Library UniMath.AlgebraicTheories.LambdaTheoryCategory
Require Export UniMath.AlgebraicTheories.LambdaTheoryCategoryCore.
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Fiber.
Require Import UniMath.CategoryTheory.DisplayedCats.Limits.
Require Import UniMath.CategoryTheory.DisplayedCats.Total.
Require Import UniMath.CategoryTheory.DisplayedCats.Univalence.
Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits.
Require Import UniMath.CategoryTheory.Limits.Graphs.Limits.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.Combinatorics.Tuples.
Require Import UniMath.Combinatorics.Vectors.
Require Import UniMath.AlgebraicTheories.AlgebraicTheories.
Require Import UniMath.AlgebraicTheories.AlgebraicTheoryCategory.
Require Import UniMath.AlgebraicTheories.AlgebraicTheoryMorphisms.
Require Import UniMath.AlgebraicTheories.LambdaTheories.
Require Import UniMath.AlgebraicTheories.LambdaTheoryMorphisms.
Local Open Scope cat.
Local Open Scope algebraic_theories.
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Fiber.
Require Import UniMath.CategoryTheory.DisplayedCats.Limits.
Require Import UniMath.CategoryTheory.DisplayedCats.Total.
Require Import UniMath.CategoryTheory.DisplayedCats.Univalence.
Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits.
Require Import UniMath.CategoryTheory.Limits.Graphs.Limits.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.Combinatorics.Tuples.
Require Import UniMath.Combinatorics.Vectors.
Require Import UniMath.AlgebraicTheories.AlgebraicTheories.
Require Import UniMath.AlgebraicTheories.AlgebraicTheoryCategory.
Require Import UniMath.AlgebraicTheories.AlgebraicTheoryMorphisms.
Require Import UniMath.AlgebraicTheories.LambdaTheories.
Require Import UniMath.AlgebraicTheories.LambdaTheoryMorphisms.
Local Open Scope cat.
Local Open Scope algebraic_theories.
Section Iso.
Context (a b : lambda_theory).
Context (F : z_iso (C := algebraic_theory_cat) (a : algebraic_theory) (b : algebraic_theory)).
Context (Happ : ∏ n f, mor_app_ax (z_iso_mor F) n f).
Context (Habs : ∏ n f, mor_abs_ax (z_iso_mor F) n f).
Definition iso_mor
: lambda_theory_cat⟦a, b⟧
:= (morphism_from_z_iso _ _ F ,, Happ ,, Habs) ,, tt.
Definition iso_inv_data
: algebraic_theory_morphism b a
:= inv_from_z_iso F.
Lemma iso_inv_app_ax
: ∏ n f, mor_app_ax iso_inv_data n f.
Proof.
intros n f.
refine (!_ @ maponpaths
(λ x, (x : algebraic_theory_morphism _ _) (S n) _)
(z_iso_inv_after_z_iso F)
).
apply (maponpaths ((inv_from_z_iso F : algebraic_theory_morphism _ _) (S n))).
refine (Happ _ _ @ _).
apply maponpaths.
exact (maponpaths (λ x, (x : algebraic_theory_morphism _ _) n f) (z_iso_after_z_iso_inv F)).
Qed.
Lemma iso_inv_abs_ax
: ∏ n f, mor_abs_ax iso_inv_data n f.
Proof.
intros n f.
refine (!_ @ maponpaths
(λ x, (x : algebraic_theory_morphism _ _) _ _)
(z_iso_inv_after_z_iso F)
).
apply (maponpaths ((inv_from_z_iso F : algebraic_theory_morphism _ _) n)).
refine (Habs _ _ @ _).
apply maponpaths.
exact (maponpaths (λ x, (x : algebraic_theory_morphism _ _) _ f) (z_iso_after_z_iso_inv F)).
Qed.
Definition iso_inv
: lambda_theory_cat⟦b, a⟧
:= (iso_inv_data ,,
iso_inv_app_ax ,,
iso_inv_abs_ax
) ,, tt.
Lemma iso_is_inverse
: is_inverse_in_precat (C := lambda_theory_cat) iso_mor iso_inv.
Proof.
split;
apply lambda_theory_morphism_eq.
- apply (z_iso_inv_after_z_iso F).
- apply (z_iso_after_z_iso_inv F).
Qed.
Definition make_lambda_theory_z_iso
: z_iso (a : lambda_theory_cat) (b : lambda_theory_cat).
Proof.
use make_z_iso.
- exact iso_mor.
- exact iso_inv.
- exact iso_is_inverse.
Defined.
End Iso.
Definition make_β_lambda_theory_z_iso
{L L' : β_lambda_theory}
(f : z_iso (L : lambda_theory) (L' : lambda_theory))
: z_iso L L'.
Proof.
use make_z_iso.
- exact (make_β_lambda_theory_morphism (f : _ --> _)).
- exact (make_β_lambda_theory_morphism (z_iso_inv f : _ --> _)).
- abstract (
apply make_is_inverse_in_precat;
apply β_lambda_theory_morphism_eq;
[ apply z_iso_inv_after_z_iso
| apply z_iso_after_z_iso_inv ]
).
Defined.
Lemma is_univalent_disp_lambda_theory_data_disp_cat
: is_univalent_disp lambda_theory_data_disp_cat.
Proof.
apply is_univalent_disp_iff_fibers_are_univalent.
refine (λ (T : algebraic_theory) _ _, _).
use isweq_iso.
- intro f.
use pathsdirprod;
do 2 (apply funextsec; intro);
apply f.
- intro e.
refine (maponpaths (λ x, _ x _) _ @ maponpaths _ _ @ !(pathsdirprod_eta e));
refine (pr1 ((_ : isaset _) _ _ _ _));
do 2 (apply (impred 2); intro);
apply setproperty.
- intro.
apply z_iso_eq.
refine (pr1 ((_ : isaprop _) _ _)).
apply isapropdirprod;
do 2 (apply impred; intro);
apply setproperty.
Qed.
Lemma is_univalent_lambda_theory_data_cat
: is_univalent lambda_theory_data_cat.
Proof.
apply is_univalent_total_category.
- exact is_univalent_algebraic_theory_cat.
- exact is_univalent_disp_lambda_theory_data_disp_cat.
Qed.
Lemma is_univalent_disp_lambda_theory_disp_cat
: is_univalent_disp lambda_theory_disp_cat.
Proof.
apply disp_full_sub_univalent.
exact isaprop_is_lambda_theory.
Qed.
Lemma is_univalent_lambda_theory_cat
: is_univalent lambda_theory_cat.
Proof.
apply is_univalent_total_category.
- exact is_univalent_lambda_theory_data_cat.
- exact is_univalent_disp_lambda_theory_disp_cat.
Qed.
Lemma is_univalent_β_lambda_theory_cat
: is_univalent β_lambda_theory_cat.
Proof.
apply is_univalent_full_subcat.
- exact is_univalent_lambda_theory_cat.
- exact isaprop_has_β.
Qed.
Section Limits.
Context (D := lambda_theory_data_disp_cat).
Context {J : graph}.
Context (d : diagram J (total_category D)).
Context (L := limits_algebraic_theory_cat J (mapdiagram (pr1_category _) d)).
Definition tip_lambda_theory_data_disp_cat
: D (lim L).
Proof.
split.
- intros n f.
use tpair.
+ intro u.
exact (pr12 (dob d u) _ (pr1 f u)).
+ abstract exact (λ u v e, pr12 (dmor d e) _ _ @ maponpaths _ (pr2 f _ _ _)).
- intros n f.
use tpair.
+ intro u.
exact (pr22 (dob d u) _ (pr1 f u)).
+ abstract exact (λ u v e, pr22 (dmor d e) _ _ @ maponpaths _ (pr2 f _ _ _)).
Defined.
Lemma cone_lambda_theory_data_disp_cat
(j : vertex J)
: tip_lambda_theory_data_disp_cat -->[limOut L j] pr2 (dob d j).
Proof.
easy.
Qed.
Lemma is_limit_lambda_theory_data_disp_cat
(d' : total_category D)
(cone_out : ∏ u, d' --> (dob d u))
(is_cone : ∏ u v e, cone_out u · (dmor d e) = cone_out v)
(algebraic_theory_arrow := limArrow L _
(make_cone (d := (mapdiagram (pr1_category D) d)) _
(λ u v e, (maponpaths pr1 (is_cone u v e)))))
: pr2 d' -->[algebraic_theory_arrow] tip_lambda_theory_data_disp_cat.
Proof.
split;
intros n f;
(apply subtypePath;
[ intro;
repeat (apply impred_isaprop; intro);
apply setproperty | ]);
apply funextsec;
intro i.
- exact (pr12 (cone_out i) n f).
- exact (pr22 (cone_out i) n f).
Qed.
End Limits.
Definition creates_limits_lambda_theory_data_disp_cat
{J : graph}
(d : diagram J (total_category lambda_theory_data_disp_cat))
: creates_limit d (limits_algebraic_theory_cat _ _)
:= creates_limit_disp_struct _
(tip_lambda_theory_data_disp_cat _)
(cone_lambda_theory_data_disp_cat _)
(is_limit_lambda_theory_data_disp_cat _).
Definition limits_lambda_theory_data_cat
: Lims lambda_theory_data_cat
:= λ _ _, total_limit _ (creates_limits_lambda_theory_data_disp_cat _).
Definition creates_limits_lambda_theory_disp_cat
{J : graph}
(d : diagram J (total_category lambda_theory_disp_cat))
: creates_limit d (limits_lambda_theory_data_cat _ _).
Proof.
use creates_limit_disp_full_sub.
- intro.
repeat apply isapropdirprod;
repeat (apply impred_isaprop; intro);
apply setproperty.
- abstract (
split;
intros m n f g;
(use subtypePath;
[ intro;
do 3 (apply impred_isaprop; intro);
apply setproperty
| ];
apply funextsec;
intro u);
[ refine (app_subst _ _ _ @ _);
apply (maponpaths (subst (_ (pr1 f u))));
apply extend_tuple_eq;
[ intro i;
now rewrite extend_tuple_inl
| now rewrite extend_tuple_inr ]
| refine (!_ @ abs_subst _ _ _);
apply (maponpaths (λ x, abs (subst (pr1 f u) x)));
apply extend_tuple_eq;
[ intro i;
now rewrite extend_tuple_inl
| now rewrite extend_tuple_inr ] ]
).
Defined.
Definition limits_lambda_theory_cat
: Lims lambda_theory_cat
:= λ _ _, total_limit _ (creates_limits_lambda_theory_disp_cat _).
Lemma limits_β_lambda_theory_cat
: Lims β_lambda_theory_cat.
Proof.
intros J d.
use total_limit.
- apply limits_lambda_theory_cat.
- apply creates_limit_disp_full_sub.
+ exact isaprop_has_β.
+ abstract (
intros n l;
use subtypePath;
[ intro;
do 3 (apply impred_isaprop; intro);
apply setproperty
| apply funextsec;
intro u;
apply (pr2 (dob d u) n) ]
).
Qed.