Library UniMath.SubstitutionSystems.MultiSortedMonadConstruction_alt

This file contains the final steps of the formalization of multisorted binding signatures:
Written by: Anders Mörtberg, 2021. The formalization is an adaptation of Multisorted.v
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Sets.

Require Import UniMath.MoreFoundations.Tactics.

Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits.
Require Import UniMath.CategoryTheory.Limits.BinProducts.
Require Import UniMath.CategoryTheory.Limits.Products.
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
Require Import UniMath.CategoryTheory.Limits.Coproducts.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.Initial.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.exponentials.
Require Import UniMath.CategoryTheory.Chains.All.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Categories.HSET.Core.
Require Import UniMath.CategoryTheory.Categories.HSET.Colimits.
Require Import UniMath.CategoryTheory.Categories.HSET.Limits.
Require Import UniMath.CategoryTheory.Categories.HSET.Structures.
Require Import UniMath.CategoryTheory.Categories.StandardCategories.
Require Import UniMath.CategoryTheory.Groupoids.

Require Import UniMath.SubstitutionSystems.Signatures.
Require Import UniMath.SubstitutionSystems.SumOfSignatures.
Require Import UniMath.SubstitutionSystems.BinProductOfSignatures.
Require Import UniMath.SubstitutionSystems.SubstitutionSystems.
Require Import UniMath.SubstitutionSystems.LiftingInitial_alt.
Require Import UniMath.SubstitutionSystems.MonadsFromSubstitutionSystems.
Require Import UniMath.SubstitutionSystems.SignatureExamples.
Require UniMath.SubstitutionSystems.SortIndexing.
Require Import UniMath.SubstitutionSystems.BindingSigToMonad.
Require Import UniMath.SubstitutionSystems.MultiSortedBindingSig.
Require Import UniMath.SubstitutionSystems.MultiSorted_alt.

Local Open Scope cat.

Section MBindingSig.

Context (sort : UU) (Hsort : isofhlevel 3 sort) (C : category).

Context (TC : Terminal C) (IC : Initial C)
        (BP : BinProducts C) (BC : BinCoproducts C)
         (eqsetPC : forall (s s' : sort), Products (s=s') C)
        (CC : forall (I : UU), isaset I Coproducts I C).

Local Notation "'1'" := (TerminalObject TC).
Local Notation "a ⊕ b" := (BinCoproductObject (BC a b)).

This represents "sort → C"

Construction of a monad from a multisorted signature

Function from multisorted binding signatures to monads