Library UniMath.CategoryTheory.Profunctors.Examples
Require Import UniMath.Foundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Categories.HSET.All.
Require Import UniMath.CategoryTheory.Categories.HSET.SetCoends.
Require Import UniMath.CategoryTheory.Profunctors.Core.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Categories.HSET.All.
Require Import UniMath.CategoryTheory.Categories.HSET.SetCoends.
Require Import UniMath.CategoryTheory.Profunctors.Core.
Local Open Scope cat.
Section ConstantProfunctor.
Context (C D : category)
(X : hSet).
Definition const_profunctor_data
: profunctor_data C D.
Proof.
use make_profunctor_data.
- exact (λ _ _, X).
- exact (λ _ _ _ _ _ _ x, x).
Defined.
Proposition const_profunctor_laws
: profunctor_laws const_profunctor_data.
Proof.
repeat split.
intros.
apply setproperty.
Qed.
Definition const_profunctor
: C ↛ D.
Proof.
use make_profunctor.
- exact const_profunctor_data.
- exact const_profunctor_laws.
Defined.
Proposition lmap_const_profunctor
{x : C}
{y₁ y₂ : D}
(f : y₂ --> y₁)
(h : X)
: lmap const_profunctor f (h : const_profunctor y₁ x) = h.
Proof.
cbn.
apply idpath.
Qed.
Proposition rmap_const_profunctor
{x₁ x₂: C}
{y : D}
(f : x₁ --> x₂)
(h : X)
: rmap const_profunctor f (h : const_profunctor y x₁) = h.
Proof.
cbn.
apply idpath.
Qed.
End ConstantProfunctor.
Context (C D : category)
(X : hSet).
Definition const_profunctor_data
: profunctor_data C D.
Proof.
use make_profunctor_data.
- exact (λ _ _, X).
- exact (λ _ _ _ _ _ _ x, x).
Defined.
Proposition const_profunctor_laws
: profunctor_laws const_profunctor_data.
Proof.
repeat split.
intros.
apply setproperty.
Qed.
Definition const_profunctor
: C ↛ D.
Proof.
use make_profunctor.
- exact const_profunctor_data.
- exact const_profunctor_laws.
Defined.
Proposition lmap_const_profunctor
{x : C}
{y₁ y₂ : D}
(f : y₂ --> y₁)
(h : X)
: lmap const_profunctor f (h : const_profunctor y₁ x) = h.
Proof.
cbn.
apply idpath.
Qed.
Proposition rmap_const_profunctor
{x₁ x₂: C}
{y : D}
(f : x₁ --> x₂)
(h : X)
: rmap const_profunctor f (h : const_profunctor y x₁) = h.
Proof.
cbn.
apply idpath.
Qed.
End ConstantProfunctor.
Section IdentityProfunctor.
Context (C : category).
Definition id_profunctor_data
: profunctor_data C C.
Proof.
use make_profunctor_data.
- exact (λ x y, x --> y).
- exact (λ y₁ y₂ g x₁ x₂ f h, g · h · f).
Defined.
Proposition id_profunctor_laws
: profunctor_laws id_profunctor_data.
Proof.
repeat split ; intros ; cbn.
- rewrite id_left, id_right.
apply idpath.
- rewrite !assoc'.
apply idpath.
- apply homset_property.
Qed.
Definition id_profunctor
: C ↛ C.
Proof.
use make_profunctor.
- exact id_profunctor_data.
- exact id_profunctor_laws.
Defined.
Proposition lmap_id_profunctor
{x y₁ y₂ : C}
(f : y₂ --> y₁)
(h : y₁ --> x)
: lmap id_profunctor f h = f · h.
Proof.
cbn.
rewrite id_right.
apply idpath.
Qed.
Proposition rmap_id_profunctor
{x₁ x₂ y : C}
(f : x₁ --> x₂)
(h : y --> x₁)
: rmap id_profunctor f h = h · f.
Proof.
cbn.
rewrite id_left.
apply idpath.
Qed.
End IdentityProfunctor.
Context (C : category).
Definition id_profunctor_data
: profunctor_data C C.
Proof.
use make_profunctor_data.
- exact (λ x y, x --> y).
- exact (λ y₁ y₂ g x₁ x₂ f h, g · h · f).
Defined.
Proposition id_profunctor_laws
: profunctor_laws id_profunctor_data.
Proof.
repeat split ; intros ; cbn.
- rewrite id_left, id_right.
apply idpath.
- rewrite !assoc'.
apply idpath.
- apply homset_property.
Qed.
Definition id_profunctor
: C ↛ C.
Proof.
use make_profunctor.
- exact id_profunctor_data.
- exact id_profunctor_laws.
Defined.
Proposition lmap_id_profunctor
{x y₁ y₂ : C}
(f : y₂ --> y₁)
(h : y₁ --> x)
: lmap id_profunctor f h = f · h.
Proof.
cbn.
rewrite id_right.
apply idpath.
Qed.
Proposition rmap_id_profunctor
{x₁ x₂ y : C}
(f : x₁ --> x₂)
(h : y --> x₁)
: rmap id_profunctor f h = h · f.
Proof.
cbn.
rewrite id_left.
apply idpath.
Qed.
End IdentityProfunctor.
Section RepresentableProfunctor.
Context {C₁ C₂ : category}
(F : C₁ ⟶ C₂).
Definition representable_profunctor_left_data
: profunctor_data C₁ C₂.
Proof.
use make_profunctor_data.
- exact (λ y x, y --> F x).
- exact (λ y₁ y₂ g x₁ x₂ f h, g · h · #F f).
Defined.
Proposition representable_profunctor_left_laws
: profunctor_laws representable_profunctor_left_data.
Proof.
repeat split ; intros ; cbn.
- rewrite functor_id.
rewrite id_left, id_right.
apply idpath.
- rewrite functor_comp.
rewrite !assoc'.
apply idpath.
- apply homset_property.
Qed.
Definition representable_profunctor_left
: C₁ ↛ C₂.
Proof.
use make_profunctor.
- exact representable_profunctor_left_data.
- exact representable_profunctor_left_laws.
Defined.
Proposition lmap_representable_profunctor_left
{x : C₁}
{y₁ y₂ : C₂}
(g : y₂ --> y₁)
(h : y₁ --> F x)
: lmap representable_profunctor_left g h = g · h.
Proof.
cbn.
rewrite functor_id.
rewrite id_right.
apply idpath.
Qed.
Proposition rmap_representable_profunctor_left
{x₁ x₂ : C₁}
{y : C₂}
(f : x₁ --> x₂)
(h : y --> F x₁)
: rmap representable_profunctor_left f h = h · #F f.
Proof.
cbn.
rewrite id_left.
apply idpath.
Qed.
Definition representable_profunctor_right_data
: profunctor_data C₂ C₁.
Proof.
use make_profunctor_data.
- exact (λ y x, F y --> x).
- exact (λ y₁ y₂ g x₁ x₂ f h, #F g · h · f).
Defined.
Proposition representable_profunctor_right_laws
: profunctor_laws representable_profunctor_right_data.
Proof.
repeat split ; intros ; cbn.
- rewrite functor_id.
rewrite id_left, id_right.
apply idpath.
- rewrite functor_comp.
rewrite !assoc'.
apply idpath.
- apply homset_property.
Qed.
Definition representable_profunctor_right
: C₂ ↛ C₁.
Proof.
use make_profunctor.
- exact representable_profunctor_right_data.
- exact representable_profunctor_right_laws.
Defined.
Proposition lmap_representable_profunctor_right
{x : C₂}
{y₁ y₂ : C₁}
(g : y₂ --> y₁)
(h : F y₁ --> x)
: lmap representable_profunctor_right g h = #F g · h.
Proof.
cbn.
rewrite id_right.
apply idpath.
Qed.
Proposition rmap_representable_profunctor_right
{x₁ x₂ : C₂}
{y : C₁}
(f : x₁ --> x₂)
(h : F y --> x₁)
: rmap representable_profunctor_right f h = h · f.
Proof.
cbn.
rewrite functor_id.
rewrite id_left.
apply idpath.
Qed.
End RepresentableProfunctor.
Context {C₁ C₂ : category}
(F : C₁ ⟶ C₂).
Definition representable_profunctor_left_data
: profunctor_data C₁ C₂.
Proof.
use make_profunctor_data.
- exact (λ y x, y --> F x).
- exact (λ y₁ y₂ g x₁ x₂ f h, g · h · #F f).
Defined.
Proposition representable_profunctor_left_laws
: profunctor_laws representable_profunctor_left_data.
Proof.
repeat split ; intros ; cbn.
- rewrite functor_id.
rewrite id_left, id_right.
apply idpath.
- rewrite functor_comp.
rewrite !assoc'.
apply idpath.
- apply homset_property.
Qed.
Definition representable_profunctor_left
: C₁ ↛ C₂.
Proof.
use make_profunctor.
- exact representable_profunctor_left_data.
- exact representable_profunctor_left_laws.
Defined.
Proposition lmap_representable_profunctor_left
{x : C₁}
{y₁ y₂ : C₂}
(g : y₂ --> y₁)
(h : y₁ --> F x)
: lmap representable_profunctor_left g h = g · h.
Proof.
cbn.
rewrite functor_id.
rewrite id_right.
apply idpath.
Qed.
Proposition rmap_representable_profunctor_left
{x₁ x₂ : C₁}
{y : C₂}
(f : x₁ --> x₂)
(h : y --> F x₁)
: rmap representable_profunctor_left f h = h · #F f.
Proof.
cbn.
rewrite id_left.
apply idpath.
Qed.
Definition representable_profunctor_right_data
: profunctor_data C₂ C₁.
Proof.
use make_profunctor_data.
- exact (λ y x, F y --> x).
- exact (λ y₁ y₂ g x₁ x₂ f h, #F g · h · f).
Defined.
Proposition representable_profunctor_right_laws
: profunctor_laws representable_profunctor_right_data.
Proof.
repeat split ; intros ; cbn.
- rewrite functor_id.
rewrite id_left, id_right.
apply idpath.
- rewrite functor_comp.
rewrite !assoc'.
apply idpath.
- apply homset_property.
Qed.
Definition representable_profunctor_right
: C₂ ↛ C₁.
Proof.
use make_profunctor.
- exact representable_profunctor_right_data.
- exact representable_profunctor_right_laws.
Defined.
Proposition lmap_representable_profunctor_right
{x : C₂}
{y₁ y₂ : C₁}
(g : y₂ --> y₁)
(h : F y₁ --> x)
: lmap representable_profunctor_right g h = #F g · h.
Proof.
cbn.
rewrite id_right.
apply idpath.
Qed.
Proposition rmap_representable_profunctor_right
{x₁ x₂ : C₂}
{y : C₁}
(f : x₁ --> x₂)
(h : F y --> x₁)
: rmap representable_profunctor_right f h = h · f.
Proof.
cbn.
rewrite functor_id.
rewrite id_left.
apply idpath.
Qed.
End RepresentableProfunctor.
Section PrecompProfunctor.
Context {C₁ C₂ D₁ D₂ : category}
(F : C₁ ⟶ C₂)
(G : D₁ ⟶ D₂)
(P : C₂ ↛ D₂).
Definition precomp_profunctor_data
: profunctor_data C₁ D₁.
Proof.
use make_profunctor_data.
- exact (λ y x, P (G y) (F x)).
- exact (λ y₁ y₂ g x₁ x₂ f h, lmap P (#G g) (rmap P (#F f) h)).
Defined.
Proposition precomp_profunctor_laws
: profunctor_laws precomp_profunctor_data.
Proof.
repeat split ; intros ; cbn -[lmap rmap].
- rewrite !functor_id.
rewrite lmap_id, rmap_id.
apply idpath.
- rewrite !functor_comp.
rewrite lmap_comp.
rewrite rmap_comp.
apply maponpaths.
rewrite lmap_rmap.
apply idpath.
- apply setproperty.
Qed.
Definition precomp_profunctor
: C₁ ↛ D₁.
Proof.
use make_profunctor.
- exact precomp_profunctor_data.
- exact precomp_profunctor_laws.
Defined.
Proposition lmap_precomp_profunctor
{x : C₁}
{y₁ y₂ : D₁}
(f : y₂ --> y₁)
(h : P (G y₁) (F x))
: lmap precomp_profunctor f h = lmap P (#G f) h.
Proof.
cbn.
rewrite functor_id.
rewrite rmap_id.
apply idpath.
Qed.
Proposition rmap_precomp_profunctor
{x₁ x₂ : C₁}
{y : D₁}
(f : x₁ --> x₂)
(h : P (G y) (F x₁))
: rmap precomp_profunctor f h = rmap P (#F f) h.
Proof.
cbn.
rewrite functor_id.
rewrite lmap_id.
apply idpath.
Qed.
End PrecompProfunctor.
Context {C₁ C₂ D₁ D₂ : category}
(F : C₁ ⟶ C₂)
(G : D₁ ⟶ D₂)
(P : C₂ ↛ D₂).
Definition precomp_profunctor_data
: profunctor_data C₁ D₁.
Proof.
use make_profunctor_data.
- exact (λ y x, P (G y) (F x)).
- exact (λ y₁ y₂ g x₁ x₂ f h, lmap P (#G g) (rmap P (#F f) h)).
Defined.
Proposition precomp_profunctor_laws
: profunctor_laws precomp_profunctor_data.
Proof.
repeat split ; intros ; cbn -[lmap rmap].
- rewrite !functor_id.
rewrite lmap_id, rmap_id.
apply idpath.
- rewrite !functor_comp.
rewrite lmap_comp.
rewrite rmap_comp.
apply maponpaths.
rewrite lmap_rmap.
apply idpath.
- apply setproperty.
Qed.
Definition precomp_profunctor
: C₁ ↛ D₁.
Proof.
use make_profunctor.
- exact precomp_profunctor_data.
- exact precomp_profunctor_laws.
Defined.
Proposition lmap_precomp_profunctor
{x : C₁}
{y₁ y₂ : D₁}
(f : y₂ --> y₁)
(h : P (G y₁) (F x))
: lmap precomp_profunctor f h = lmap P (#G f) h.
Proof.
cbn.
rewrite functor_id.
rewrite rmap_id.
apply idpath.
Qed.
Proposition rmap_precomp_profunctor
{x₁ x₂ : C₁}
{y : D₁}
(f : x₁ --> x₂)
(h : P (G y) (F x₁))
: rmap precomp_profunctor f h = rmap P (#F f) h.
Proof.
cbn.
rewrite functor_id.
rewrite lmap_id.
apply idpath.
Qed.
End PrecompProfunctor.
Section ProdProfunctor.
Context {C₁ C₂ : category}
(P Q : C₁ ↛ C₂).
Definition prod_profunctor_data
: profunctor_data C₁ C₂.
Proof.
use make_profunctor_data.
- exact (λ y x, P y x × Q y x).
- exact (λ y₁ y₂ g x₁ x₂ f h, P #[ g , f ] (pr1 h) ,, Q #[ g , f ] (pr2 h)).
Defined.
Proposition prod_profunctor_laws
: profunctor_laws prod_profunctor_data.
Proof.
repeat split ; cbn.
- intros y x h.
rewrite !profunctor_id.
apply idpath.
- intros y₁ y₂ y₃ g₁ g₂ x₁ x₂ x₃ f₁ f₂ h.
rewrite !profunctor_comp.
apply idpath.
- intros y x.
apply isaset_dirprod ; apply setproperty.
Qed.
Definition prod_profunctor
: C₁ ↛ C₂.
Proof.
use make_profunctor.
- exact prod_profunctor_data.
- exact prod_profunctor_laws.
Defined.
End ProdProfunctor.
Context {C₁ C₂ : category}
(P Q : C₁ ↛ C₂).
Definition prod_profunctor_data
: profunctor_data C₁ C₂.
Proof.
use make_profunctor_data.
- exact (λ y x, P y x × Q y x).
- exact (λ y₁ y₂ g x₁ x₂ f h, P #[ g , f ] (pr1 h) ,, Q #[ g , f ] (pr2 h)).
Defined.
Proposition prod_profunctor_laws
: profunctor_laws prod_profunctor_data.
Proof.
repeat split ; cbn.
- intros y x h.
rewrite !profunctor_id.
apply idpath.
- intros y₁ y₂ y₃ g₁ g₂ x₁ x₂ x₃ f₁ f₂ h.
rewrite !profunctor_comp.
apply idpath.
- intros y x.
apply isaset_dirprod ; apply setproperty.
Qed.
Definition prod_profunctor
: C₁ ↛ C₂.
Proof.
use make_profunctor.
- exact prod_profunctor_data.
- exact prod_profunctor_laws.
Defined.
End ProdProfunctor.
Section CompProfunctor.
Context {C₁ C₂ C₃ : category}
(P : C₁ ↛ C₂)
(Q : C₂ ↛ C₃).
Definition comp_profunctor_colim_profunctor_data
(x : C₁)
(z : C₃)
: profunctor_data C₂ C₂.
Proof.
use make_profunctor_data.
- exact (λ y₁ y₂, P y₁ x × Q z y₂).
- exact (λ y₁ y₂ g y₁' y₂ g' h,
P #[ g , identity _ ] (pr1 h)
,,
Q #[ identity _ , g' ] (pr2 h)).
Defined.
Proposition comp_profunctor_colim_profunctor_data_laws
(x : C₁)
(z : C₃)
: profunctor_laws (comp_profunctor_colim_profunctor_data x z).
Proof.
repeat split ; intros ; cbn.
- rewrite !profunctor_id.
apply idpath.
- rewrite <- !profunctor_comp.
rewrite !id_right.
apply idpath.
- apply isasetdirprod ; apply setproperty.
Qed.
Definition comp_profunctor_colim_profunctor
(x : C₁)
(z : C₃)
: C₂ ↛ C₂.
Proof.
use make_profunctor.
- exact (comp_profunctor_colim_profunctor_data x z).
- exact (comp_profunctor_colim_profunctor_data_laws x z).
Defined.
Definition comp_profunctor_ob
(z : C₃)
(x : C₁)
: hSet
:= HSET_coend (comp_profunctor_colim_profunctor x z).
Definition comp_profunctor_ob_in
{z : C₃}
(y : C₂)
{x : C₁}
(h₁ : P y x)
(h₂ : Q z y)
: comp_profunctor_ob z x
:= HSET_coend_in (comp_profunctor_colim_profunctor x z) y (h₁ ,, h₂).
Proposition comp_profunctor_ob_in_comm
{z : C₃}
{y₁ y₂ : C₂}
(g : y₁ --> y₂)
{x : C₁}
(h : P y₂ x)
(h' : Q z y₁)
: comp_profunctor_ob_in y₂ h (rmap Q g h')
=
comp_profunctor_ob_in y₁ (lmap P g h) h'.
Proof.
pose (HSET_coend_comm
(comp_profunctor_colim_profunctor x z)
g
(h ,, h'))
as p.
cbn in p.
rewrite !profunctor_id in p.
exact p.
Qed.
Definition from_comp_profunctor_ob
(z : C₃)
(x : C₁)
{X : hSet}
(fs : ∏ (y : C₂), P y x → Q z y → X)
(ps : ∏ (y₁ y₂ : C₂)
(g : y₁ --> y₂)
(h : P y₂ x)
(h' : Q z y₁),
fs y₂ h (rmap Q g h') = fs y₁ (lmap P g h) h')
: comp_profunctor_ob z x → X.
Proof.
use mor_from_HSET_coend.
- exact (λ y h, fs y (pr1 h) (pr2 h)).
- abstract
(cbn ;
intros y₁ y₂ g h ;
rewrite !profunctor_id ;
rewrite <- lmap_functor, <- rmap_functor ;
apply ps).
Defined.
Proposition from_comp_profunctor_ob_comm
(z : C₃)
(x : C₁)
{X : hSet}
(fs : ∏ (y : C₂), P y x → Q z y → X)
(ps : ∏ (y₁ y₂ : C₂)
(g : y₁ --> y₂)
(h : P y₂ x)
(h' : Q z y₁),
fs y₂ h (rmap Q g h') = fs y₁ (lmap P g h) h')
(y : C₂)
(h : P y x)
(h' : Q z y)
: from_comp_profunctor_ob z x fs ps (comp_profunctor_ob_in y h h') = fs y h h'.
Proof.
exact (mor_from_HSET_coend_comm _ _ _ _ _).
Qed.
Proposition mor_from_comp_profunctor_ob_eq
(z : C₃)
(x : C₁)
{X : hSet}
(f g : comp_profunctor_ob z x → X)
(w : comp_profunctor_ob z x)
(ps : ∏ (y : C₂)
(h : P y x)
(h' : Q z y),
f (comp_profunctor_ob_in y h h')
=
g (comp_profunctor_ob_in y h h'))
: f w = g w.
Proof.
use mor_from_HSET_coend_eq ; cbn.
intros y h.
apply ps.
Qed.
Definition comp_profunctor_mor
{z₁ z₂ : C₃}
(k : z₂ --> z₁)
{x₁ x₂ : C₁}
(f : x₁ --> x₂)
: comp_profunctor_ob z₁ x₁
→
comp_profunctor_ob z₂ x₂.
Proof.
use from_comp_profunctor_ob.
- exact (λ y h h', comp_profunctor_ob_in _ (rmap P f h) (lmap Q k h')).
- abstract
(intros y₁ y₂ g h h' ; cbn ;
rewrite lmap_rmap ;
rewrite comp_profunctor_ob_in_comm ;
rewrite <- lmap_rmap ;
apply idpath).
Defined.
Proposition comp_profunctor_mor_comm
{z₁ z₂ : C₃}
(k : z₂ --> z₁)
{x₁ x₂ : C₁}
(f : x₁ --> x₂)
{y : C₂}
(h : P y x₁) (h' : Q z₁ y)
: comp_profunctor_mor
k f
(comp_profunctor_ob_in _ h h')
=
comp_profunctor_ob_in y (rmap P f h) (lmap Q k h').
Proof.
unfold comp_profunctor_mor.
rewrite from_comp_profunctor_ob_comm.
apply idpath.
Qed.
Definition comp_profunctor_data
: profunctor_data C₁ C₃.
Proof.
use make_profunctor_data.
- exact (λ z x, comp_profunctor_ob z x).
- exact (λ _ _ k _ _ f h, comp_profunctor_mor k f h).
Defined.
Proposition comp_profunctor_laws
: profunctor_laws comp_profunctor_data.
Proof.
repeat split.
- intros z x k ; cbn.
use mor_from_comp_profunctor_ob_eq.
intros y h h' ; cbn.
rewrite comp_profunctor_mor_comm.
rewrite rmap_id, lmap_id.
apply idpath.
- cbn ; intros z₁ z₂ z₃ k₁ k₂ x₁ x₂ x₃ f₁ f₂ h.
use (mor_from_comp_profunctor_ob_eq
z₁ x₁
(comp_profunctor_mor (k₂ · k₁) (f₁ · f₂))
(λ h, comp_profunctor_mor k₂ f₂ (comp_profunctor_mor k₁ f₁ h))).
clear h.
intros y h h' ; cbn.
rewrite !comp_profunctor_mor_comm.
rewrite <- rmap_comp, <- lmap_comp.
apply idpath.
- intros.
apply setproperty.
Qed.
Definition comp_profunctor
: C₁ ↛ C₃.
Proof.
use make_profunctor.
- exact comp_profunctor_data.
- exact comp_profunctor_laws.
Defined.
Proposition lmap_comp_profunctor
{z₁ z₂ : C₃}
(k : z₂ --> z₁)
{x : C₁}
{y : C₂}
(h : P y x) (h' : Q z₁ y)
: lmap
comp_profunctor
k
(comp_profunctor_ob_in y h h')
=
comp_profunctor_ob_in y h (lmap Q k h').
Proof.
cbn.
rewrite comp_profunctor_mor_comm.
rewrite rmap_id.
apply idpath.
Qed.
Proposition rmap_comp_profunctor
{z : C₃}
{x₁ x₂ : C₁}
(f : x₁ --> x₂)
{y : C₂}
(h : P y x₁) (h' : Q z y)
: rmap
comp_profunctor
f
(comp_profunctor_ob_in y h h')
=
comp_profunctor_ob_in y (rmap P f h) h'.
Proof.
cbn.
rewrite comp_profunctor_mor_comm.
rewrite lmap_id.
apply idpath.
Qed.
End CompProfunctor.
Context {C₁ C₂ C₃ : category}
(P : C₁ ↛ C₂)
(Q : C₂ ↛ C₃).
Definition comp_profunctor_colim_profunctor_data
(x : C₁)
(z : C₃)
: profunctor_data C₂ C₂.
Proof.
use make_profunctor_data.
- exact (λ y₁ y₂, P y₁ x × Q z y₂).
- exact (λ y₁ y₂ g y₁' y₂ g' h,
P #[ g , identity _ ] (pr1 h)
,,
Q #[ identity _ , g' ] (pr2 h)).
Defined.
Proposition comp_profunctor_colim_profunctor_data_laws
(x : C₁)
(z : C₃)
: profunctor_laws (comp_profunctor_colim_profunctor_data x z).
Proof.
repeat split ; intros ; cbn.
- rewrite !profunctor_id.
apply idpath.
- rewrite <- !profunctor_comp.
rewrite !id_right.
apply idpath.
- apply isasetdirprod ; apply setproperty.
Qed.
Definition comp_profunctor_colim_profunctor
(x : C₁)
(z : C₃)
: C₂ ↛ C₂.
Proof.
use make_profunctor.
- exact (comp_profunctor_colim_profunctor_data x z).
- exact (comp_profunctor_colim_profunctor_data_laws x z).
Defined.
Definition comp_profunctor_ob
(z : C₃)
(x : C₁)
: hSet
:= HSET_coend (comp_profunctor_colim_profunctor x z).
Definition comp_profunctor_ob_in
{z : C₃}
(y : C₂)
{x : C₁}
(h₁ : P y x)
(h₂ : Q z y)
: comp_profunctor_ob z x
:= HSET_coend_in (comp_profunctor_colim_profunctor x z) y (h₁ ,, h₂).
Proposition comp_profunctor_ob_in_comm
{z : C₃}
{y₁ y₂ : C₂}
(g : y₁ --> y₂)
{x : C₁}
(h : P y₂ x)
(h' : Q z y₁)
: comp_profunctor_ob_in y₂ h (rmap Q g h')
=
comp_profunctor_ob_in y₁ (lmap P g h) h'.
Proof.
pose (HSET_coend_comm
(comp_profunctor_colim_profunctor x z)
g
(h ,, h'))
as p.
cbn in p.
rewrite !profunctor_id in p.
exact p.
Qed.
Definition from_comp_profunctor_ob
(z : C₃)
(x : C₁)
{X : hSet}
(fs : ∏ (y : C₂), P y x → Q z y → X)
(ps : ∏ (y₁ y₂ : C₂)
(g : y₁ --> y₂)
(h : P y₂ x)
(h' : Q z y₁),
fs y₂ h (rmap Q g h') = fs y₁ (lmap P g h) h')
: comp_profunctor_ob z x → X.
Proof.
use mor_from_HSET_coend.
- exact (λ y h, fs y (pr1 h) (pr2 h)).
- abstract
(cbn ;
intros y₁ y₂ g h ;
rewrite !profunctor_id ;
rewrite <- lmap_functor, <- rmap_functor ;
apply ps).
Defined.
Proposition from_comp_profunctor_ob_comm
(z : C₃)
(x : C₁)
{X : hSet}
(fs : ∏ (y : C₂), P y x → Q z y → X)
(ps : ∏ (y₁ y₂ : C₂)
(g : y₁ --> y₂)
(h : P y₂ x)
(h' : Q z y₁),
fs y₂ h (rmap Q g h') = fs y₁ (lmap P g h) h')
(y : C₂)
(h : P y x)
(h' : Q z y)
: from_comp_profunctor_ob z x fs ps (comp_profunctor_ob_in y h h') = fs y h h'.
Proof.
exact (mor_from_HSET_coend_comm _ _ _ _ _).
Qed.
Proposition mor_from_comp_profunctor_ob_eq
(z : C₃)
(x : C₁)
{X : hSet}
(f g : comp_profunctor_ob z x → X)
(w : comp_profunctor_ob z x)
(ps : ∏ (y : C₂)
(h : P y x)
(h' : Q z y),
f (comp_profunctor_ob_in y h h')
=
g (comp_profunctor_ob_in y h h'))
: f w = g w.
Proof.
use mor_from_HSET_coend_eq ; cbn.
intros y h.
apply ps.
Qed.
Definition comp_profunctor_mor
{z₁ z₂ : C₃}
(k : z₂ --> z₁)
{x₁ x₂ : C₁}
(f : x₁ --> x₂)
: comp_profunctor_ob z₁ x₁
→
comp_profunctor_ob z₂ x₂.
Proof.
use from_comp_profunctor_ob.
- exact (λ y h h', comp_profunctor_ob_in _ (rmap P f h) (lmap Q k h')).
- abstract
(intros y₁ y₂ g h h' ; cbn ;
rewrite lmap_rmap ;
rewrite comp_profunctor_ob_in_comm ;
rewrite <- lmap_rmap ;
apply idpath).
Defined.
Proposition comp_profunctor_mor_comm
{z₁ z₂ : C₃}
(k : z₂ --> z₁)
{x₁ x₂ : C₁}
(f : x₁ --> x₂)
{y : C₂}
(h : P y x₁) (h' : Q z₁ y)
: comp_profunctor_mor
k f
(comp_profunctor_ob_in _ h h')
=
comp_profunctor_ob_in y (rmap P f h) (lmap Q k h').
Proof.
unfold comp_profunctor_mor.
rewrite from_comp_profunctor_ob_comm.
apply idpath.
Qed.
Definition comp_profunctor_data
: profunctor_data C₁ C₃.
Proof.
use make_profunctor_data.
- exact (λ z x, comp_profunctor_ob z x).
- exact (λ _ _ k _ _ f h, comp_profunctor_mor k f h).
Defined.
Proposition comp_profunctor_laws
: profunctor_laws comp_profunctor_data.
Proof.
repeat split.
- intros z x k ; cbn.
use mor_from_comp_profunctor_ob_eq.
intros y h h' ; cbn.
rewrite comp_profunctor_mor_comm.
rewrite rmap_id, lmap_id.
apply idpath.
- cbn ; intros z₁ z₂ z₃ k₁ k₂ x₁ x₂ x₃ f₁ f₂ h.
use (mor_from_comp_profunctor_ob_eq
z₁ x₁
(comp_profunctor_mor (k₂ · k₁) (f₁ · f₂))
(λ h, comp_profunctor_mor k₂ f₂ (comp_profunctor_mor k₁ f₁ h))).
clear h.
intros y h h' ; cbn.
rewrite !comp_profunctor_mor_comm.
rewrite <- rmap_comp, <- lmap_comp.
apply idpath.
- intros.
apply setproperty.
Qed.
Definition comp_profunctor
: C₁ ↛ C₃.
Proof.
use make_profunctor.
- exact comp_profunctor_data.
- exact comp_profunctor_laws.
Defined.
Proposition lmap_comp_profunctor
{z₁ z₂ : C₃}
(k : z₂ --> z₁)
{x : C₁}
{y : C₂}
(h : P y x) (h' : Q z₁ y)
: lmap
comp_profunctor
k
(comp_profunctor_ob_in y h h')
=
comp_profunctor_ob_in y h (lmap Q k h').
Proof.
cbn.
rewrite comp_profunctor_mor_comm.
rewrite rmap_id.
apply idpath.
Qed.
Proposition rmap_comp_profunctor
{z : C₃}
{x₁ x₂ : C₁}
(f : x₁ --> x₂)
{y : C₂}
(h : P y x₁) (h' : Q z y)
: rmap
comp_profunctor
f
(comp_profunctor_ob_in y h h')
=
comp_profunctor_ob_in y (rmap P f h) h'.
Proof.
cbn.
rewrite comp_profunctor_mor_comm.
rewrite lmap_id.
apply idpath.
Qed.
End CompProfunctor.