Library UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems_Summary


Interface file to the package SubstitutionSystems
The purpose of this file is to provide a stable interface to the formalization of heterogeneous substitution systems as defined by Matthes and Uustalu
version for simplified notion of HSS by Ralph Matthes (2022, 2023) the file is very close to the homonymous file in the parent directory basically, the changes in SimplifiedHSS.SubstitutionSystems are propagated
WARNING: the last part of the previous development is commented out since SimplifiedHSS.Lam is an incomplete adaptation

Require Import UniMath.Foundations.PartD.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Local Open Scope cat.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Limits.BinProducts.
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
Require Import UniMath.CategoryTheory.Limits.Initial.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.opp_precat.
Require Import UniMath.CategoryTheory.yoneda.
Require Import UniMath.CategoryTheory.PointedFunctors.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.HorizontalComposition.
Require Import UniMath.CategoryTheory.PointedFunctorsComposition.
Require Import UniMath.SubstitutionSystems.Signatures.
Require Import UniMath.SubstitutionSystems.BinSumOfSignatures.
Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems.
Require Import UniMath.SubstitutionSystems.GenMendlerIteration.
Require Import UniMath.CategoryTheory.RightKanExtension.
Require Import UniMath.SubstitutionSystems.GenMendlerIteration.
Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial.
Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems.
Require Import UniMath.SubstitutionSystems.LamSignature.
Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam.
Require Import UniMath.SubstitutionSystems.Notation.
Local Open Scope subsys.

Notation "⦃ f ⦄_{ Z }" := (fbracket _ Z f)(at level 0).
Notation "G • F" := (functor_composite F G).

Generalized Iteration in Mendler-style and fusion law

Lemma 8

Definition GenMendlerIteration :
    (C : category) (F : functor C C)
   (μF_Initial : Initial (FunctorAlg F)) (C' : category)
   (X : C') (L : functor C C'),
   is_left_adjoint L
    ψ : ψ_source C C' X L ψ_target C F C' X L,
     ∃! h : C' L ` (InitialObject μF_Initial), X ,
     # L (alg_map F (InitialObject μF_Initial)) · h =
     ψ ` (InitialObject μF_Initial) h.
Proof.
  simpl.
  apply GenMendlerIteration.
Defined.

Arguments It {_ _} _ {_} _ _ _ _.

Lemma 9

Theorem fusion_law
     : (C : category)
       (F : functor C C)
       (μF_Initial : Initial (category_FunctorAlg F))
       (C' : category)
       (X X' : C') (L : functor C C')
       (is_left_adj_L : is_left_adjoint L)
       (ψ : ψ_source C C' X L ψ_target C F C' X L)
       (L' : functor C C')
       (is_left_adj_L' : is_left_adjoint L')
       (ψ' : ψ_source C C' X' L' ψ_target C F C' X' L')
       (Φ : yoneda_objects C' X functor_opp L
              
            yoneda_objects C' X' functor_opp L'),
       let T:= (` (InitialObject μF_Initial)) in
       ψ T · Φ (F T) = Φ T · ψ' T
       
       Φ T (It μF_Initial X L is_left_adj_L ψ) =
       It μF_Initial X' L' is_left_adj_L' ψ'.
Proof.
  apply fusion_law.
Qed.

Heterogeneous Substitution Systems

Lemma 15

Lemma fbracket_natural
     : (C : category) (CP : BinCoproducts C)
       (H : Presignature C C C) (T : hss CP H) (Z Z' : category_Ptd C)
       (f : category_Ptd C Z, Z' )
       (g : [C,C] U Z', `T ),
       (`T # U f : [C, C] `T U Z , `T U Z' ) · g_{Z'} = #U f · g_{Z} .
Proof.
  apply fbracket_natural.
Qed.

Lemma compute_fbracket
     : (C : category) (CP : BinCoproducts C)
       (H : Presignature C C C) (T : hss CP H) (Z : category_Ptd C)
       (f : category_Ptd C Z, ptd_from_alg T ),
       #U f_{Z} = (`T # U f : [C, C] `T U Z , `T U _ ) · identity (U (ptd_from_alg T)) _{ptd_from_alg T}.
Proof.
  apply compute_fbracket.
Qed.

Monads from hss

Theorem 24

Definition Monad_from_hss
     : (C : category) (CP : BinCoproducts C)
       (H : Signature C C C), hss CP H Monad C.
Proof.
  apply Monad_from_hss.
Defined.

Theorem 25

Definition hss_to_monad_functor
     : (C : category) (CP : BinCoproducts C)
       (H : Signature C C C),
       functor (hss_precategory CP H) (category_Monad C).
Proof.
  apply hss_to_monad_functor.
Defined.

Lemma 26

Lemma faithful_hss_to_monad
     : (C : category) (CP : BinCoproducts C)
       (H : Signature C C C), faithful (hss_to_monad_functor C CP H).
Proof.
  apply faithful_hss_to_monad.
Defined.

Lifting initiality

Theorem 28 in three steps:
  • the operation itself
  • its compatibility with variables
  • its compatibility with signature-dependent constructions

Definition bracket_for_initial_algebra
 : (C : category) (CP : BinCoproducts C),
     ( Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C)
        (H : Presignature C C C)
           (IA : Initial (FunctorAlg (Id_H C CP H)))
           (Z : category_Ptd C),
           [C, C] U Z, U (ptd_from_alg (InitAlg C CP H IA))
           
           [C, C] (U Z) ` (InitialObject IA), ` (InitAlg C CP H IA) .
Proof.
  apply bracket_Thm15.
Defined.

Lemma bracket_Thm15_ok_η
     : (C : category) (CP : BinCoproducts C)
       (KanExt : Z : category_Ptd C,
                 GlobalRightKanExtensionExists C C (U Z) C)
       (H : Presignature C C C)
       (IA : Initial (FunctorAlg (Id_H C CP H)))
       (Z : category_Ptd C)
       (f : [C,C] U Z, U (ptd_from_alg (InitAlg C CP H IA))),
       f =
       # (pr1 ( (U Z))) (η (InitAlg C CP H IA)) ·
       bracket_Thm15 C CP KanExt H IA Z f.
Proof.
  apply bracket_Thm15_ok_part1.
Qed.

Lemma bracket_Thm15_ok_τ
  : (C : category) (CP : BinCoproducts C)
      (KanExt : Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C)
      (H : Presignature C C C)
      (IA : Initial (FunctorAlg (Id_H C CP H)))
      (Z : category_Ptd C)
      (f : [C,C] U Z, U (ptd_from_alg (InitAlg C CP H IA)) ),
    (theta H) (` (InitAlg C CP H IA) Z) ·
    # H (bracket_Thm15 C CP KanExt H IA Z f) ·
    τ (InitAlg C CP H IA)
    =
    # (pr1 ( (U Z))) (InitAlg C CP H IA)) ·
      bracket_Thm15 C CP KanExt H IA Z f.
Proof.
  apply bracket_Thm15_ok_part2.
Qed.

Theorem 29

Definition Initial_HSS :
    (C : category) (CP : BinCoproducts C),
     ( Z : category_Ptd C,
         GlobalRightKanExtensionExists C C (U Z) C)
      H : Presignature C C C,
       Initial (FunctorAlg (Id_H C CP H))
        Initial (hss_category CP H).
Proof.
  apply InitialHSS.
Defined.

Sum of signatures

Lemma 30

Definition Sum_of_Signatures
  : (C D D': category),
       BinCoproducts D Signature C D D' Signature C D D' Signature C D D'.
Proof.
  apply BinSum_of_Signatures.
Defined.

Arities of signatures for lambda calculus

Definition 31

Definition App_Sig
  : (C : category), BinProducts C Signature C C C.
Proof.
  apply App_Sig.
Defined.

Definition 32

Definition Lam_Sig
  : (C : category),
    Terminal C BinCoproducts C BinProducts C Signature C C C.
Proof.
  apply Lam_Sig.
Defined.

Definition 33

Definition Flat_Sig
  : (C : category), Signature C C C.
Proof.
  apply Flat_Sig.
Defined.

Evaluation of explicit substitution as initial morphism

this part not compatible with current modifications to the notion of hss
Definition Lam_Flatten : ∏ (C : category) (terminal : Terminal C) (CC : BinCoproducts C) (CP : BinProducts C), (∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) → ∏ Lam_Initial : Initial (FunctorAlg (Id_H C CC (Lam_Sig C terminal CC CP))), C, C ⟦ (Flat_H C) ` (InitialObject Lam_Initial), ` (InitialObject Lam_Initial) ⟧. Proof. apply Lam_Flatten. Defined.
Definition fbracket_for_LamE_algebra_on_Lam : ∏ (C : category) (terminal : Terminal C) (CC : BinCoproducts C) (CP : BinProducts C) (KanExt : ∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) (Lam_Initial : Initial (FunctorAlg (Id_H C CC (Lam_Sig C terminal CC CP)))) (Z : category_Ptd C), category_Ptd C ⟦ Z , (ptd_from_alg_functor CC (LamE_Sig C terminal CC CP)) (LamE_algebra_on_Lam C terminal CC CP KanExt Lam_Initial) ⟧ → C, C ⟦ functor_composite (U Z) ` (LamE_algebra_on_Lam C terminal CC CP KanExt Lam_Initial), ` (LamE_algebra_on_Lam C terminal CC CP KanExt Lam_Initial) ⟧. Proof. apply fbracket_for_LamE_algebra_on_Lam. Defined.
Definition EVAL : ∏ (C : category) (terminal : Terminal C) (CC : BinCoproducts C) (CP : BinProducts C) (KanExt : ∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) (Lam_Initial : Initial (FunctorAlg (Id_H C CC (LamSignature.Lam_Sig C terminal CC CP)))) (LamE_Initial : Initial (FunctorAlg (Id_H C CC (LamE_Sig C terminal CC CP)))), hss_category CC (LamE_Sig C terminal CC CP) ⟦ InitialObject (LamEHSS_Initial C terminal CC CP KanExt LamE_Initial), LamE_model_on_Lam C terminal CC CP KanExt Lam_Initial ⟧. Proof. apply FLATTEN. Defined.