Library UniMath.Induction.M.ComputationalMWithSets

Refinement of M-Types in the case of sets

The file starts with a final coalgebra in HSET and uses ComputationalM to get a new final coalgebra, still in HSET and that satisfies the computational rule.
Author : Antoine Fisse (@AextraT), 2025

Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.All.

Require Import UniMath.Induction.FunctorCoalgebras_legacy.
Require Import UniMath.Induction.PolynomialFunctors.
Require Import UniMath.Induction.M.Core.
Require Import UniMath.Induction.M.ComputationalM.
Require Import UniMath.Induction.M.MWithSets.

Require Import UniMath.CategoryTheory.Categories.Type.Core.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Categories.HSET.All.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require UniMath.CategoryTheory.FunctorCoalgebras.

Local Open Scope cat.

Section Refinement.

  Context {A : ob HSET} (B : pr1hSet A ob HSET).

  Local Definition F := MWithSets.F B.
  Local Definition F' := MWithSets.F' B.

  Context (C0' : FunctorCoalgebras.coalgebra_ob F') (C0'_is_final : isTerminal (FunctorCoalgebras.CoAlg_category F') C0').

  Let c0' : hSet := FunctorCoalgebras.coalg_carrier F' C0'.

  Let C0 : coalgebra F := MWithSets.C0 B C0'.
  Let finalC0 : is_final C0 := MWithSets.C0_is_final B C0' C0'_is_final.

  Let C : coalgebra F := ComputationalM.M (pr1 A) (λ a, pr1 (B a)) C0 finalC0.
  Let finalC : is_final C := finalM (pr1 A) (λ a, pr1 (B a)) C0 finalC0.
  Let c : type_precat := coalgebra_ob F C.
  Let s_c := coalgebra_mor F C.

  Lemma c_isaset : isaset c.
  Proof.
    cbn.
    unfold carrierM.
    apply (isaset_total2_hSet c0' (λ m0, hProp_to_hSet ( (C : coalgebra F) (c : coalgebra_ob F C), (pr11 (finalC0 C)) c = m0))).
  Defined.

  Local Definition C' : FunctorCoalgebras.coalgebra_ob F'
    := MWithSets.C0' B C c_isaset.
  Local Definition finalC' : isTerminal (FunctorCoalgebras.CoAlg_category F') C'
    := MWithSets.C0'_is_final B C c_isaset finalC.

  Local Definition corecC := ComputationalM.corecM (pr1 A) (λ a, pr1 (B a)) C0 finalC0.

  Lemma corec_computation_set C1 c1 : s_c (corecC C1 c1) = # F (corecC C1) (pr2 C1 c1).
  Proof.
    apply idpath.
  Defined.

End Refinement.