Library UniMath.CategoryTheory.EnrichedCats.Colimits.EnrichedInitial

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.EnrichedCats.Enrichment.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.Initial.

Import MonoidalNotations.
Local Open Scope cat.
Local Open Scope moncat.

Section EnrichedInitial.
  Context {V : monoidal_cat}
          {C : category}
          (E : enrichment C V).

1. Initial objects in an enriched category
  Definition is_initial_enriched
             (x : C)
    : UU
    := (y : C), isTerminal V (E x , y ).

  Definition initial_enriched
    : UU
    := (x : C), is_initial_enriched x.

  Coercion initial_enriched_to_ob
           (x : initial_enriched)
    : C
    := pr1 x.

  Coercion initial_enriched_to_is_initial
           (x : initial_enriched)
    : is_initial_enriched x
    := pr2 x.

2. Being initial is a proposition
  Proposition isaprop_is_initial_enriched
              (x : C)
    : isaprop (is_initial_enriched x).
  Proof.
    do 2 (use impred ; intro).
    apply isapropiscontr.
  Qed.

3. Accessors for initial objects
  Section Accessors.
    Context {x : C}
            (Hx : is_initial_enriched x).

    Definition is_initial_enriched_arrow
               (y : C)
      : I_{V} --> E x , y
      := TerminalArrow (_ ,, Hx y) I_{V}.

    Definition is_initial_enriched_eq
               {y : C}
               (f g : I_{V} --> E x , y )
      : f = g.
    Proof.
      apply (@TerminalArrowEq _ (_ ,, Hx y) I_{V}).
    Qed.

    Definition initial_underlying
      : Initial C.
    Proof.
      refine (x ,, _).
      intros y.
      use iscontraprop1.
      - abstract
          (use invproofirrelevance ;
           intros f g ;
           refine (!(enriched_to_from_arr E f) @ _ @ enriched_to_from_arr E g) ;
           apply maponpaths ;
           apply is_initial_enriched_eq).
      - exact (enriched_to_arr E (is_initial_enriched_arrow y)).
    Defined.
  End Accessors.

4. Builders for initial objects
  Definition make_is_initial_enriched
             (x : C)
             (f : (w : V) (y : C), w --> E x , y )
             (p : (w : V) (y : C) (f g : w --> E x , y ), f = g)
    : is_initial_enriched x.
  Proof.
    intros y w.
    use iscontraprop1.
    - abstract
        (use invproofirrelevance ;
         intros φ φ ;
         apply p).
    - apply f.
  Defined.

  Definition make_is_initial_enriched_from_iso
             (TV : Terminal V)
             (x : C)
             (Hx : (y : C),
                   is_z_isomorphism (TerminalArrow TV (E x , y )))
    : is_initial_enriched x.
  Proof.
    intros y.
    use (iso_to_Terminal TV).
    exact (z_iso_inv (TerminalArrow TV (E x , y ) ,, Hx y)).
  Defined.

  Definition initial_enriched_from_underlying
             (TC : Initial C)
             (TV : Terminal V)
             (HV : conservative_moncat V)
    : is_initial_enriched TC.
  Proof.
    use (make_is_initial_enriched_from_iso TV).
    intro y.
    use HV.
    use isweq_iso.
    - intro f.
      apply enriched_from_arr.
      apply (InitialArrow TC).
    - abstract
        (intros f ; cbn ;
         refine (_ @ enriched_from_to_arr E f) ;
         apply maponpaths ;
         apply InitialArrowEq).
    - abstract
        (intros f ; cbn ;
         apply TerminalArrowEq).
  Defined.

5. Being initial is closed under iso
  Definition initial_enriched_from_iso
             {x y : C}
             (Hx : is_initial_enriched x)
             (f : z_iso x y)
    : is_initial_enriched y.
  Proof.
    intros w.
    use (iso_to_Terminal (_ ,, Hx w)) ; cbn.
    exact (precomp_arr_z_iso E w (z_iso_inv f)).
  Defined.

6. Initial objects are isomorphic
  Definition iso_between_initial_enriched
             {x y : C}
             (Hx : is_initial_enriched x)
             (Hy : is_initial_enriched y)
    : z_iso x y.
  Proof.
    use make_z_iso.
    - exact (enriched_to_arr E (is_initial_enriched_arrow Hx y)).
    - exact (enriched_to_arr E (is_initial_enriched_arrow Hy x)).
    - split.
      + abstract
          (refine (enriched_to_arr_comp E _ _ @ _ @ enriched_to_arr_id E _) ;
           apply maponpaths ;
           apply (is_initial_enriched_eq Hx)).
      + abstract
          (refine (enriched_to_arr_comp E _ _ @ _ @ enriched_to_arr_id E _) ;
           apply maponpaths ;
           apply (is_initial_enriched_eq Hy)).
  Defined.

  Definition isaprop_initial_enriched
             (HC : is_univalent C)
    : isaprop initial_enriched.
  Proof.
    use invproofirrelevance.
    intros φ φ.
    use subtypePath.
    {
      intro.
      apply isaprop_is_initial_enriched.
    }
    use (isotoid _ HC).
    use iso_between_initial_enriched.
    - exact (pr2 φ).
    - exact (pr2 φ).
  Defined.
End EnrichedInitial.

7. Enriched categories with a terminal object
Definition cat_with_enrichment_initial
           (V : monoidal_cat)
  : UU
  := (C : cat_with_enrichment V), initial_enriched C.

Coercion cat_with_enrichment_initial_to_cat_with_enrichment
         {V : monoidal_cat}
         (C : cat_with_enrichment_initial V)
  : cat_with_enrichment V
  := pr1 C.

Definition initial_of_cat_with_enrichment
           {V : monoidal_cat}
           (C : cat_with_enrichment_initial V)
  : initial_enriched C
  := pr2 C.