _ (pow n) _ : presheaf_morphism (PO _) (theory_presheaf L))
        _ _ @ _).
        refine (maponpaths
          (λ x, x _ _)
          (!presheaf_mor_comp (P'' := theory_presheaf L) _ _ _)
        @ _).
        refine (maponpaths (λ x, pr1 x _ _ _) (ProductPrCommutes _ _ _ (pow _) _ _ _) @ _).
        apply var_subst.
      - apply idpath.
    Qed.

    Definition presheaf_lambda_theory_iso
      : z_iso (C := β_lambda_theory_cat) presheaf_lambda_theory L.
    Proof.
      use make_β_lambda_theory_z_iso.
      use make_lambda_theory_z_iso.
      - apply z_iso_inv.
        use make_algebraic_theory_z_iso.
        + intro n.
          use make_z_iso.
          * exact (λ l, L_to_presheaf n l).
          * exact (λ l, presheaf_to_L n l).
          * abstract (
              split;
              apply funextfun;
              intro l;
              [ exact (L_to_presheaf_to_L n l)
              | exact (presheaf_to_L_to_presheaf n l) ]
            ).
        + exact L_to_presheaf_preserves_var.
        + exact L_to_presheaf_preserves_subst.
      - exact presheaf_to_L_preserves_app.
      - exact presheaf_to_L_preserves_abs.
    Defined.

  End Iso.

End RepresentationTheorem.

4. The right inverse