Library UniMath.CategoryTheory.whiskering

Whiskering

Benedikt Ahrens, Chris Kapulkin, Mike Shulman
January 2013

Contents :

  • Precomposition with a functor for
    • functors and
    • natural transformations (whiskering)
  • Functoriality of precomposition / postcomposition

Whiskering: Composition of a natural transformation with a functor

Prewhiskering

Lemma is_nat_trans_pre_whisker (A B C : precategory_data)
   (F : functor_data A B) (G H : functor_data B C) (gamma : nat_trans G H) :
   is_nat_trans
        (functor_composite_data F G)
        (functor_composite_data F H)
   (λ a : A, gamma (F a)).
Proof.
  intros a b f; simpl.
  apply nat_trans_ax.
Qed.

Definition pre_whisker {A B C : precategory_data}
   (F : functor_data A B) {G H : functor_data B C} (gamma : nat_trans G H) :
   nat_trans (functor_composite_data F G) (functor_composite_data F H).
Proof.
  exists (λ a, pr1 gamma (pr1 F a)).
  apply is_nat_trans_pre_whisker.
Defined.

Lemma pre_whisker_iso_is_iso {A B C : precategory_data}
    (F : functor_data A B) {G H : functor_data B C} (gamma : nat_trans G H)
    (X : is_nat_iso gamma)
  : is_nat_iso (pre_whisker F gamma).
Proof.
  intros a.
  apply X.
Defined.

Lemma pre_whisker_on_nat_z_iso {A B C : precategory_data}
    (F : functor_data A B) {G H : functor_data B C} (gamma : nat_trans G H)
    (X : is_nat_z_iso gamma)
  : is_nat_z_iso (pre_whisker F gamma).
Proof.
  intros a.
  apply X.
Defined.

Definition pre_whisker_in_funcat (A B C : category)
           (F : [A, B]) {G H : [B, C]} (γ : [B, C]G, H) :
  [A, C]functor_compose F G, functor_compose F H.
Proof.
  exact (pre_whisker (F: A B) γ).
Defined.

Postwhiskering

Lemma is_nat_trans_post_whisker (B C D : precategory_data)
   (G H : functor_data B C) (gamma : nat_trans G H)
        (K : functor C D):
  is_nat_trans (functor_composite_data G K)
                         (functor_composite_data H K)
     (λ b : B, #K (gamma b)).
Proof.
  unfold is_nat_trans.
  simpl in *.
  intros;
  repeat rewrite <- functor_comp.
  rewrite (nat_trans_ax gamma).
  apply idpath.
Qed.

Definition post_whisker {B C D : precategory_data}
   {G H : functor_data B C} (gamma : nat_trans G H)
        (K : functor C D)
  : nat_trans (functor_composite_data G K) (functor_composite_data H K).
Proof.
  exists (λ a : ob B, #(pr1 K) (pr1 gamma a)).
  apply is_nat_trans_post_whisker.
Defined.

Lemma post_whisker_iso_is_iso {B C D : precategory}
   {G H : functor_data B C} (gamma : nat_trans G H)
   (K : functor C D)
   (X : is_nat_iso gamma)
  : is_nat_iso (post_whisker gamma K).
Proof.
  intros b.
  unfold post_whisker.
  simpl.
  set ( gammab := make_iso (gamma b) (X b) ).
  apply (functor_on_iso_is_iso C D K _ _ gammab).
Defined.

Lemma post_whisker_z_iso_is_z_iso {B C D : precategory}
   {G H : functor_data B C} (gamma : nat_trans G H)
   (K : functor C D)
   (X : is_nat_z_iso gamma)
  : is_nat_z_iso (post_whisker gamma K).
Proof.
  intros b.
  unfold post_whisker.
  simpl.
  apply (functor_on_is_z_isomorphism K (X b)).
Defined.

Definition post_whisker_in_funcat (B C D : category)
            {G H : [B, C]} (γ : [B, C]G, H) (K : [C, D]) :
  [B, D]functor_compose G K, functor_compose H K.
Proof.
  exact (post_whisker γ (K: C D)).
Defined.

Precomposition with a functor is functorial

Definition pre_composition_functor_data (A B C : category)
      (H : ob [A, B]) : functor_data [B, C] [A, C].
Proof.
  exists (λ G, functor_compose H G).
  exact (λ a b gamma, pre_whisker_in_funcat _ _ _ H gamma).
Defined.

Lemma pre_whisker_identity (A B : precategory_data) (C : category)
  (H : functor_data A B) (G : functor_data B C)
  : pre_whisker H (nat_trans_id G) =
   nat_trans_id (functor_composite_data H G).
Proof.
  apply nat_trans_eq.
  - apply homset_property.
  - intro a. apply idpath.
Qed.

Lemma identity_pre_whisker (B : precategory_data) (C : category)
  (F G : functor_data B C) (α : nat_trans F G)
  : pre_whisker (functor_identity B) α = α.
Proof.
  apply nat_trans_eq.
  - apply homset_property.
  - intro a. apply idpath.
Qed.

Lemma pre_whisker_composition (A B : precategory_data) (C : category)
  (H : functor_data A B) (a b c : functor_data B C)
  (f : nat_trans a b) (g : nat_trans b c)
  : pre_whisker H (nat_trans_comp _ _ _ f g) =
     nat_trans_comp _ _ _ (pre_whisker H f) (pre_whisker H g).
Proof.
  apply nat_trans_eq.
  - apply homset_property.
  - intro; simpl.
    apply idpath.
Qed.

Lemma pre_composition_is_functor (A B C : category) (H : [A, B]) :
    is_functor (pre_composition_functor_data A B C H).
Proof.
  split; simpl in *.
  - unfold functor_idax .
    intros.
    apply pre_whisker_identity.
  - unfold functor_compax .
    intros.
    apply pre_whisker_composition.
Qed.

Definition pre_composition_functor (A B C : category) (H : [A , B]) : functor [B, C] [A, C].
Proof.
  exists (pre_composition_functor_data A B C H).
  apply pre_composition_is_functor.
Defined.

Definition pre_comp_functor {A B C: category} :
  [A, B] [B, C] [A, C] :=
    pre_composition_functor _ _ _.

Section Functor.

  Context (A B C : category).

  Definition pre_comp_nat_trans_data
    {F G : A B}
    (α : F G)
    : nat_trans_data (pre_comp_functor (C := C) F) (pre_comp_functor G)
    := post_whisker α.

  Lemma pre_comp_is_nat_trans
    {F G : A B}
    (α : F G)
    : is_nat_trans _ _ (pre_comp_nat_trans_data α).
  Proof.
    intros H H' β.
    apply nat_trans_eq_alt.
    intro a.
    exact (!nat_trans_ax β _ _ _).
  Qed.

  Definition pre_comp_nat_trans
    {F G : A B}
    (α : F G)
    : pre_comp_functor (C := C) F pre_comp_functor G
    := make_nat_trans _ _
      (pre_comp_nat_trans_data α)
      (pre_comp_is_nat_trans α).

  Definition pre_comp_functor_functor_data
    : functor_data [A, B] [[B, C], [A, C]]
:= make_functor_data (C' := [_, _])
      pre_comp_functor
      (λ _ _ α, pre_comp_nat_trans α).

  Lemma pre_comp_functor_functor_is_functor
    : is_functor pre_comp_functor_functor_data.
  Proof.
    apply make_is_functor.
    - intro F.
      apply nat_trans_eq_alt.
      intro G.
      apply nat_trans_eq_alt.
      intro a.
      apply (functor_id G).
    - intros F G H α β.
      apply nat_trans_eq_alt.
      intro I.
      apply nat_trans_eq_alt.
      intro a.
      apply (functor_comp I).
  Qed.

  Definition pre_comp_functor_functor
    : [A, B] [[B, C], [A, C]]
:= make_functor
      pre_comp_functor_functor_data
      pre_comp_functor_functor_is_functor.

End Functor.

Definition pre_comp_functor_assoc
  {A B C D : category}
  (F : A B)
  (G : B C)
  : z_iso (C := [[C, D], [A, D]])
    (pre_comp_functor (F G))
    (pre_comp_functor G pre_comp_functor F).
Proof.
  apply (invmap (z_iso_is_nat_z_iso _ _)).
  use make_nat_z_iso.
  - use make_nat_trans.
    + intro H.
      exact (z_iso_inv (invmap (z_iso_is_nat_z_iso _ _) (nat_z_iso_functor_comp_assoc _ _ _))).
    + abstract (
        intros H H' α;
        apply nat_trans_eq_alt;
        intro a;
        exact (id_right _ @ !id_left _)
      ).
  - intro H.
    apply z_iso_is_z_isomorphism.
Defined.

Postcomposition with a functor is functorial

Definition post_composition_functor_data (A B C : category)
      (H : ob [B, C]) : functor_data [A, B] [A, C].
Proof.
  exists (λ G, functor_compose G H).
  exact (λ a b gamma, post_whisker_in_funcat _ _ _ gamma H).
Defined.

Lemma post_whisker_identity (A B : precategory) (C : category)
  (H : functor B C) (G : functor_data A B)
  : post_whisker (nat_trans_id G) H =
   nat_trans_id (functor_composite_data G H).
Proof.
  apply nat_trans_eq.
  - apply homset_property.
  - intro a. unfold post_whisker. simpl.
    apply functor_id.
Qed.

Lemma identity_post_whisker (B : precategory_data) (C : category)
  (F G : functor_data B C) (α : nat_trans F G)
  : post_whisker α (functor_identity C) = α.
Proof.
  apply nat_trans_eq.
  - apply homset_property.
  - intro a. apply idpath.
Qed.

Lemma post_whisker_composition (A B : precategory) (C : category)
  (H : functor B C) (a b c : functor_data A B)
  (f : nat_trans a b) (g : nat_trans b c)
  : post_whisker (nat_trans_comp _ _ _ f g) H =
     nat_trans_comp _ _ _ (post_whisker f H) (post_whisker g H).
Proof.
  apply nat_trans_eq.
  - apply homset_property.
  - intro; simpl.
    apply functor_comp.
Qed.

Lemma post_composition_is_functor (A B C : category) (H : [B, C]) :
    is_functor (post_composition_functor_data A B C H).
Proof.
  split; simpl in *.
  - unfold functor_idax .
    intros.
    apply post_whisker_identity.
  - unfold functor_compax .
    intros.
    apply post_whisker_composition.
Qed.

Definition post_composition_functor (A B C : category) (H : [B , C]) : functor [A, B] [A, C].
Proof.
  exists (post_composition_functor_data A B C H).
  apply post_composition_is_functor.
Defined.

Definition post_comp_functor {A B C : category} :
  [B, C] [A, B] [A, C] :=
  post_composition_functor _ _ _.

Section Functor.

  Context (A B C : category).

  Definition post_comp_nat_trans_data
    {F G : B C}
    (α : F G)
    : nat_trans_data (post_comp_functor (A := A) F) (post_comp_functor G)
    := λ (H : _ _), pre_whisker H α.

  Lemma post_comp_is_nat_trans
    {F G : B C}
    (α : F G)
    : is_nat_trans _ _ (post_comp_nat_trans_data α).
  Proof.
    intros H H' β.
    apply nat_trans_eq_alt.
    intro a.
    apply (nat_trans_ax α).
  Qed.

  Definition post_comp_nat_trans
    {F G : B C}
    (α : F G)
    : post_comp_functor (C := C) F post_comp_functor G
    := make_nat_trans _ _
      (post_comp_nat_trans_data α)
      (post_comp_is_nat_trans α).

  Definition post_comp_functor_functor_data
    : functor_data [B, C] [[A, B], [A, C]]
:= make_functor_data (C' := [_, _])
      post_comp_functor
      (λ _ _ α, post_comp_nat_trans α).

  Lemma post_comp_functor_functor_is_functor
    : is_functor post_comp_functor_functor_data.
  Proof.
    apply make_is_functor.
    - intro F.
      apply nat_trans_eq_alt.
      intro G.
      apply nat_trans_eq_alt.
      reflexivity.
    - intros F G H α β.
      apply nat_trans_eq_alt.
      intro I.
      apply nat_trans_eq_alt.
      reflexivity.
  Qed.

  Definition post_comp_functor_functor
    : [B, C] [[A, B], [A, C]]
:= make_functor
      post_comp_functor_functor_data
      post_comp_functor_functor_is_functor.

End Functor.

Lemma pre_whisker_nat_z_iso
      {C D E : category} (F : functor C D)
      {G1 G2 : functor D E} (α : nat_z_iso G1 G2)
  : nat_z_iso (functor_composite F G1) (functor_composite F G2).
Proof.
  exists (pre_whisker F α).
  exact (pre_whisker_on_nat_z_iso F α (pr2 α)).
Defined.

Lemma post_whisker_nat_z_iso
      {C D E : category}
      {G1 G2 : functor C D} (α : nat_z_iso G1 G2) (F : functor D E)
  : nat_z_iso (functor_composite G1 F) (functor_composite G2 F).
Proof.
  exists (post_whisker α F).
  exact (post_whisker_z_iso_is_z_iso α F (pr2 α)).
Defined.