Library UniMath.Bicategories.RezkCompletions.StructuredCats.Pullbacks


Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.

Require Import UniMath.CategoryTheory.Limits.Pullbacks.
Require Import UniMath.CategoryTheory.Limits.Preservation.
Require Import UniMath.CategoryTheory.WeakEquivalences.Core.
Require Import UniMath.CategoryTheory.WeakEquivalences.Preservation.Pullbacks.
Require Import UniMath.CategoryTheory.WeakEquivalences.Reflection.Pullbacks.
Require Import UniMath.CategoryTheory.WeakEquivalences.Creation.Pullbacks.
Require Import UniMath.CategoryTheory.WeakEquivalences.LiftPreservation.Pullbacks.

Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Invertible_2cells.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.BicatOfCats.
Require Import UniMath.Bicategories.Core.Univalence.

Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Require Import UniMath.Bicategories.PseudoFunctors.UniversalArrow.
Import PseudoFunctor.Notations.

Import DispBicat.Notations.

Require Import UniMath.Bicategories.PseudoFunctors.Examples.BicatOfCatToUnivCat.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.DispBicatOnCatToUniv.
Require Import UniMath.Bicategories.DisplayedBicats.DisplayedUniversalArrow.
Require Import UniMath.Bicategories.DisplayedBicats.DisplayedUniversalArrowOnCat.

Require Import UniMath.Bicategories.RezkCompletions.DisplayedRezkCompletions.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.CategoriesWithStructure.Pullbacks.

Local Open Scope cat.

Section CategoriesWithPullbacksAndPreservationUpToIsoHasRezkCompletions.

  Context (LUR : left_universal_arrow univ_cats_to_cats)
    (η_weak_equiv : C : category, is_weak_equiv (pr12 LUR C)).

  Lemma disp_bicat_have_pullbacks_has_RC
    : cat_with_struct_has_RC η_weak_equiv disp_bicat_have_pullbacks.
  Proof.
    simple refine (_ ,, _ ,, _).
    - intros C1 C2 C2_univ F Fw [P1 _].
      exact (weak_equiv_into_univ_creates_haspullbacks C2_univ Fw P1 ,, tt).
    - intros C pb.
      refine (tt ,, _).
      apply weak_equiv_preserves_pullbacks.
      apply η_weak_equiv.
    - intros C1 C2 C3 F G H α ? ? ? Gw.
      intros [t Fpb].
      exists tt.
      use (weak_equiv_lifts_preserves_pullbacks C2 C3 α Gw Fpb).
  Defined.

  Corollary disp_bicat_have_pullbacks_has_Rezk_completions
    : cat_with_structure_has_RezkCompletion disp_bicat_have_pullbacks.
  Proof.
    apply (make_RezkCompletion_from_locally_contractible _ _ disp_bicat_have_pullbacks_has_RC).
    exact disp_2cells_iscontr_have_pullbacks.
  Defined.

End CategoriesWithPullbacksAndPreservationUpToIsoHasRezkCompletions.

Section CategoriesWithChosenPullbacksAndPreservationUpToEqualityHasRezkCompletions.

  Context {LUR : left_universal_arrow univ_cats_to_cats}
    (η_weak_equiv : C : category, is_weak_equiv (pr12 LUR C)).

  Lemma disp_bicat_chosen_pullbacks_has_RC
    : cat_with_struct_has_RC η_weak_equiv disp_bicat_chosen_pullbacks.
  Proof.
    simple refine (_ ,, _ ,, _).
    - intros C1 C2 C2_univ F Fw P1.
      exact (weak_equiv_into_univ_creates_pullbacks C2_univ Fw (pr1 P1) ,, tt).
    - intros C P1.
      refine (tt ,, _).
      use weak_equiv_preserves_pullbacks_eq.
      + apply η_weak_equiv.
      + exact (pr2 (pr1 LUR C)).
    - intros C1 C2 C3 F G H α P1 P2 P3 Gw.
      intros [t Fprod].
      exists tt.
      exact (weak_equiv_lifts_preserves_chosen_pullbacks_eq C2 C3 α (pr1 P1) (pr1 P2) (pr1 P3) Gw Fprod).
  Defined.

  Corollary disp_bicat_chosen_pullbacks_has_Rezk_completions
    : cat_with_structure_has_RezkCompletion disp_bicat_chosen_pullbacks.
  Proof.
    apply (make_RezkCompletion_from_locally_contractible _ _ disp_bicat_chosen_pullbacks_has_RC).
    exact disp_2cells_iscontr_chosen_pullbacks.
  Defined.

End CategoriesWithChosenPullbacksAndPreservationUpToEqualityHasRezkCompletions.

Section CategoriesWithChosenPullbacksAndPreservationUpToIsoHasRezkCompletions.

  Context {LUR : left_universal_arrow univ_cats_to_cats}
    (η_weak_equiv : C : category, is_weak_equiv (pr12 LUR C)).

  Lemma disp_bicat_pullbacks_has_RC
    : cat_with_struct_has_RC η_weak_equiv disp_bicat_pullbacks.
  Proof.
    simple refine (_ ,, _ ,, _).
    - intros C1 C2 C2_univ F Fw [P1 ?].
      exact (weak_equiv_into_univ_creates_pullbacks C2_univ Fw P1 ,, tt).
    - intros C [P1 ?].
      refine (tt ,, _).
      apply weak_equiv_preserves_pullbacks.
      apply η_weak_equiv.
    - intros C1 C2 C3 F G H α P1 P2 P3 Gw.
      intros [t F_pp].
      exists tt.
      exact (weak_equiv_lifts_preserves_pullbacks C2 C3 α Gw F_pp).
  Defined.

  Corollary disp_bicat_pullbacks_has_Rezk_completions
    : cat_with_structure_has_RezkCompletion disp_bicat_pullbacks.
  Proof.
    apply (make_RezkCompletion_from_locally_contractible _ _ disp_bicat_pullbacks_has_RC).
    exact disp_2cells_iscontr_pullbacks.
  Defined.

End CategoriesWithChosenPullbacksAndPreservationUpToIsoHasRezkCompletions.