Library UniMath.CategoryTheory.WeakEquivalences.Opp
Opposite Of Weak Equivalences
In this file, we show that the opposite of a weak equivalence is a weak equivalence.
Contents.
1. Opposite of a weak equivalence opp_is_weak_equiv
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.opp_precat.
Require Import UniMath.CategoryTheory.OppositeCategory.Core.
Require Import UniMath.CategoryTheory.WeakEquivalences.Core.
Lemma opp_is_weak_equiv
{C D : category} {F : functor C D} (F_weq : is_weak_equiv F)
: is_weak_equiv (functor_op F).
Proof.
split.
- apply opp_functor_essentially_surjective.
exact (pr1 F_weq).
- apply opp_functor_fully_faithful.
exact (pr2 F_weq).
Qed.
{C D : category} {F : functor C D} (F_weq : is_weak_equiv F)
: is_weak_equiv (functor_op F).
Proof.
split.
- apply opp_functor_essentially_surjective.
exact (pr1 F_weq).
- apply opp_functor_fully_faithful.
exact (pr2 F_weq).
Qed.