Library UniMath.CategoryTheory.Limits.Pullbacks
- Proof that pullbacks form a property in a (saturated/univalent) category (isaprop_Pullbacks)
- The pullback of a monic is monic (MonicPullbackisMonic)
- A square isomorphic to a pullback is a pullback (case 1) (isPullback_iso_of_morphisms)
- The pullback of a z_iso is a z_iso (Pullback_of_z_iso)
- Symmetry (is_symmetric_isPullback)
- Construction of pullbacks from equalizers and binary products (Pullbacks_from_Equalizers_BinProducts)
- A fully faithful functor reflects limits (isPullback_preimage_square)
- A fully faithfull and essentially surjects functor preserves pullbacks (isPullback_image_square)
- Pullbacks in functor categories (FunctorcategoryPullbacks)
- Construction of binary products from pullbacks (BinProductsFromPullbacks)
- The type of pullbacks on a given diagram is a proposition
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.TransportMorphisms.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.BinProducts.
Require Import UniMath.CategoryTheory.Limits.Equalizers.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.Monics.
Local Open Scope cat.
Definition of pullbacks
Section def_pb.
Context (C : category).
Definition isPullback {a b c d : C} (f : b --> a) (g : c --> a)
(p1 : d --> b) (p2 : d --> c) (H : p1 · f = p2 · g) : UU :=
∏ e (h : e --> b) (k : e --> c) (H : h · f = k · g ),
∃! hk : e --> d, (hk · p1 = h) × (hk · p2 = k).
Lemma isaprop_isPullback {a b c d : C} (f : b --> a) (g : c --> a)
(p1 : d --> b) (p2 : d --> c) (H : p1 · f = p2 · g) :
isaprop (isPullback f g p1 p2 H).
Proof.
repeat (apply impred; intro).
apply isapropiscontr.
Qed.
Lemma PullbackArrowUnique {a b c d : C} (f : b --> a) (g : c --> a)
(p1 : d --> b) (p2 : d --> c) (H : p1 · f = p2 · g)
(P : isPullback f g p1 p2 H) e (h : e --> b) (k : e --> c)
(Hcomm : h · f = k · g)
(w : e --> d)
(H1 : w · p1 = h) (H2 : w · p2 = k) :
w = (pr1 (pr1 (P e h k Hcomm))).
Proof.
set (T := tpair (fun hk : e --> d => dirprod (hk · p1 = h)(hk · p2 = k))
w (make_dirprod H1 H2)).
set (T' := pr2 (P e h k Hcomm) T).
exact (base_paths _ _ T').
Qed.
Definition Pullback {a b c : C} (f : b --> a) (g : c --> a) :=
∑ pfg : (∑ p : C, (p --> b) × (p --> c)),
∑ (H : pr1 (pr2 pfg) · f = pr2 (pr2 pfg) · g),
isPullback f g (pr1 (pr2 pfg)) (pr2 (pr2 pfg)) H.
Definition Pullbacks : UU :=
∏ (a b c : C) (f : b --> a) (g : c --> a), Pullback f g.
Definition hasPullbacks : UU :=
∏ (a b c : C) (f : b --> a) (g : c --> a), ishinh (Pullback f g).
Definition PullbackObject {a b c : C} {f : b --> a} {g : c --> a}:
Pullback f g -> C := λ H, pr1 (pr1 H).
Coercion PullbackObject : Pullback >-> ob.
Definition PullbackPr1 {a b c : C} {f : b --> a} {g : c --> a}
(Pb : Pullback f g) : Pb --> b := pr1 (pr2 (pr1 Pb)).
Definition PullbackPr2 {a b c : C} {f : b --> a} {g : c --> a}
(Pb : Pullback f g) : Pb --> c := pr2 (pr2 (pr1 Pb)).
Definition PullbackSqrCommutes {a b c : C} {f : b --> a} {g : c --> a}
(Pb : Pullback f g) :
PullbackPr1 Pb · f = PullbackPr2 Pb · g .
Proof.
exact (pr1 (pr2 Pb)).
Qed.
Definition isPullback_Pullback {a b c : C} {f : b --> a} {g : c --> a}
(P : Pullback f g) :
isPullback f g (PullbackPr1 P) (PullbackPr2 P) (PullbackSqrCommutes P).
Proof.
exact (pr2 (pr2 P)).
Defined.
Definition PullbackArrow {a b c : C} {f : b --> a} {g : c --> a}
(Pb : Pullback f g) e (h : e --> b) (k : e --> c) (H : h · f = k · g) : e --> Pb :=
pr1 (pr1 (isPullback_Pullback Pb e h k H)).
Lemma PullbackArrowUnique' {a b c : C} (f : C⟦b,a⟧) (g : C⟦c,a⟧)
(P : Pullback f g) e (h : C⟦e,b⟧) (k : C⟦e,c⟧)
(Hcomm : h · f = k · g) (w : C⟦e,P⟧) (H1 : w · PullbackPr1 P = h) (H2 : w · PullbackPr2 P = k) :
w = PullbackArrow P e h k Hcomm.
Proof.
now apply PullbackArrowUnique.
Qed.
Lemma PullbackArrow_PullbackPr1 {a b c : C} {f : b --> a} {g : c --> a}
(Pb : Pullback f g) e (h : e --> b) (k : e --> c) (H : h · f = k · g) :
PullbackArrow Pb e h k H · PullbackPr1 Pb = h.
Proof.
exact (pr1 (pr2 (pr1 (isPullback_Pullback Pb e h k H)))).
Qed.
Lemma PullbackArrow_PullbackPr2 {a b c : C} {f : b --> a} {g : c --> a}
(Pb : Pullback f g) e (h : e --> b) (k : e --> c) (H : h · f = k · g) :
PullbackArrow Pb e h k H · PullbackPr2 Pb = k.
Proof.
exact (pr2 (pr2 (pr1 (isPullback_Pullback Pb e h k H)))).
Qed.
Definition make_Pullback {a b c : C} (f : C⟦b, a⟧) (g : C⟦c, a⟧)
(d : C) (p1 : C⟦d,b⟧) (p2 : C ⟦d,c⟧)
(H : p1 · f = p2 · g)
(ispb : isPullback f g p1 p2 H)
: Pullback f g.
Proof.
use tpair.
- use tpair.
+ apply d.
+ exists p1.
exact p2.
- exists H.
apply ispb.
Defined.
Definition make_isPullback {a b c d : C} (f : C ⟦b, a⟧) (g : C ⟦c, a⟧)
(p1 : C⟦d,b⟧) (p2 : C⟦d,c⟧) (H : p1 · f = p2 · g) :
(∏ e (h : C ⟦e, b⟧) (k : C⟦e,c⟧) (Hk : h · f = k · g ),
∃! hk : C⟦e,d⟧, (hk · p1 = h) × (hk · p2 = k)) →
isPullback f g p1 p2 H.
Proof.
intros H' x cx k sqr.
apply H'. assumption.
Defined.
Local Lemma postCompWithPullbackArrow_subproof
{c d a b x : C} (k0 : C⟦c,d⟧) {f : C⟦a,x⟧} {g : C⟦b,x⟧}
{h : C ⟦ d, a ⟧} {k : C ⟦ d, b ⟧} (H : h · f = k · g) :
k0 · h · f = k0 · k · g.
Proof.
now rewrite <- assoc, H, assoc.
Qed.
Lemma postCompWithPullbackArrow
(c d : C) (k0 : C⟦c,d⟧) {a b x : C} {f : C⟦a,x⟧} {g : C⟦b,x⟧}
(Pb : Pullback f g)
(h : C ⟦ d, a ⟧) (k : C ⟦ d, b ⟧) (H : h · f = k · g) :
k0 · PullbackArrow Pb d h k H =
PullbackArrow Pb _ (k0 · h) (k0 · k) (postCompWithPullbackArrow_subproof k0 H).
Proof.
apply PullbackArrowUnique.
- now rewrite <- assoc, PullbackArrow_PullbackPr1.
- now rewrite <- assoc, PullbackArrow_PullbackPr2.
Qed.
Lemma MorphismsIntoPullbackEqual {a b c d : C} {f : b --> a} {g : c --> a}
{p1 : d --> b} {p2 : d --> c} {H : p1 · f = p2 · g}
(P : isPullback f g p1 p2 H) {e}
(w w': e --> d)
(H1 : w · p1 = w' · p1) (H2 : w · p2 = w' · p2)
: w = w'.
Proof.
assert (Hw : w · p1 · f = w · p2 · g).
{ rewrite <- assoc , H, assoc; apply idpath. }
assert (Hw' : w' · p1 · f = w' · p2 · g).
{ rewrite <- assoc , H, assoc; apply idpath. }
set (Pb := make_Pullback _ _ _ _ _ _ P).
set (Xw := PullbackArrow Pb e (w·p1) (w·p2) Hw).
intermediate_path Xw; [ apply PullbackArrowUnique; apply idpath |].
apply pathsinv0.
apply PullbackArrowUnique. apply pathsinv0. apply H1.
apply pathsinv0. apply H2.
Qed.
Definition identity_is_Pullback_input {a b c : C} {f : b --> a} {g : c --> a} (Pb : Pullback f g) :
∑ hk : Pb --> Pb,
(hk · PullbackPr1 Pb = PullbackPr1 Pb) × (hk · PullbackPr2 Pb = PullbackPr2 Pb).
Proof.
exists (identity Pb).
apply make_dirprod; apply id_left.
Defined.
Lemma PullbackEndo_is_identity {a b c : C} {f : b --> a} {g : c --> a}
(Pb : Pullback f g) (k : Pb --> Pb) (kH1 : k · PullbackPr1 Pb = PullbackPr1 Pb)
(kH2 : k · PullbackPr2 Pb = PullbackPr2 Pb) :
identity Pb = k.
Proof.
set (H1 := tpair ((fun hk : Pb --> Pb => dirprod (hk · _ = _)(hk · _ = _))) k (make_dirprod kH1 kH2)).
assert (H2 : identity_is_Pullback_input Pb = H1).
- apply proofirrelevancecontr.
apply (isPullback_Pullback Pb).
apply PullbackSqrCommutes.
- apply (base_paths _ _ H2).
Qed.
Definition from_Pullback_to_Pullback {a b c : C} {f : b --> a} {g : c --> a}
(Pb Pb': Pullback f g) : Pb --> Pb'.
Proof.
apply (PullbackArrow Pb' Pb (PullbackPr1 _ ) (PullbackPr2 _)).
exact (PullbackSqrCommutes _ ).
Defined.
Lemma are_inverses_from_Pullback_to_Pullback {a b c : C} {f : b --> a} {g : c --> a}
(Pb Pb': Pullback f g) :
is_inverse_in_precat (from_Pullback_to_Pullback Pb Pb')
(from_Pullback_to_Pullback Pb' Pb).
Proof.
split; apply pathsinv0;
apply PullbackEndo_is_identity;
rewrite <- assoc;
unfold from_Pullback_to_Pullback;
repeat rewrite PullbackArrow_PullbackPr1;
repeat rewrite PullbackArrow_PullbackPr2;
auto.
Qed.
Lemma isziso_from_Pullback_to_Pullback {a b c : C} {f : b --> a} {g : c --> a}
(Pb Pb': Pullback f g) :
is_z_isomorphism (from_Pullback_to_Pullback Pb Pb').
Proof.
exists (from_Pullback_to_Pullback Pb' Pb).
apply are_inverses_from_Pullback_to_Pullback.
Defined.
Definition z_iso_from_Pullback_to_Pullback {a b c : C}{f : b --> a} {g : c --> a}
(Pb Pb': Pullback f g) : z_iso Pb Pb' :=
_ ,, isziso_from_Pullback_to_Pullback Pb Pb'.
Lemma pullbackiso {A B D:C} {f : A --> D} {g : B --> D}
(pb : Pullback f g) (pb' : Pullback f g)
: ∑ (t : z_iso (PullbackObject pb) (PullbackObject pb')),
t · PullbackPr1 pb' = PullbackPr1 pb ×
t · PullbackPr2 pb' = PullbackPr2 pb.
Proof.
use tpair.
- use z_iso_from_Pullback_to_Pullback.
- split.
+ use PullbackArrow_PullbackPr1.
+ use PullbackArrow_PullbackPr2.
Defined.
Context (C : category).
Definition isPullback {a b c d : C} (f : b --> a) (g : c --> a)
(p1 : d --> b) (p2 : d --> c) (H : p1 · f = p2 · g) : UU :=
∏ e (h : e --> b) (k : e --> c) (H : h · f = k · g ),
∃! hk : e --> d, (hk · p1 = h) × (hk · p2 = k).
Lemma isaprop_isPullback {a b c d : C} (f : b --> a) (g : c --> a)
(p1 : d --> b) (p2 : d --> c) (H : p1 · f = p2 · g) :
isaprop (isPullback f g p1 p2 H).
Proof.
repeat (apply impred; intro).
apply isapropiscontr.
Qed.
Lemma PullbackArrowUnique {a b c d : C} (f : b --> a) (g : c --> a)
(p1 : d --> b) (p2 : d --> c) (H : p1 · f = p2 · g)
(P : isPullback f g p1 p2 H) e (h : e --> b) (k : e --> c)
(Hcomm : h · f = k · g)
(w : e --> d)
(H1 : w · p1 = h) (H2 : w · p2 = k) :
w = (pr1 (pr1 (P e h k Hcomm))).
Proof.
set (T := tpair (fun hk : e --> d => dirprod (hk · p1 = h)(hk · p2 = k))
w (make_dirprod H1 H2)).
set (T' := pr2 (P e h k Hcomm) T).
exact (base_paths _ _ T').
Qed.
Definition Pullback {a b c : C} (f : b --> a) (g : c --> a) :=
∑ pfg : (∑ p : C, (p --> b) × (p --> c)),
∑ (H : pr1 (pr2 pfg) · f = pr2 (pr2 pfg) · g),
isPullback f g (pr1 (pr2 pfg)) (pr2 (pr2 pfg)) H.
Definition Pullbacks : UU :=
∏ (a b c : C) (f : b --> a) (g : c --> a), Pullback f g.
Definition hasPullbacks : UU :=
∏ (a b c : C) (f : b --> a) (g : c --> a), ishinh (Pullback f g).
Definition PullbackObject {a b c : C} {f : b --> a} {g : c --> a}:
Pullback f g -> C := λ H, pr1 (pr1 H).
Coercion PullbackObject : Pullback >-> ob.
Definition PullbackPr1 {a b c : C} {f : b --> a} {g : c --> a}
(Pb : Pullback f g) : Pb --> b := pr1 (pr2 (pr1 Pb)).
Definition PullbackPr2 {a b c : C} {f : b --> a} {g : c --> a}
(Pb : Pullback f g) : Pb --> c := pr2 (pr2 (pr1 Pb)).
Definition PullbackSqrCommutes {a b c : C} {f : b --> a} {g : c --> a}
(Pb : Pullback f g) :
PullbackPr1 Pb · f = PullbackPr2 Pb · g .
Proof.
exact (pr1 (pr2 Pb)).
Qed.
Definition isPullback_Pullback {a b c : C} {f : b --> a} {g : c --> a}
(P : Pullback f g) :
isPullback f g (PullbackPr1 P) (PullbackPr2 P) (PullbackSqrCommutes P).
Proof.
exact (pr2 (pr2 P)).
Defined.
Definition PullbackArrow {a b c : C} {f : b --> a} {g : c --> a}
(Pb : Pullback f g) e (h : e --> b) (k : e --> c) (H : h · f = k · g) : e --> Pb :=
pr1 (pr1 (isPullback_Pullback Pb e h k H)).
Lemma PullbackArrowUnique' {a b c : C} (f : C⟦b,a⟧) (g : C⟦c,a⟧)
(P : Pullback f g) e (h : C⟦e,b⟧) (k : C⟦e,c⟧)
(Hcomm : h · f = k · g) (w : C⟦e,P⟧) (H1 : w · PullbackPr1 P = h) (H2 : w · PullbackPr2 P = k) :
w = PullbackArrow P e h k Hcomm.
Proof.
now apply PullbackArrowUnique.
Qed.
Lemma PullbackArrow_PullbackPr1 {a b c : C} {f : b --> a} {g : c --> a}
(Pb : Pullback f g) e (h : e --> b) (k : e --> c) (H : h · f = k · g) :
PullbackArrow Pb e h k H · PullbackPr1 Pb = h.
Proof.
exact (pr1 (pr2 (pr1 (isPullback_Pullback Pb e h k H)))).
Qed.
Lemma PullbackArrow_PullbackPr2 {a b c : C} {f : b --> a} {g : c --> a}
(Pb : Pullback f g) e (h : e --> b) (k : e --> c) (H : h · f = k · g) :
PullbackArrow Pb e h k H · PullbackPr2 Pb = k.
Proof.
exact (pr2 (pr2 (pr1 (isPullback_Pullback Pb e h k H)))).
Qed.
Definition make_Pullback {a b c : C} (f : C⟦b, a⟧) (g : C⟦c, a⟧)
(d : C) (p1 : C⟦d,b⟧) (p2 : C ⟦d,c⟧)
(H : p1 · f = p2 · g)
(ispb : isPullback f g p1 p2 H)
: Pullback f g.
Proof.
use tpair.
- use tpair.
+ apply d.
+ exists p1.
exact p2.
- exists H.
apply ispb.
Defined.
Definition make_isPullback {a b c d : C} (f : C ⟦b, a⟧) (g : C ⟦c, a⟧)
(p1 : C⟦d,b⟧) (p2 : C⟦d,c⟧) (H : p1 · f = p2 · g) :
(∏ e (h : C ⟦e, b⟧) (k : C⟦e,c⟧) (Hk : h · f = k · g ),
∃! hk : C⟦e,d⟧, (hk · p1 = h) × (hk · p2 = k)) →
isPullback f g p1 p2 H.
Proof.
intros H' x cx k sqr.
apply H'. assumption.
Defined.
Local Lemma postCompWithPullbackArrow_subproof
{c d a b x : C} (k0 : C⟦c,d⟧) {f : C⟦a,x⟧} {g : C⟦b,x⟧}
{h : C ⟦ d, a ⟧} {k : C ⟦ d, b ⟧} (H : h · f = k · g) :
k0 · h · f = k0 · k · g.
Proof.
now rewrite <- assoc, H, assoc.
Qed.
Lemma postCompWithPullbackArrow
(c d : C) (k0 : C⟦c,d⟧) {a b x : C} {f : C⟦a,x⟧} {g : C⟦b,x⟧}
(Pb : Pullback f g)
(h : C ⟦ d, a ⟧) (k : C ⟦ d, b ⟧) (H : h · f = k · g) :
k0 · PullbackArrow Pb d h k H =
PullbackArrow Pb _ (k0 · h) (k0 · k) (postCompWithPullbackArrow_subproof k0 H).
Proof.
apply PullbackArrowUnique.
- now rewrite <- assoc, PullbackArrow_PullbackPr1.
- now rewrite <- assoc, PullbackArrow_PullbackPr2.
Qed.
Lemma MorphismsIntoPullbackEqual {a b c d : C} {f : b --> a} {g : c --> a}
{p1 : d --> b} {p2 : d --> c} {H : p1 · f = p2 · g}
(P : isPullback f g p1 p2 H) {e}
(w w': e --> d)
(H1 : w · p1 = w' · p1) (H2 : w · p2 = w' · p2)
: w = w'.
Proof.
assert (Hw : w · p1 · f = w · p2 · g).
{ rewrite <- assoc , H, assoc; apply idpath. }
assert (Hw' : w' · p1 · f = w' · p2 · g).
{ rewrite <- assoc , H, assoc; apply idpath. }
set (Pb := make_Pullback _ _ _ _ _ _ P).
set (Xw := PullbackArrow Pb e (w·p1) (w·p2) Hw).
intermediate_path Xw; [ apply PullbackArrowUnique; apply idpath |].
apply pathsinv0.
apply PullbackArrowUnique. apply pathsinv0. apply H1.
apply pathsinv0. apply H2.
Qed.
Definition identity_is_Pullback_input {a b c : C} {f : b --> a} {g : c --> a} (Pb : Pullback f g) :
∑ hk : Pb --> Pb,
(hk · PullbackPr1 Pb = PullbackPr1 Pb) × (hk · PullbackPr2 Pb = PullbackPr2 Pb).
Proof.
exists (identity Pb).
apply make_dirprod; apply id_left.
Defined.
Lemma PullbackEndo_is_identity {a b c : C} {f : b --> a} {g : c --> a}
(Pb : Pullback f g) (k : Pb --> Pb) (kH1 : k · PullbackPr1 Pb = PullbackPr1 Pb)
(kH2 : k · PullbackPr2 Pb = PullbackPr2 Pb) :
identity Pb = k.
Proof.
set (H1 := tpair ((fun hk : Pb --> Pb => dirprod (hk · _ = _)(hk · _ = _))) k (make_dirprod kH1 kH2)).
assert (H2 : identity_is_Pullback_input Pb = H1).
- apply proofirrelevancecontr.
apply (isPullback_Pullback Pb).
apply PullbackSqrCommutes.
- apply (base_paths _ _ H2).
Qed.
Definition from_Pullback_to_Pullback {a b c : C} {f : b --> a} {g : c --> a}
(Pb Pb': Pullback f g) : Pb --> Pb'.
Proof.
apply (PullbackArrow Pb' Pb (PullbackPr1 _ ) (PullbackPr2 _)).
exact (PullbackSqrCommutes _ ).
Defined.
Lemma are_inverses_from_Pullback_to_Pullback {a b c : C} {f : b --> a} {g : c --> a}
(Pb Pb': Pullback f g) :
is_inverse_in_precat (from_Pullback_to_Pullback Pb Pb')
(from_Pullback_to_Pullback Pb' Pb).
Proof.
split; apply pathsinv0;
apply PullbackEndo_is_identity;
rewrite <- assoc;
unfold from_Pullback_to_Pullback;
repeat rewrite PullbackArrow_PullbackPr1;
repeat rewrite PullbackArrow_PullbackPr2;
auto.
Qed.
Lemma isziso_from_Pullback_to_Pullback {a b c : C} {f : b --> a} {g : c --> a}
(Pb Pb': Pullback f g) :
is_z_isomorphism (from_Pullback_to_Pullback Pb Pb').
Proof.
exists (from_Pullback_to_Pullback Pb' Pb).
apply are_inverses_from_Pullback_to_Pullback.
Defined.
Definition z_iso_from_Pullback_to_Pullback {a b c : C}{f : b --> a} {g : c --> a}
(Pb Pb': Pullback f g) : z_iso Pb Pb' :=
_ ,, isziso_from_Pullback_to_Pullback Pb Pb'.
Lemma pullbackiso {A B D:C} {f : A --> D} {g : B --> D}
(pb : Pullback f g) (pb' : Pullback f g)
: ∑ (t : z_iso (PullbackObject pb) (PullbackObject pb')),
t · PullbackPr1 pb' = PullbackPr1 pb ×
t · PullbackPr2 pb' = PullbackPr2 pb.
Proof.
use tpair.
- use z_iso_from_Pullback_to_Pullback.
- split.
+ use PullbackArrow_PullbackPr1.
+ use PullbackArrow_PullbackPr2.
Defined.
pullback lemma
Section pullback_lemma.
Context (a b c d e x : C)
(f : b --> a) (g : c --> a) (h : e --> b) (k : e --> c)
(i : d --> b) (j : x --> e) (m : x --> d)
(H1 : h · f = k · g) (H2 : m · i = j · h)
(P1 : isPullback _ _ _ _ H1) (P2 : isPullback _ _ _ _ H2).
Lemma glueSquares : m · (i · f) = (j · k) · g.
Proof.
rewrite assoc.
rewrite H2.
repeat rewrite <- assoc.
rewrite H1.
apply idpath.
Qed.
Lemma isPullbackGluedSquare : isPullback (i · f) g m (j · k) glueSquares.
Proof.
unfold isPullback.
intros y p q.
intro Hrt.
assert (ex : (p · i) · f = q · g).
{ rewrite <- Hrt.
rewrite assoc; apply idpath.
}
set (rt := P1 _ (p · i) q ex).
set (Ppiq := pr1 (pr1 (rt))).
assert (owiej : p · i = Ppiq · h).
{ apply pathsinv0. apply (pr1 (pr2 (pr1 rt))). }
set (rt' := P2 _ p Ppiq owiej).
set (awe := pr1 (pr1 rt')).
assert (Hawe1 : awe · m = p).
{ exact (pr1 (pr2 (pr1 rt'))). }
assert (Hawe2 : awe · (j · k) = q).
{ rewrite assoc.
set (X := pr2 (pr2 (pr1 rt'))). simpl in X.
unfold awe. rewrite X.
exact (pr2 (pr2 (pr1 rt))).
}
exists (tpair _ awe (make_dirprod Hawe1 Hawe2)).
abstract ( intro t;
apply subtypePath;
[ intro a0; apply isapropdirprod; apply C
| destruct t as [t [Ht1 Ht2]];
apply PullbackArrowUnique;
[ assumption
| apply PullbackArrowUnique;
[ rewrite <- Ht1;
repeat rewrite <- assoc;
rewrite H2;
apply idpath
| rewrite <- assoc;
assumption ]
]
]).
Defined.
End pullback_lemma.
Definition pullback_glue_pullback {a b c e : C} {f : b --> a} {g : c --> a} {h : e --> b} (pbr : Pullback f g) (pbl : Pullback h (PullbackPr1 pbr)) : Pullback (h · f) g.
Proof.
use make_Pullback.
+ exact pbl.
+ exact (PullbackPr1 pbl).
+ exact ((PullbackPr2 pbl) · (PullbackPr2 pbr)).
+ abstract (use glueSquares;
[ exact (PullbackPr1 pbr) | use (PullbackSqrCommutes pbr) | use PullbackSqrCommutes ]).
+ use (isPullbackGluedSquare _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
(isPullback_Pullback pbr)
(isPullback_Pullback pbl)).
Defined.
End def_pb.
Arguments isPullback [_ _ _ _ _ _ _ _ _] _.
Arguments Pullback [_ _ _ _] _ _.
Arguments PullbackArrow [_ _ _ _ _ _ ] _ _ _ _ _ .
Arguments make_Pullback [_ _ _ _ _ _ _ _ _] _ _.
Arguments PullbackObject [_ _ _ _ _ _ ] _.
Arguments z_iso_from_Pullback_to_Pullback [_ _ _ _ _ _] _ _.
Arguments from_Pullback_to_Pullback [_ _ _ _ _ _] _ _.
Arguments are_inverses_from_Pullback_to_Pullback [_ _ _ _ _ _] _ _.
Arguments PullbackPr1 [_ _ _ _ _ _] _.
Arguments PullbackPr2 [_ _ _ _ _ _] _.
Arguments isPullback_Pullback [_ _ _ _ _ _] _.
Arguments MorphismsIntoPullbackEqual [_ _ _ _ _ _ _ _ _ _] _ _ _ _ .
Arguments PullbackSqrCommutes [_ _ _ _ _ _] _.
Arguments PullbackArrow_PullbackPr1 [_ _ _ _ _ _] _ _ _ _ _.
Arguments PullbackArrow_PullbackPr2 [_ _ _ _ _ _] _ _ _ _ _.
Arguments PullbackArrowUnique [_ _ _ _ _ _ _ _ _ ] _ _ _ _ _ _ _ _ _ .
Section Universal_Unique.
Context (C : category) (H : is_univalent C).
Lemma inv_from_z_iso_z_iso_from_Pullback (a b c : C) (f : b --> a) (g : c --> a)
(Pb : Pullback f g) (Pb' : Pullback f g):
inv_from_z_iso (z_iso_from_Pullback_to_Pullback Pb Pb') = from_Pullback_to_Pullback Pb' Pb.
Proof.
apply idpath.
Qed.
Lemma isaprop_Pullbacks: isaprop (Pullbacks C).
Proof.
apply impred; intro a;
apply impred; intro b;
apply impred; intro c;
apply impred; intro f;
apply impred; intro g;
apply invproofirrelevance.
intros Pb Pb'.
apply subtypePath.
- intro; apply isofhleveltotal2.
+ apply C.
+ intros; apply isaprop_isPullback.
- apply (total2_paths_f (isotoid _ H (z_iso_from_Pullback_to_Pullback Pb Pb' ))).
rewrite transportf_dirprod, transportf_isotoid.
rewrite inv_from_z_iso_z_iso_from_Pullback.
rewrite transportf_isotoid.
rewrite inv_from_z_iso_z_iso_from_Pullback.
destruct Pb as [Cone bla];
destruct Pb' as [Cone' bla'];
simpl in *.
destruct Cone as [p [h k]];
destruct Cone' as [p' [h' k']];
simpl in *.
unfold from_Pullback_to_Pullback;
rewrite PullbackArrow_PullbackPr2, PullbackArrow_PullbackPr1.
apply idpath.
Qed.
End Universal_Unique.
Make the C not implicit for Pullbacks
In this section we prove that the pullback of a monomorphism is a
monomorphism.
The pullback of a Monic is isMonic.
Lemma MonicPullbackisMonic {a b c : C} (M : Monic _ b a) (g : c --> a)
(PB : Pullback M g) : isMonic (PullbackPr2 PB).
Proof.
apply make_isMonic. intros x g0 h X.
use (MorphismsIntoPullbackEqual (isPullback_Pullback PB) _ _ _ _ X).
set (X0 := maponpaths (λ f, f · g) X); simpl in X0.
rewrite <- assoc in X0. rewrite <- assoc in X0.
rewrite <- (PullbackSqrCommutes PB) in X0.
rewrite assoc in X0. rewrite assoc in X0.
apply (pr2 M _ _ _) in X0. apply X0.
Qed.
(PB : Pullback M g) : isMonic (PullbackPr2 PB).
Proof.
apply make_isMonic. intros x g0 h X.
use (MorphismsIntoPullbackEqual (isPullback_Pullback PB) _ _ _ _ X).
set (X0 := maponpaths (λ f, f · g) X); simpl in X0.
rewrite <- assoc in X0. rewrite <- assoc in X0.
rewrite <- (PullbackSqrCommutes PB) in X0.
rewrite assoc in X0. rewrite assoc in X0.
apply (pr2 M _ _ _) in X0. apply X0.
Qed.
Same result for the other morphism.
Lemma MonicPullbackisMonic' {a b c : C} (f : b --> a) (M : Monic _ c a)
(PB : Pullback f M) : isMonic (PullbackPr1 PB).
Proof.
apply make_isMonic. intros x g h X.
use (MorphismsIntoPullbackEqual (isPullback_Pullback PB) _ _ _ X).
set (X0 := maponpaths (λ f', f' · f) X); simpl in X0.
rewrite <- assoc in X0. rewrite <- assoc in X0.
rewrite (PullbackSqrCommutes PB) in X0.
rewrite assoc in X0. rewrite assoc in X0.
apply (pr2 M _ _ _) in X0. apply X0.
Qed.
End monic_pb.
Arguments glueSquares {_ _ _ _ _ _ _ _ _ _ _ _ _ _ } _ _ .
Arguments isPullbackGluedSquare [_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _] _ _ [_ _ _] _.
(PB : Pullback f M) : isMonic (PullbackPr1 PB).
Proof.
apply make_isMonic. intros x g h X.
use (MorphismsIntoPullbackEqual (isPullback_Pullback PB) _ _ _ X).
set (X0 := maponpaths (λ f', f' · f) X); simpl in X0.
rewrite <- assoc in X0. rewrite <- assoc in X0.
rewrite (PullbackSqrCommutes PB) in X0.
rewrite assoc in X0. rewrite assoc in X0.
apply (pr2 M _ _ _) in X0. apply X0.
Qed.
End monic_pb.
Arguments glueSquares {_ _ _ _ _ _ _ _ _ _ _ _ _ _ } _ _ .
Arguments isPullbackGluedSquare [_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _] _ _ [_ _ _] _.
Section pb_criteria.
Context (C : category).
Lemma Pullback_from_Equalizer_BinProduct_eq (X Y Z : C)
(f : X --> Z) (g : Y --> Z) (BinProd : BinProduct C X Y)
(Eq : Equalizer ((BinProductPr1 C BinProd) · f)
((BinProductPr2 C BinProd) · g)) :
EqualizerArrow Eq · (BinProductPr1 C BinProd) · f
= EqualizerArrow Eq · (BinProductPr2 C BinProd) · g.
Proof.
repeat rewrite <- assoc. apply EqualizerEqAr.
Qed.
Definition Pullback_from_Equalizer_BinProduct_isPullback (X Y Z : C)
(f : X --> Z) (g : Y --> Z) (BinProd : BinProduct C X Y)
(Eq : Equalizer ((BinProductPr1 C BinProd) · f)
((BinProductPr2 C BinProd) · g)) :
isPullback
(Pullback_from_Equalizer_BinProduct_eq
X Y Z f g BinProd Eq).
Proof.
use make_isPullback.
intros e h k Hk.
set (com1 := BinProductPr1Commutes C _ _ BinProd _ h k).
set (com2 := BinProductPr2Commutes C _ _ BinProd _ h k).
apply (maponpaths (λ l : _, l · f)) in com1.
apply (maponpaths (λ l : _, l · g)) in com2.
rewrite <- com1 in Hk. rewrite <- com2 in Hk.
repeat rewrite <- assoc in Hk.
apply (unique_exists (EqualizerIn Eq _ _ Hk)).
split.
rewrite assoc. rewrite (EqualizerCommutes Eq e _).
exact (BinProductPr1Commutes C _ _ BinProd _ h k).
rewrite assoc. rewrite (EqualizerCommutes Eq e _).
exact (BinProductPr2Commutes C _ _ BinProd _ h k).
intros y. apply isapropdirprod; apply C.
intros y H. induction H as [t p]. apply EqualizerInsEq. apply BinProductArrowsEq.
rewrite assoc in t. rewrite t.
rewrite (EqualizerCommutes Eq e _). apply pathsinv0.
exact (BinProductPr1Commutes C _ _ BinProd _ h k).
rewrite assoc in p. rewrite p.
rewrite (EqualizerCommutes Eq e _). apply pathsinv0.
exact (BinProductPr2Commutes C _ _ BinProd _ h k).
Qed.
Definition Pullback_from_Equalizer_BinProduct (X Y Z : C)
(f : X --> Z) (g : Y --> Z) (BinProd : BinProduct C X Y)
(Eq : Equalizer ((BinProductPr1 C BinProd) · f)
((BinProductPr2 C BinProd) · g)) :
Pullback f g.
Proof.
use (@make_Pullback _ _ _ _ f g Eq (EqualizerArrow Eq · (BinProductPr1 C BinProd))
(EqualizerArrow Eq · (BinProductPr2 C BinProd))).
apply Pullback_from_Equalizer_BinProduct_eq.
apply Pullback_from_Equalizer_BinProduct_isPullback.
Defined.
Definition Pullbacks_from_Equalizers_BinProducts (BinProds : BinProducts C)
(Eqs : Equalizers C) : Pullbacks C.
Proof.
intros Z X Y f g.
use (Pullback_from_Equalizer_BinProduct X Y Z f g).
apply BinProds.
apply Eqs.
Defined.
End pb_criteria.
Section lemmas_on_pullbacks.
Context (C : category).
Lemma Pullback_from_Equalizer_BinProduct_eq (X Y Z : C)
(f : X --> Z) (g : Y --> Z) (BinProd : BinProduct C X Y)
(Eq : Equalizer ((BinProductPr1 C BinProd) · f)
((BinProductPr2 C BinProd) · g)) :
EqualizerArrow Eq · (BinProductPr1 C BinProd) · f
= EqualizerArrow Eq · (BinProductPr2 C BinProd) · g.
Proof.
repeat rewrite <- assoc. apply EqualizerEqAr.
Qed.
Definition Pullback_from_Equalizer_BinProduct_isPullback (X Y Z : C)
(f : X --> Z) (g : Y --> Z) (BinProd : BinProduct C X Y)
(Eq : Equalizer ((BinProductPr1 C BinProd) · f)
((BinProductPr2 C BinProd) · g)) :
isPullback
(Pullback_from_Equalizer_BinProduct_eq
X Y Z f g BinProd Eq).
Proof.
use make_isPullback.
intros e h k Hk.
set (com1 := BinProductPr1Commutes C _ _ BinProd _ h k).
set (com2 := BinProductPr2Commutes C _ _ BinProd _ h k).
apply (maponpaths (λ l : _, l · f)) in com1.
apply (maponpaths (λ l : _, l · g)) in com2.
rewrite <- com1 in Hk. rewrite <- com2 in Hk.
repeat rewrite <- assoc in Hk.
apply (unique_exists (EqualizerIn Eq _ _ Hk)).
split.
rewrite assoc. rewrite (EqualizerCommutes Eq e _).
exact (BinProductPr1Commutes C _ _ BinProd _ h k).
rewrite assoc. rewrite (EqualizerCommutes Eq e _).
exact (BinProductPr2Commutes C _ _ BinProd _ h k).
intros y. apply isapropdirprod; apply C.
intros y H. induction H as [t p]. apply EqualizerInsEq. apply BinProductArrowsEq.
rewrite assoc in t. rewrite t.
rewrite (EqualizerCommutes Eq e _). apply pathsinv0.
exact (BinProductPr1Commutes C _ _ BinProd _ h k).
rewrite assoc in p. rewrite p.
rewrite (EqualizerCommutes Eq e _). apply pathsinv0.
exact (BinProductPr2Commutes C _ _ BinProd _ h k).
Qed.
Definition Pullback_from_Equalizer_BinProduct (X Y Z : C)
(f : X --> Z) (g : Y --> Z) (BinProd : BinProduct C X Y)
(Eq : Equalizer ((BinProductPr1 C BinProd) · f)
((BinProductPr2 C BinProd) · g)) :
Pullback f g.
Proof.
use (@make_Pullback _ _ _ _ f g Eq (EqualizerArrow Eq · (BinProductPr1 C BinProd))
(EqualizerArrow Eq · (BinProductPr2 C BinProd))).
apply Pullback_from_Equalizer_BinProduct_eq.
apply Pullback_from_Equalizer_BinProduct_isPullback.
Defined.
Definition Pullbacks_from_Equalizers_BinProducts (BinProds : BinProducts C)
(Eqs : Equalizers C) : Pullbacks C.
Proof.
intros Z X Y f g.
use (Pullback_from_Equalizer_BinProduct X Y Z f g).
apply BinProds.
apply Eqs.
Defined.
End pb_criteria.
Section lemmas_on_pullbacks.
setup for this section
k d --------> c | | h | H | g v v b --------> a f
Context {C : category}
{a b c d : C}
{f : C ⟦b, a⟧} {g : C ⟦c, a⟧} {h : C⟦d, b⟧} {k : C⟦d,c⟧}
(H : h · f = k · g).
Pullback is symmetric, i.e., we can rotate a pb square
Lemma is_symmetric_isPullback
: isPullback H -> isPullback (!H).
Proof.
intro isPb.
use make_isPullback.
intros e x y Hxy.
set (Pb := make_Pullback _ isPb).
use tpair.
- use tpair.
+ use (PullbackArrow Pb).
* assumption.
* assumption.
* abstract (apply (!Hxy)).
+ abstract (split;
[apply (PullbackArrow_PullbackPr2 Pb) |
apply (PullbackArrow_PullbackPr1 Pb)]).
- abstract (intro t; apply subtypePath;
[intro; apply isapropdirprod; apply C
| destruct t as [t Ht];
cbn; apply PullbackArrowUnique;
[apply (pr2 Ht) | apply (pr1 Ht)]]).
Defined.
Pulling back a section
Definition pb_of_section (isPb : isPullback H)
(s : C⟦a,c⟧) (K : s · g = identity _ )
: ∑ s' : C⟦b, d⟧, s' · h = identity _ .
Proof.
use tpair.
- use (PullbackArrow (make_Pullback _ isPb) b (identity _ )
(f · s)).
abstract (rewrite id_left, <- assoc, K, id_right; apply idpath).
- abstract (cbn; apply (PullbackArrow_PullbackPr1 (make_Pullback H isPb))).
Defined.
Diagonal morphisms are equivalent to sections
Definition section_from_diagonal (isPb : isPullback H)
: (∑ x : C⟦b, c⟧, x · g = f)
->
∑ s' : C⟦b, d⟧, s' · h = identity _ .
Proof.
intro X.
use tpair.
- use (PullbackArrow (make_Pullback _ isPb) _ (identity _ ) (pr1 X)).
abstract (rewrite id_left ; apply (! (pr2 X))).
- abstract (apply (PullbackArrow_PullbackPr1 (make_Pullback H isPb))).
Defined.
Definition diagonal_from_section (isPb : isPullback H)
: (∑ x : C⟦b, c⟧, x · g = f)
<-
∑ s' : C⟦b, d⟧, s' · h = identity _ .
Proof.
intro X.
exists (pr1 X · k).
abstract (rewrite <- assoc, <- H, assoc, (pr2 X); apply id_left).
Defined.
Definition weq_section_from_diagonal (isPb : isPullback H)
: (∑ x : C⟦b, c⟧, x · g = f)
≃
∑ s' : C⟦b, d⟧, s' · h = identity _ .
Proof.
exists (section_from_diagonal isPb).
apply (isweq_iso _ (diagonal_from_section isPb )).
- abstract (intro x; apply subtypePath; [intro; apply C |];
apply (PullbackArrow_PullbackPr2 (make_Pullback H isPb) )).
- abstract (intro y; apply subtypePath; [intro; apply C |];
destruct y as [y t2];
apply pathsinv0, PullbackArrowUnique; [
apply t2 |
apply idpath] ).
Defined.
Diagram for next lemma
i' k d' -------> d --------> c | | | h'| |h | g v v v b'--------> b --------> a i f
Lemma isPullback_two_pullback
(b' d' : C) (h' : C⟦d', b'⟧)
(i : C⟦b', b⟧) (i' : C⟦d', d⟧)
(Hinner : h · f = k · g)
(Hinnerpb : isPullback Hinner)
(Hleft : h' · i = i' · h)
(Houterpb : isPullback (glueSquares Hinner Hleft ))
: isPullback Hleft.
Proof.
apply make_isPullback.
intros e x y Hxy.
use tpair.
- use tpair.
use (PullbackArrow (make_Pullback _ Houterpb)).
+ apply x.
+ apply (y · k).
+ abstract (rewrite assoc; rewrite Hxy;
repeat rewrite <- assoc; rewrite Hinner; apply idpath).
+ abstract (
split ;
[
apply (PullbackArrow_PullbackPr1 (make_Pullback _ Houterpb))
|
idtac
];
apply (MorphismsIntoPullbackEqual Hinnerpb);
[rewrite <- assoc;
match goal with |[ |- ?KK · ( _ · _ ) = _ ] => intermediate_path (KK · (h' · i)) end;
[ apply maponpaths; apply (!Hleft) |
rewrite assoc;
assert (T:= PullbackArrow_PullbackPr1 (make_Pullback _ Houterpb));
cbn in T; rewrite T;
apply Hxy ]
| idtac ] ;
assert (T:= PullbackArrow_PullbackPr2 (make_Pullback _ Houterpb));
cbn in T; rewrite <- assoc, T; apply idpath
).
- abstract (
intro t; apply subtypePath;
[ intro; apply isapropdirprod; apply C
|
simpl; apply PullbackArrowUnique; [
apply (pr1 (pr2 t))
|
cbn; rewrite assoc; rewrite (pr2 (pr2 t)); apply idpath ]]
).
Defined.
Diagram for next lemma
i' k d' -------> d --------> c | | | h'| |h | g v v v b'--------> b --------> a i f
Lemma isPullback_z_iso_of_morphisms (b' d' : C) (h' : C⟦d', b'⟧)
(i : C⟦b', b⟧) (i' : C⟦d', d⟧)
(xi : is_z_isomorphism i) (xi' : is_z_isomorphism i')
(Hi : h' · i = i' · h)
(H' : h' · (i · f) = (i' · k) · g)
: isPullback H ->
isPullback H'.
Proof.
intro isPb.
use make_isPullback.
intros e x y Hxy.
set (Pb:= make_Pullback _ isPb).
use tpair.
- use tpair.
+ use ( PullbackArrow Pb _ _ _ _ · _ ).
* apply (x · i).
* apply y.
* abstract (rewrite <- assoc; apply Hxy).
* apply (inv_from_z_iso (make_z_iso' i' xi')).
+ cbn. split.
* assert (X:= PullbackArrow_PullbackPr1 Pb e (x · i) y ).
cbn in X.
{
match goal with
|[ |- ?AA · _ · _ = _ ] =>
intermediate_path (AA · h · inv_from_z_iso (make_z_iso' i xi)) end.
- repeat rewrite <- assoc. apply maponpaths.
apply z_iso_inv_on_right.
rewrite assoc.
apply z_iso_inv_on_left.
apply pathsinv0, Hi.
- rewrite X.
apply pathsinv0.
apply z_iso_inv_on_left. apply idpath.
}
* assert (X:= PullbackArrow_PullbackPr2 Pb e (x · i) y ).
cbn in X.
repeat rewrite assoc.
{
match goal with |[|- ?AA · _ · _ · ?K = _ ]
=> intermediate_path (AA · K) end.
- apply cancel_postcomposition.
repeat rewrite <- assoc.
rewrite z_iso_after_z_iso_inv.
apply id_right.
- apply X.
}
- cbn. intro t.
apply subtypePath.
+ intro. apply isapropdirprod; apply C.
+ cbn.
destruct t as [t Ht]; cbn in *.
apply z_iso_inv_on_left.
apply pathsinv0 , PullbackArrowUnique; cbn in *.
* rewrite <- assoc. rewrite <- Hi.
rewrite assoc. rewrite (pr1 Ht). apply idpath.
* rewrite <- assoc. apply (pr2 Ht).
Defined.
End pullback_iso.
End lemmas_on_pullbacks.
Definition identity_isPullback
{C : category}
{x y : C}
{f g : x --> y}
{ix : x --> x}
{iy : y --> y}
(p : f · iy = ix · g)
(q₁ : f = g)
(q₂ : ix = identity _)
(q₃ : iy = identity _)
: isPullback p.
Proof.
intros w h k r.
use iscontraprop1.
- abstract
(use invproofirrelevance ;
intros φ₁ φ₂ ;
use subtypePath ; [ intro ; apply isapropdirprod ; apply homset_property | ] ;
refine (!(id_right _) @ _) ;
rewrite <- q₂ ;
refine (pr22 φ₁ @ !(pr22 φ₂) @ _) ;
rewrite q₂ ;
apply id_right).
- simple refine (k ,, _ ,, _).
+ abstract
(rewrite q₁ ;
rewrite <- r ;
rewrite q₃ ;
apply id_right).
+ abstract
(cbn ;
rewrite q₂ ;
apply id_right).
Defined.
Definition switchPullback {C:category} {A B D:C} {f : A --> D} {g : B --> D} (pb : Pullback f g) : Pullback g f.
Proof.
induction pb as [[P [r s]] [e ip]]; simpl in e.
use (make_Pullback (!e) (is_symmetric_isPullback _ ip)).
Defined.
{C : category}
{x y : C}
{f g : x --> y}
{ix : x --> x}
{iy : y --> y}
(p : f · iy = ix · g)
(q₁ : f = g)
(q₂ : ix = identity _)
(q₃ : iy = identity _)
: isPullback p.
Proof.
intros w h k r.
use iscontraprop1.
- abstract
(use invproofirrelevance ;
intros φ₁ φ₂ ;
use subtypePath ; [ intro ; apply isapropdirprod ; apply homset_property | ] ;
refine (!(id_right _) @ _) ;
rewrite <- q₂ ;
refine (pr22 φ₁ @ !(pr22 φ₂) @ _) ;
rewrite q₂ ;
apply id_right).
- simple refine (k ,, _ ,, _).
+ abstract
(rewrite q₁ ;
rewrite <- r ;
rewrite q₃ ;
apply id_right).
+ abstract
(cbn ;
rewrite q₂ ;
apply id_right).
Defined.
Definition switchPullback {C:category} {A B D:C} {f : A --> D} {g : B --> D} (pb : Pullback f g) : Pullback g f.
Proof.
induction pb as [[P [r s]] [e ip]]; simpl in e.
use (make_Pullback (!e) (is_symmetric_isPullback _ ip)).
Defined.
In this section we prove that the pullback of a z_iso is a
z_iso.
Section pb_of_ziso.
Lemma Pullback_of_z_iso {C:category} {a b c : C} {f : C ⟦b, a⟧} {g : C ⟦c, a⟧} (gis : is_z_isomorphism g) (pb : Pullback f g) : is_z_isomorphism (PullbackPr1 pb).
Proof.
use make_is_z_isomorphism.
+ use PullbackArrow.
- exact (identity b).
- exact (f · (is_z_isomorphism_mor gis)).
- now rewrite
assoc',
(is_inverse_in_precat2
(is_z_isomorphism_is_inverse_in_precat
gis)),
id_left,
id_right.
+ use make_is_inverse_in_precat.
- use pathsinv0.
use PullbackEndo_is_identity.
* now rewrite
(assoc' (PullbackPr1 pb)),
PullbackArrow_PullbackPr1,
id_right.
* now rewrite
(assoc' (PullbackPr1 pb)),
PullbackArrow_PullbackPr2,
assoc,
PullbackSqrCommutes,
assoc',
(is_inverse_in_precat1
(is_z_isomorphism_is_inverse_in_precat
gis)),
id_right.
- use PullbackArrow_PullbackPr1.
Defined.
Lemma Pullback_of_z_iso' {C:category} {a b c : C} {f : C ⟦b, a⟧} {g : C ⟦c, a⟧} (fis : is_z_isomorphism f) (pb : Pullback f g) : is_z_isomorphism (PullbackPr2 pb).
Proof.
use (Pullback_of_z_iso _ (switchPullback pb)).
exact fis.
Defined.
End pb_of_ziso.
Definition Pullback_z_iso_of_morphisms {C:category} {a b c : C} {f : b --> a} {g : c --> a} (pb : Pullback f g)
{b' pb' : C}
(i : C⟦b', b⟧) (i' : C⟦pb', pb⟧) (h : C⟦pb', b'⟧)
(xi : is_z_isomorphism i) (xi' : is_z_isomorphism i')
(Hi : h · i = i' · (PullbackPr1 pb))
: Pullback (i · f) g.
Proof.
assert (H' : h · (i · f) = i' · PullbackPr2 pb · g). {
rewrite assoc, Hi, !assoc'.
use cancel_precomposition.
use PullbackSqrCommutes.
}
use (make_Pullback (p1:=h) (p2:=(i' · (PullbackPr2 pb))) H').
use (isPullback_z_iso_of_morphisms (PullbackSqrCommutes pb)).
- exact xi.
- exact xi'.
- exact Hi.
- use isPullback_Pullback.
Defined.
Lemma Pullback_of_z_iso {C:category} {a b c : C} {f : C ⟦b, a⟧} {g : C ⟦c, a⟧} (gis : is_z_isomorphism g) (pb : Pullback f g) : is_z_isomorphism (PullbackPr1 pb).
Proof.
use make_is_z_isomorphism.
+ use PullbackArrow.
- exact (identity b).
- exact (f · (is_z_isomorphism_mor gis)).
- now rewrite
assoc',
(is_inverse_in_precat2
(is_z_isomorphism_is_inverse_in_precat
gis)),
id_left,
id_right.
+ use make_is_inverse_in_precat.
- use pathsinv0.
use PullbackEndo_is_identity.
* now rewrite
(assoc' (PullbackPr1 pb)),
PullbackArrow_PullbackPr1,
id_right.
* now rewrite
(assoc' (PullbackPr1 pb)),
PullbackArrow_PullbackPr2,
assoc,
PullbackSqrCommutes,
assoc',
(is_inverse_in_precat1
(is_z_isomorphism_is_inverse_in_precat
gis)),
id_right.
- use PullbackArrow_PullbackPr1.
Defined.
Lemma Pullback_of_z_iso' {C:category} {a b c : C} {f : C ⟦b, a⟧} {g : C ⟦c, a⟧} (fis : is_z_isomorphism f) (pb : Pullback f g) : is_z_isomorphism (PullbackPr2 pb).
Proof.
use (Pullback_of_z_iso _ (switchPullback pb)).
exact fis.
Defined.
End pb_of_ziso.
Definition Pullback_z_iso_of_morphisms {C:category} {a b c : C} {f : b --> a} {g : c --> a} (pb : Pullback f g)
{b' pb' : C}
(i : C⟦b', b⟧) (i' : C⟦pb', pb⟧) (h : C⟦pb', b'⟧)
(xi : is_z_isomorphism i) (xi' : is_z_isomorphism i')
(Hi : h · i = i' · (PullbackPr1 pb))
: Pullback (i · f) g.
Proof.
assert (H' : h · (i · f) = i' · PullbackPr2 pb · g). {
rewrite assoc, Hi, !assoc'.
use cancel_precomposition.
use PullbackSqrCommutes.
}
use (make_Pullback (p1:=h) (p2:=(i' · (PullbackPr2 pb))) H').
use (isPullback_z_iso_of_morphisms (PullbackSqrCommutes pb)).
- exact xi.
- exact xi'.
- exact Hi.
- use isPullback_Pullback.
Defined.
Section functor_on_square.
Context (C D : category) (F : functor C D).
Section isPullback_if_functor_on_square_is.
Context (Fff : fully_faithful F)
{a b c d : C}
{f : C ⟦b, a⟧} {g : C ⟦c, a⟧} {h : C⟦d, b⟧} {k : C⟦d,c⟧}
(H : h · f = k · g).
Definition functor_on_square : #F h · #F f = #F k · #F g.
Proof.
eapply pathscomp0; [ | apply functor_comp].
eapply pathscomp0; [ | apply maponpaths ; apply H].
apply (! functor_comp _ _ _ ).
Qed.
Context (X : isPullback functor_on_square).
Lemma isPullback_preimage_square : isPullback H.
Proof.
use make_isPullback.
intros e x y Hxy.
set (T := maponpaths (#F) Hxy).
set (T' := !functor_comp _ _ _
@
T
@
functor_comp _ _ _ ).
set (TH := X _ _ _ T').
set (FxFy := pr1 (pr1 TH)).
set (HFxFy := pr2 (pr1 TH)). simpl in HFxFy.
set (xy := fully_faithful_inv_hom Fff _ _ FxFy).
use tpair.
- exists xy.
set (t := pr1 HFxFy).
set (p := pr2 HFxFy).
split.
+ use (invmaponpathsweq (make_weq _ (Fff _ _ ))).
simpl.
rewrite functor_comp.
assert (XX:=homotweqinvweq (make_weq _ (Fff e d ))). simpl in XX.
unfold xy.
simpl.
eapply pathscomp0.
eapply cancel_postcomposition.
assert (XXX := XX FxFy).
apply XX. exact t.
+ use (invmaponpathsweq (make_weq _ (Fff _ _ ))).
simpl.
rewrite functor_comp.
assert (XX:=homotweqinvweq (make_weq _ (Fff e d ))). simpl in XX.
unfold xy.
simpl.
eapply pathscomp0.
eapply cancel_postcomposition.
assert (XXX := XX FxFy).
apply XX. exact p.
- simpl.
intro t.
apply subtypePath.
+ intro kkkk. apply isapropdirprod; apply C.
+ simpl.
use (invmaponpathsweq (make_weq _ (Fff _ _ ))).
simpl.
unfold xy.
assert (XX:=homotweqinvweq (make_weq _ (Fff e d ))). simpl in XX.
apply pathsinv0.
eapply pathscomp0.
apply XX.
apply pathsinv0.
apply path_to_ctr.
destruct (pr2 t) as [H1 H2].
split.
* assert (X1:= maponpaths (#F) H1).
eapply pathscomp0. apply (!functor_comp _ _ _ ).
apply X1.
* assert (X2:= maponpaths (#F) H2).
eapply pathscomp0. apply (!functor_comp _ _ _).
apply X2.
Defined.
End isPullback_if_functor_on_square_is.
Context (C D : category) (F : functor C D).
Section isPullback_if_functor_on_square_is.
Context (Fff : fully_faithful F)
{a b c d : C}
{f : C ⟦b, a⟧} {g : C ⟦c, a⟧} {h : C⟦d, b⟧} {k : C⟦d,c⟧}
(H : h · f = k · g).
Definition functor_on_square : #F h · #F f = #F k · #F g.
Proof.
eapply pathscomp0; [ | apply functor_comp].
eapply pathscomp0; [ | apply maponpaths ; apply H].
apply (! functor_comp _ _ _ ).
Qed.
Context (X : isPullback functor_on_square).
Lemma isPullback_preimage_square : isPullback H.
Proof.
use make_isPullback.
intros e x y Hxy.
set (T := maponpaths (#F) Hxy).
set (T' := !functor_comp _ _ _
@
T
@
functor_comp _ _ _ ).
set (TH := X _ _ _ T').
set (FxFy := pr1 (pr1 TH)).
set (HFxFy := pr2 (pr1 TH)). simpl in HFxFy.
set (xy := fully_faithful_inv_hom Fff _ _ FxFy).
use tpair.
- exists xy.
set (t := pr1 HFxFy).
set (p := pr2 HFxFy).
split.
+ use (invmaponpathsweq (make_weq _ (Fff _ _ ))).
simpl.
rewrite functor_comp.
assert (XX:=homotweqinvweq (make_weq _ (Fff e d ))). simpl in XX.
unfold xy.
simpl.
eapply pathscomp0.
eapply cancel_postcomposition.
assert (XXX := XX FxFy).
apply XX. exact t.
+ use (invmaponpathsweq (make_weq _ (Fff _ _ ))).
simpl.
rewrite functor_comp.
assert (XX:=homotweqinvweq (make_weq _ (Fff e d ))). simpl in XX.
unfold xy.
simpl.
eapply pathscomp0.
eapply cancel_postcomposition.
assert (XXX := XX FxFy).
apply XX. exact p.
- simpl.
intro t.
apply subtypePath.
+ intro kkkk. apply isapropdirprod; apply C.
+ simpl.
use (invmaponpathsweq (make_weq _ (Fff _ _ ))).
simpl.
unfold xy.
assert (XX:=homotweqinvweq (make_weq _ (Fff e d ))). simpl in XX.
apply pathsinv0.
eapply pathscomp0.
apply XX.
apply pathsinv0.
apply path_to_ctr.
destruct (pr2 t) as [H1 H2].
split.
* assert (X1:= maponpaths (#F) H1).
eapply pathscomp0. apply (!functor_comp _ _ _ ).
apply X1.
* assert (X2:= maponpaths (#F) H2).
eapply pathscomp0. apply (!functor_comp _ _ _).
apply X2.
Defined.
End isPullback_if_functor_on_square_is.
Section ff_es_functor_preserves_pb.
Context (Fff : fully_faithful F) (Fes : essentially_surjective F).
Let FF a b := (weq_from_fully_faithful Fff a b).
Context {a b c d : C}
{f : C ⟦b, a⟧} {g : C ⟦c, a⟧} {h : C⟦d, b⟧} {k : C⟦d,c⟧}
(H : h · f = k · g)
(X : isPullback H).
Lemma isPullback_image_square
: isPullback (functor_on_square H).
Proof.
intros e x y Hxy.
apply (squash_to_prop (Fes e)).
apply isapropiscontr.
intros [e' i].
set (e'c := invmap (FF _ _ ) (i ·y)).
set (e'b := invmap (FF _ _ ) (i ·x)).
set (Pb := make_Pullback _ X).
assert (XX : e'b · f = e'c · g).
{ apply (invmaponpathsweq (FF _ _ )).
cbn. unfold e'b. unfold e'c.
repeat rewrite functor_comp.
set (T:=homotweqinvweq (FF e' b)). cbn in T.
rewrite T; clear T.
set (T:=homotweqinvweq (FF e' c)). cbn in T.
rewrite T; clear T.
repeat rewrite <- assoc. rewrite Hxy. apply idpath.
}
set (umor := PullbackArrow Pb _ e'b e'c XX).
set (umorPr1 := PullbackArrow_PullbackPr1 Pb _ _ _ XX).
set (umorPr2 := PullbackArrow_PullbackPr2 Pb _ _ _ XX).
cbn in *.
use tpair.
- exists (inv_from_z_iso i · #F umor ).
split.
+ rewrite <- assoc. apply z_iso_inv_on_right.
rewrite <- functor_comp.
apply (invmaponpathsweq (invweq (FF _ _ ))).
cbn.
set (TX:= homotinvweqweq (FF e' b)). cbn in TX.
rewrite TX; clear TX.
unfold umor; rewrite umorPr1. apply idpath.
+ rewrite <- assoc. apply z_iso_inv_on_right.
rewrite <- functor_comp.
apply (invmaponpathsweq (invweq (FF _ _ ))).
cbn.
set (TX:= homotinvweqweq (FF e' c)). cbn in TX.
rewrite TX; clear TX.
unfold umor; rewrite umorPr2. apply idpath.
- cbn. intro t. apply subtypePath ; [
intro; apply isapropdirprod; apply D | cbn ].
destruct t as [t [Htx Hty]]; cbn.
apply (pre_comp_with_z_iso_is_inj i).
rewrite assoc. rewrite z_iso_inv_after_z_iso.
rewrite id_left.
apply (invmaponpathsweq (invweq (FF _ _ ))).
cbn.
set (TX:= homotinvweqweq (FF e' d)). cbn in TX.
rewrite TX; clear TX.
apply PullbackArrowUnique.
+ apply (invmaponpathsweq (FF _ _ )).
set (TX:= homotweqinvweq (FF e' d)). cbn in *.
rewrite functor_comp, TX; clear TX.
rewrite <- assoc. rewrite Htx.
unfold e'b.
set (TX:= homotweqinvweq (FF e' b)). cbn in *.
rewrite TX. apply idpath.
+ apply (invmaponpathsweq (FF _ _ )).
set (TX:= homotweqinvweq (FF e' d)). cbn in *.
rewrite functor_comp, TX; clear TX.
rewrite <- assoc. rewrite Hty.
unfold e'c.
set (TX:= homotweqinvweq (FF e' c)). cbn in *.
rewrite TX. apply idpath.
Qed.
End ff_es_functor_preserves_pb.
Definition maps_pb_square_to_pb_square
{a b c d : C}
{f : C ⟦b, a⟧} {g : C ⟦c, a⟧} {h : C⟦d, b⟧} {k : C⟦d,c⟧}
(H : h · f = k · g)
: UU :=
isPullback H -> isPullback (functor_on_square H).
Definition maps_pb_squares_to_pb_squares :=
∏ (a b c d : C)
(f : C ⟦b, a⟧) (g : C ⟦c, a⟧) (h : C⟦d, b⟧) (k : C⟦d,c⟧)
(H : h · f = k · g),
maps_pb_square_to_pb_square H.
End functor_on_square.
Context (Fff : fully_faithful F) (Fes : essentially_surjective F).
Let FF a b := (weq_from_fully_faithful Fff a b).
Context {a b c d : C}
{f : C ⟦b, a⟧} {g : C ⟦c, a⟧} {h : C⟦d, b⟧} {k : C⟦d,c⟧}
(H : h · f = k · g)
(X : isPullback H).
Lemma isPullback_image_square
: isPullback (functor_on_square H).
Proof.
intros e x y Hxy.
apply (squash_to_prop (Fes e)).
apply isapropiscontr.
intros [e' i].
set (e'c := invmap (FF _ _ ) (i ·y)).
set (e'b := invmap (FF _ _ ) (i ·x)).
set (Pb := make_Pullback _ X).
assert (XX : e'b · f = e'c · g).
{ apply (invmaponpathsweq (FF _ _ )).
cbn. unfold e'b. unfold e'c.
repeat rewrite functor_comp.
set (T:=homotweqinvweq (FF e' b)). cbn in T.
rewrite T; clear T.
set (T:=homotweqinvweq (FF e' c)). cbn in T.
rewrite T; clear T.
repeat rewrite <- assoc. rewrite Hxy. apply idpath.
}
set (umor := PullbackArrow Pb _ e'b e'c XX).
set (umorPr1 := PullbackArrow_PullbackPr1 Pb _ _ _ XX).
set (umorPr2 := PullbackArrow_PullbackPr2 Pb _ _ _ XX).
cbn in *.
use tpair.
- exists (inv_from_z_iso i · #F umor ).
split.
+ rewrite <- assoc. apply z_iso_inv_on_right.
rewrite <- functor_comp.
apply (invmaponpathsweq (invweq (FF _ _ ))).
cbn.
set (TX:= homotinvweqweq (FF e' b)). cbn in TX.
rewrite TX; clear TX.
unfold umor; rewrite umorPr1. apply idpath.
+ rewrite <- assoc. apply z_iso_inv_on_right.
rewrite <- functor_comp.
apply (invmaponpathsweq (invweq (FF _ _ ))).
cbn.
set (TX:= homotinvweqweq (FF e' c)). cbn in TX.
rewrite TX; clear TX.
unfold umor; rewrite umorPr2. apply idpath.
- cbn. intro t. apply subtypePath ; [
intro; apply isapropdirprod; apply D | cbn ].
destruct t as [t [Htx Hty]]; cbn.
apply (pre_comp_with_z_iso_is_inj i).
rewrite assoc. rewrite z_iso_inv_after_z_iso.
rewrite id_left.
apply (invmaponpathsweq (invweq (FF _ _ ))).
cbn.
set (TX:= homotinvweqweq (FF e' d)). cbn in TX.
rewrite TX; clear TX.
apply PullbackArrowUnique.
+ apply (invmaponpathsweq (FF _ _ )).
set (TX:= homotweqinvweq (FF e' d)). cbn in *.
rewrite functor_comp, TX; clear TX.
rewrite <- assoc. rewrite Htx.
unfold e'b.
set (TX:= homotweqinvweq (FF e' b)). cbn in *.
rewrite TX. apply idpath.
+ apply (invmaponpathsweq (FF _ _ )).
set (TX:= homotweqinvweq (FF e' d)). cbn in *.
rewrite functor_comp, TX; clear TX.
rewrite <- assoc. rewrite Hty.
unfold e'c.
set (TX:= homotweqinvweq (FF e' c)). cbn in *.
rewrite TX. apply idpath.
Qed.
End ff_es_functor_preserves_pb.
Definition maps_pb_square_to_pb_square
{a b c d : C}
{f : C ⟦b, a⟧} {g : C ⟦c, a⟧} {h : C⟦d, b⟧} {k : C⟦d,c⟧}
(H : h · f = k · g)
: UU :=
isPullback H -> isPullback (functor_on_square H).
Definition maps_pb_squares_to_pb_squares :=
∏ (a b c d : C)
(f : C ⟦b, a⟧) (g : C ⟦c, a⟧) (h : C⟦d, b⟧) (k : C⟦d,c⟧)
(H : h · f = k · g),
maps_pb_square_to_pb_square H.
End functor_on_square.
Diagram for this section:
d J -------> H | | c | | b v v G -------> F a
Context {C D : category}.
Let CD := [C, D].
Context {F G H J : CD}
{a : CD ⟦G, F⟧} {b : CD ⟦H, F⟧} {c : CD⟦J,G⟧} {d : CD⟦J, H⟧}
(Hcomm : c · a = d · b).
Arguments make_Pullback {_ _ _ _ _ _ _ _ _ _ } _ .
Let Hcommx x := nat_trans_eq_pointwise Hcomm x.
Local Definition g (T : ∏ x, isPullback (Hcommx x))
(E : CD) (h : CD ⟦ E, G ⟧) (k : CD ⟦ E, H ⟧)
(Hhk : h · a = k · b) : ∏ x, D ⟦ pr1 E x, pr1 J x ⟧.
Proof.
intro x; apply (PullbackArrow (make_Pullback (T x)) _ (pr1 h x) (pr1 k x)).
abstract (apply (nat_trans_eq_pointwise Hhk)).
Defined.
Local Lemma is_nat_trans_g (T : ∏ x, isPullback (Hcommx x))
E (h : CD ⟦ E, G ⟧) (k : CD ⟦ E, H ⟧)
(Hhk : h · a = k · b) : is_nat_trans _ _ (λ x : C, g T E h k Hhk x).
Proof.
intros x y f; unfold g.
apply (MorphismsIntoPullbackEqual (T y)).
+ rewrite <- !assoc, (PullbackArrow_PullbackPr1 (make_Pullback (T y))).
rewrite (nat_trans_ax c), assoc.
now rewrite (PullbackArrow_PullbackPr1 (make_Pullback (T x))), (nat_trans_ax h).
+ rewrite <- !assoc,(PullbackArrow_PullbackPr2 (make_Pullback (T y))).
rewrite (nat_trans_ax d), assoc.
now rewrite (PullbackArrow_PullbackPr2 (make_Pullback (T x))), (nat_trans_ax k).
Qed.
Lemma pb_if_pointwise_pb : (∏ x, isPullback (Hcommx x)) ->
isPullback Hcomm.
Proof.
intro T.
use make_isPullback; intros E h k Hhk.
use unique_exists.
- use tpair.
+ intro x; apply (g T E h k Hhk).
+ apply is_nat_trans_g.
- abstract (split; apply (nat_trans_eq D); intro x;
[ apply (PullbackArrow_PullbackPr1 (make_Pullback (T x)))
| apply (PullbackArrow_PullbackPr2 (make_Pullback (T x))) ]).
- abstract (intro; apply isapropdirprod; apply functor_category_has_homsets).
- abstract (intros t [h1 h2]; destruct h as [h Hh];
apply (nat_trans_eq D); intro x; apply PullbackArrowUnique;
[ apply (nat_trans_eq_pointwise h1) | apply (nat_trans_eq_pointwise h2) ]).
Defined.
End pullbacks_pointwise.
Section binproduct_from_pullback.
Context {C : category} (Pb : Pullbacks C) (T : Terminal C).
Definition UnivProductFromPullback (c d a : C) (f : a --> c) (g : a --> d):
∑ fg : a --> Pb T c d (TerminalArrow T c) (TerminalArrow T d),
(fg · PullbackPr1 (Pb T c d (TerminalArrow T c) (TerminalArrow T d)) = f)
× (fg · PullbackPr2 (Pb T c d (TerminalArrow T c) (TerminalArrow T d)) = g).
Proof.
unfold Pullbacks in Pb.
exists (PullbackArrow (Pb _ _ _ (TerminalArrow _ c)(TerminalArrow _ d)) _ f g
(TerminalArrowEq _ _)).
split.
apply PullbackArrow_PullbackPr1.
apply PullbackArrow_PullbackPr2.
Defined.
Lemma isBinProduct_Pullback (c d : C):
isBinProduct C c d
(PullbackObject (Pb _ _ _ (TerminalArrow T c) (TerminalArrow T d)))
(PullbackPr1 _ ) (PullbackPr2 _ ).
Proof.
intros a f g.
exists (UnivProductFromPullback c d a f g).
intro t.
abstract (apply proofirrelevancecontr,
isPullback_Pullback,
TerminalArrowEq).
Defined.
Definition BinProduct_Pullback (c d : C) : BinProduct _ c d.
Proof.
exists
(tpair _ (PullbackObject (Pb _ _ _ (TerminalArrow T c) (TerminalArrow T d)))
(make_dirprod (PullbackPr1 _) (PullbackPr2 _))).
exact (isBinProduct_Pullback c d).
Defined.
Definition BinProductsFromPullbacks : BinProducts C := BinProduct_Pullback.
End binproduct_from_pullback.
Context {C : category} (Pb : Pullbacks C) (T : Terminal C).
Definition UnivProductFromPullback (c d a : C) (f : a --> c) (g : a --> d):
∑ fg : a --> Pb T c d (TerminalArrow T c) (TerminalArrow T d),
(fg · PullbackPr1 (Pb T c d (TerminalArrow T c) (TerminalArrow T d)) = f)
× (fg · PullbackPr2 (Pb T c d (TerminalArrow T c) (TerminalArrow T d)) = g).
Proof.
unfold Pullbacks in Pb.
exists (PullbackArrow (Pb _ _ _ (TerminalArrow _ c)(TerminalArrow _ d)) _ f g
(TerminalArrowEq _ _)).
split.
apply PullbackArrow_PullbackPr1.
apply PullbackArrow_PullbackPr2.
Defined.
Lemma isBinProduct_Pullback (c d : C):
isBinProduct C c d
(PullbackObject (Pb _ _ _ (TerminalArrow T c) (TerminalArrow T d)))
(PullbackPr1 _ ) (PullbackPr2 _ ).
Proof.
intros a f g.
exists (UnivProductFromPullback c d a f g).
intro t.
abstract (apply proofirrelevancecontr,
isPullback_Pullback,
TerminalArrowEq).
Defined.
Definition BinProduct_Pullback (c d : C) : BinProduct _ c d.
Proof.
exists
(tpair _ (PullbackObject (Pb _ _ _ (TerminalArrow T c) (TerminalArrow T d)))
(make_dirprod (PullbackPr1 _) (PullbackPr2 _))).
exact (isBinProduct_Pullback c d).
Defined.
Definition BinProductsFromPullbacks : BinProducts C := BinProduct_Pullback.
End binproduct_from_pullback.
Pullbacks in functor_precategory
We construct pullbacks in the functor category D, C from pullbacks of C.
Section pullbacks_functor_category.
Context (D C : category) (hpb : @Pullbacks C).
Local Lemma FunctorcategoryPullbacks_eq (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) (a b : D) (f : D ⟦a, b⟧) :
PullbackPr1 (hpb _ _ _ (α a) (β a)) · # G f · α b =
PullbackPr2 (hpb _ _ _ (α a) (β a)) · # H f · β b.
Proof.
set (pba := hpb _ _ _ (α a) (β a)).
repeat rewrite <- assoc.
rewrite (nat_trans_ax α a b f).
rewrite (nat_trans_ax β a b f).
repeat rewrite assoc.
apply cancel_postcomposition.
exact (PullbackSqrCommutes pba).
Qed.
Local Lemma FunctorcategoryPullbacks_isfunctor (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) :
is_functor
(make_functor_data
(λ d : D, hpb (F d) (G d) (H d) (α d) (β d))
(λ (a b : D) (f : D ⟦ a, b ⟧),
PullbackArrow
(hpb (F b) (G b) (H b) (α b) (β b))
(hpb (F a) (G a) (H a) (α a) (β a))
(PullbackPr1 (hpb (F a) (G a) (H a) (α a) (β a)) · # G f)
(PullbackPr2 (hpb (F a) (G a) (H a) (α a) (β a)) · # H f)
(FunctorcategoryPullbacks_eq F G H α β a b f))).
Proof.
split.
- intros x. apply pathsinv0. cbn.
eapply PullbackArrowUnique.
+ rewrite functor_id. rewrite id_left. rewrite id_right. apply idpath.
+ rewrite functor_id. rewrite id_left. rewrite id_right. apply idpath.
- intros x y z f g.
set (px := hpb (F x) (G x) (H x) (α x) (β x)).
set (py := hpb (F y) (G y) (H y) (α y) (β y)).
set (pz := hpb (F z) (G z) (H z) (α z) (β z)).
set (pz1 := PullbackArrow_PullbackPr1 pz py (PullbackPr1 py · # G g)
(PullbackPr2 py · # H g)
(FunctorcategoryPullbacks_eq
F G H α β y z g)).
set (pz2 := PullbackArrow_PullbackPr2 pz py (PullbackPr1 py · # G g)
(PullbackPr2 py · # H g)
(FunctorcategoryPullbacks_eq
F G H α β y z g)).
set (py1 := PullbackArrow_PullbackPr1 py px (PullbackPr1 px · # G f)
(PullbackPr2 px · # H f)
(FunctorcategoryPullbacks_eq
F G H α β x y f)).
set (py2 := PullbackArrow_PullbackPr2 py px (PullbackPr1 px · # G f)
(PullbackPr2 px · # H f)
(FunctorcategoryPullbacks_eq
F G H α β x y f)).
apply pathsinv0. cbn. fold px. fold py. fold pz.
eapply PullbackArrowUnique.
+ rewrite functor_comp. rewrite assoc.
rewrite <- assoc. rewrite pz1. rewrite assoc.
apply cancel_postcomposition.
apply py1.
+ rewrite functor_comp. rewrite assoc.
rewrite <- assoc. rewrite pz2. rewrite assoc.
apply cancel_postcomposition.
apply py2.
Qed.
Local Definition FunctorcategoryPullbacks_functor (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) : functor D C.
Proof.
use make_functor.
- use make_functor_data.
+ intros d.
exact (PullbackObject (hpb _ _ _ (α d) (β d))).
+ intros a b f.
use (PullbackArrow (hpb _ _ _ (α b) (β b)) _
(PullbackPr1 (hpb _ _ _ (α a) (β a)) · (# G f))
(PullbackPr2 (hpb _ _ _ (α a) (β a)) · (# H f))
(FunctorcategoryPullbacks_eq F G H α β a b f)).
- exact (FunctorcategoryPullbacks_isfunctor F G H α β).
Defined.
Local Lemma FunctorcategoryPullbacks_is_nat_trans1 (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) :
is_nat_trans (FunctorcategoryPullbacks_functor F G H α β) G
(λ x : D, PullbackPr1 (hpb (F x) (G x) (H x) (α x) (β x))).
Proof.
intros x x' f. cbn.
set (px := hpb (F x) (G x) (H x) (α x) (β x)).
set (px' := hpb (F x') (G x') (H x') (α x') (β x')).
apply (PullbackArrow_PullbackPr1 px' px (PullbackPr1 px · # G f)
(PullbackPr2 px · # H f)
(FunctorcategoryPullbacks_eq
F G H α β x x' f)).
Qed.
Local Definition FunctorcategoryPullbacks_nat_trans1 (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) : nat_trans (FunctorcategoryPullbacks_functor F G H α β) G.
Proof.
use make_nat_trans.
- intros x. exact (PullbackPr1 (hpb (F x) (G x) (H x) (α x) (β x))).
- exact (FunctorcategoryPullbacks_is_nat_trans1 F G H α β).
Defined.
Local Lemma FunctorcategoryPullbacks_is_nat_trans2 (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) :
is_nat_trans (FunctorcategoryPullbacks_functor F G H α β) H
(λ x : D, PullbackPr2 (hpb (F x) (G x) (H x) (α x) (β x))).
Proof.
intros x x' f. cbn.
set (px := hpb (F x) (G x) (H x) (α x) (β x)).
set (px' := hpb (F x') (G x') (H x') (α x') (β x')).
apply (PullbackArrow_PullbackPr2 px' px (PullbackPr1 px · # G f)
(PullbackPr2 px · # H f)
(FunctorcategoryPullbacks_eq
F G H α β x x' f)).
Qed.
Local Definition FunctorcategoryPullbacks_nat_trans2 (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) : nat_trans (FunctorcategoryPullbacks_functor F G H α β) H.
Proof.
use make_nat_trans.
- intros x. exact (PullbackPr2 (hpb (F x) (G x) (H x) (α x) (β x))).
- exact (FunctorcategoryPullbacks_is_nat_trans2 F G H α β).
Defined.
Local Lemma FunctorcategoryPullbacks_comm (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) :
nat_trans_comp _ _ _ (FunctorcategoryPullbacks_nat_trans1 F G H α β) α =
nat_trans_comp _ _ _ (FunctorcategoryPullbacks_nat_trans2 F G H α β) β.
Proof.
use nat_trans_eq_alt. intros x.
apply (PullbackSqrCommutes (hpb (F x) (G x) (H x) (α x) (β x))).
Qed.
Definition FunctorcategoryPullbacks : @Pullbacks (functor_category D C).
Proof.
intros F G H α β.
use make_Pullback.
- exact (FunctorcategoryPullbacks_functor F G H α β).
- exact (FunctorcategoryPullbacks_nat_trans1 F G H α β).
- exact (FunctorcategoryPullbacks_nat_trans2 F G H α β).
- exact (FunctorcategoryPullbacks_comm F G H α β).
- apply pb_if_pointwise_pb. intros x. apply isPullback_Pullback.
Defined.
End pullbacks_functor_category.
Section pullback_up_to_iso.
Context {C : category}.
Local Lemma isPullback_up_to_z_iso_eq {a' a b c d : C} (f : b --> a) (g : c --> a)
(p1 : d --> b) (p2 : d --> c) (H : p1 · f = p2 · g) (i : z_iso a a') :
p1 · (f · i) = p2 · (g · i).
Proof.
rewrite assoc. rewrite assoc. rewrite H. apply idpath.
Qed.
Lemma isPullback_up_to_z_iso {a' a b c d : C} (f : b --> a) (g : c --> a)
(p1 : d --> b) (p2 : d --> c) (H : p1 · f = p2 · g) (i : z_iso a a')
(iPb : isPullback (isPullback_up_to_z_iso_eq f g p1 p2 H i)) :
isPullback H.
Proof.
set (Pb := make_Pullback _ iPb).
use make_isPullback.
intros e h k Hk.
use unique_exists.
- use (PullbackArrow Pb).
+ exact h.
+ exact k.
+ use isPullback_up_to_z_iso_eq. exact Hk.
- split.
+ exact (PullbackArrow_PullbackPr1 Pb e h k (isPullback_up_to_z_iso_eq f g h k Hk i)).
+ exact (PullbackArrow_PullbackPr2 Pb e h k (isPullback_up_to_z_iso_eq f g h k Hk i)).
- intros y. apply isapropdirprod; apply C.
- intros y X. cbn in X.
eapply PullbackArrowUnique.
+ exact (dirprod_pr1 X).
+ exact (dirprod_pr2 X).
Qed.
End pullback_up_to_iso.
Section pullback_paths.
Context {C : category}.
Lemma isPullback_mor_paths {a b c d : C} {f1 f2 : b --> a} {g1 g2 : c --> a} {p11 p21 : d --> b}
{p12 p22 : d --> c} (e1 : f1 = f2) (e2 : g1 = g2) (e3 : p11 = p21) (e4 : p12 = p22)
(H1 : p11 · f1 = p12 · g1) (H2 : p21 · f2 = p22 · g2)
(iPb : isPullback H1) : isPullback H2.
Proof.
induction e1, e2, e3, e4.
assert (e5 : H1 = H2) by apply C.
induction e5.
exact iPb.
Qed.
Lemma isPullback_mor_paths' {a b c d : C} {f1 f2 : b --> a} {g1 g2 : c --> a} {p11 p21 : d --> b}
{p12 p22 : d --> c} (e1 : f1 = f2) (e2 : g1 = g2) (e3 : p11 = p21) (e4 : p12 = p22)
(H1 : p11 · f1 = p12 · g1)
(iPb : isPullback H1)
: ∑ (H2 : p21 · f2 = p22 · g2), isPullback H2.
Proof.
induction e1, e2, e3, e4.
use tpair.
+ exact H1.
+ exact iPb.
Defined.
Definition Pullback_mor_paths {a b c : C} {f1 f2 : b --> a} {g1 g2 : c --> a} (e1 : f1 = f2) (e2 : g1 = g2) (pb : Pullback f1 g1) : Pullback f2 g2.
Proof.
use make_Pullback.
+ exact pb.
+ exact (PullbackPr1 pb).
+ exact (PullbackPr2 pb).
+ abstract (rewrite <-e1, <-e2; use PullbackSqrCommutes).
+ use (isPullback_mor_paths e1 e2 (idpath _) (idpath _)).
- apply PullbackSqrCommutes.
- apply isPullback_Pullback.
Defined.
End pullback_paths.
Lemma induced_precategory_reflects_pullbacks {M : category} {X:Type} (j : X -> ob M)
{a b c d : induced_category M j}
(f : b --> a) (g : c --> a) (p1 : d --> b) (p2 : d --> c)
(H : p1 · f = p2 · g) :
@isPullback _ _ _ _ _
(# (induced_precategory_incl j) f)
(# (induced_precategory_incl j) g)
(# (induced_precategory_incl j) p1)
(# (induced_precategory_incl j) p2) H ->
isPullback H.
Proof.
exact (λ pb T, pb (j T)).
Qed.
Context (D C : category) (hpb : @Pullbacks C).
Local Lemma FunctorcategoryPullbacks_eq (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) (a b : D) (f : D ⟦a, b⟧) :
PullbackPr1 (hpb _ _ _ (α a) (β a)) · # G f · α b =
PullbackPr2 (hpb _ _ _ (α a) (β a)) · # H f · β b.
Proof.
set (pba := hpb _ _ _ (α a) (β a)).
repeat rewrite <- assoc.
rewrite (nat_trans_ax α a b f).
rewrite (nat_trans_ax β a b f).
repeat rewrite assoc.
apply cancel_postcomposition.
exact (PullbackSqrCommutes pba).
Qed.
Local Lemma FunctorcategoryPullbacks_isfunctor (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) :
is_functor
(make_functor_data
(λ d : D, hpb (F d) (G d) (H d) (α d) (β d))
(λ (a b : D) (f : D ⟦ a, b ⟧),
PullbackArrow
(hpb (F b) (G b) (H b) (α b) (β b))
(hpb (F a) (G a) (H a) (α a) (β a))
(PullbackPr1 (hpb (F a) (G a) (H a) (α a) (β a)) · # G f)
(PullbackPr2 (hpb (F a) (G a) (H a) (α a) (β a)) · # H f)
(FunctorcategoryPullbacks_eq F G H α β a b f))).
Proof.
split.
- intros x. apply pathsinv0. cbn.
eapply PullbackArrowUnique.
+ rewrite functor_id. rewrite id_left. rewrite id_right. apply idpath.
+ rewrite functor_id. rewrite id_left. rewrite id_right. apply idpath.
- intros x y z f g.
set (px := hpb (F x) (G x) (H x) (α x) (β x)).
set (py := hpb (F y) (G y) (H y) (α y) (β y)).
set (pz := hpb (F z) (G z) (H z) (α z) (β z)).
set (pz1 := PullbackArrow_PullbackPr1 pz py (PullbackPr1 py · # G g)
(PullbackPr2 py · # H g)
(FunctorcategoryPullbacks_eq
F G H α β y z g)).
set (pz2 := PullbackArrow_PullbackPr2 pz py (PullbackPr1 py · # G g)
(PullbackPr2 py · # H g)
(FunctorcategoryPullbacks_eq
F G H α β y z g)).
set (py1 := PullbackArrow_PullbackPr1 py px (PullbackPr1 px · # G f)
(PullbackPr2 px · # H f)
(FunctorcategoryPullbacks_eq
F G H α β x y f)).
set (py2 := PullbackArrow_PullbackPr2 py px (PullbackPr1 px · # G f)
(PullbackPr2 px · # H f)
(FunctorcategoryPullbacks_eq
F G H α β x y f)).
apply pathsinv0. cbn. fold px. fold py. fold pz.
eapply PullbackArrowUnique.
+ rewrite functor_comp. rewrite assoc.
rewrite <- assoc. rewrite pz1. rewrite assoc.
apply cancel_postcomposition.
apply py1.
+ rewrite functor_comp. rewrite assoc.
rewrite <- assoc. rewrite pz2. rewrite assoc.
apply cancel_postcomposition.
apply py2.
Qed.
Local Definition FunctorcategoryPullbacks_functor (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) : functor D C.
Proof.
use make_functor.
- use make_functor_data.
+ intros d.
exact (PullbackObject (hpb _ _ _ (α d) (β d))).
+ intros a b f.
use (PullbackArrow (hpb _ _ _ (α b) (β b)) _
(PullbackPr1 (hpb _ _ _ (α a) (β a)) · (# G f))
(PullbackPr2 (hpb _ _ _ (α a) (β a)) · (# H f))
(FunctorcategoryPullbacks_eq F G H α β a b f)).
- exact (FunctorcategoryPullbacks_isfunctor F G H α β).
Defined.
Local Lemma FunctorcategoryPullbacks_is_nat_trans1 (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) :
is_nat_trans (FunctorcategoryPullbacks_functor F G H α β) G
(λ x : D, PullbackPr1 (hpb (F x) (G x) (H x) (α x) (β x))).
Proof.
intros x x' f. cbn.
set (px := hpb (F x) (G x) (H x) (α x) (β x)).
set (px' := hpb (F x') (G x') (H x') (α x') (β x')).
apply (PullbackArrow_PullbackPr1 px' px (PullbackPr1 px · # G f)
(PullbackPr2 px · # H f)
(FunctorcategoryPullbacks_eq
F G H α β x x' f)).
Qed.
Local Definition FunctorcategoryPullbacks_nat_trans1 (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) : nat_trans (FunctorcategoryPullbacks_functor F G H α β) G.
Proof.
use make_nat_trans.
- intros x. exact (PullbackPr1 (hpb (F x) (G x) (H x) (α x) (β x))).
- exact (FunctorcategoryPullbacks_is_nat_trans1 F G H α β).
Defined.
Local Lemma FunctorcategoryPullbacks_is_nat_trans2 (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) :
is_nat_trans (FunctorcategoryPullbacks_functor F G H α β) H
(λ x : D, PullbackPr2 (hpb (F x) (G x) (H x) (α x) (β x))).
Proof.
intros x x' f. cbn.
set (px := hpb (F x) (G x) (H x) (α x) (β x)).
set (px' := hpb (F x') (G x') (H x') (α x') (β x')).
apply (PullbackArrow_PullbackPr2 px' px (PullbackPr1 px · # G f)
(PullbackPr2 px · # H f)
(FunctorcategoryPullbacks_eq
F G H α β x x' f)).
Qed.
Local Definition FunctorcategoryPullbacks_nat_trans2 (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) : nat_trans (FunctorcategoryPullbacks_functor F G H α β) H.
Proof.
use make_nat_trans.
- intros x. exact (PullbackPr2 (hpb (F x) (G x) (H x) (α x) (β x))).
- exact (FunctorcategoryPullbacks_is_nat_trans2 F G H α β).
Defined.
Local Lemma FunctorcategoryPullbacks_comm (F G H : functor D C) (α : nat_trans G F)
(β : nat_trans H F) :
nat_trans_comp _ _ _ (FunctorcategoryPullbacks_nat_trans1 F G H α β) α =
nat_trans_comp _ _ _ (FunctorcategoryPullbacks_nat_trans2 F G H α β) β.
Proof.
use nat_trans_eq_alt. intros x.
apply (PullbackSqrCommutes (hpb (F x) (G x) (H x) (α x) (β x))).
Qed.
Definition FunctorcategoryPullbacks : @Pullbacks (functor_category D C).
Proof.
intros F G H α β.
use make_Pullback.
- exact (FunctorcategoryPullbacks_functor F G H α β).
- exact (FunctorcategoryPullbacks_nat_trans1 F G H α β).
- exact (FunctorcategoryPullbacks_nat_trans2 F G H α β).
- exact (FunctorcategoryPullbacks_comm F G H α β).
- apply pb_if_pointwise_pb. intros x. apply isPullback_Pullback.
Defined.
End pullbacks_functor_category.
Section pullback_up_to_iso.
Context {C : category}.
Local Lemma isPullback_up_to_z_iso_eq {a' a b c d : C} (f : b --> a) (g : c --> a)
(p1 : d --> b) (p2 : d --> c) (H : p1 · f = p2 · g) (i : z_iso a a') :
p1 · (f · i) = p2 · (g · i).
Proof.
rewrite assoc. rewrite assoc. rewrite H. apply idpath.
Qed.
Lemma isPullback_up_to_z_iso {a' a b c d : C} (f : b --> a) (g : c --> a)
(p1 : d --> b) (p2 : d --> c) (H : p1 · f = p2 · g) (i : z_iso a a')
(iPb : isPullback (isPullback_up_to_z_iso_eq f g p1 p2 H i)) :
isPullback H.
Proof.
set (Pb := make_Pullback _ iPb).
use make_isPullback.
intros e h k Hk.
use unique_exists.
- use (PullbackArrow Pb).
+ exact h.
+ exact k.
+ use isPullback_up_to_z_iso_eq. exact Hk.
- split.
+ exact (PullbackArrow_PullbackPr1 Pb e h k (isPullback_up_to_z_iso_eq f g h k Hk i)).
+ exact (PullbackArrow_PullbackPr2 Pb e h k (isPullback_up_to_z_iso_eq f g h k Hk i)).
- intros y. apply isapropdirprod; apply C.
- intros y X. cbn in X.
eapply PullbackArrowUnique.
+ exact (dirprod_pr1 X).
+ exact (dirprod_pr2 X).
Qed.
End pullback_up_to_iso.
Section pullback_paths.
Context {C : category}.
Lemma isPullback_mor_paths {a b c d : C} {f1 f2 : b --> a} {g1 g2 : c --> a} {p11 p21 : d --> b}
{p12 p22 : d --> c} (e1 : f1 = f2) (e2 : g1 = g2) (e3 : p11 = p21) (e4 : p12 = p22)
(H1 : p11 · f1 = p12 · g1) (H2 : p21 · f2 = p22 · g2)
(iPb : isPullback H1) : isPullback H2.
Proof.
induction e1, e2, e3, e4.
assert (e5 : H1 = H2) by apply C.
induction e5.
exact iPb.
Qed.
Lemma isPullback_mor_paths' {a b c d : C} {f1 f2 : b --> a} {g1 g2 : c --> a} {p11 p21 : d --> b}
{p12 p22 : d --> c} (e1 : f1 = f2) (e2 : g1 = g2) (e3 : p11 = p21) (e4 : p12 = p22)
(H1 : p11 · f1 = p12 · g1)
(iPb : isPullback H1)
: ∑ (H2 : p21 · f2 = p22 · g2), isPullback H2.
Proof.
induction e1, e2, e3, e4.
use tpair.
+ exact H1.
+ exact iPb.
Defined.
Definition Pullback_mor_paths {a b c : C} {f1 f2 : b --> a} {g1 g2 : c --> a} (e1 : f1 = f2) (e2 : g1 = g2) (pb : Pullback f1 g1) : Pullback f2 g2.
Proof.
use make_Pullback.
+ exact pb.
+ exact (PullbackPr1 pb).
+ exact (PullbackPr2 pb).
+ abstract (rewrite <-e1, <-e2; use PullbackSqrCommutes).
+ use (isPullback_mor_paths e1 e2 (idpath _) (idpath _)).
- apply PullbackSqrCommutes.
- apply isPullback_Pullback.
Defined.
End pullback_paths.
Lemma induced_precategory_reflects_pullbacks {M : category} {X:Type} (j : X -> ob M)
{a b c d : induced_category M j}
(f : b --> a) (g : c --> a) (p1 : d --> b) (p2 : d --> c)
(H : p1 · f = p2 · g) :
@isPullback _ _ _ _ _
(# (induced_precategory_incl j) f)
(# (induced_precategory_incl j) g)
(# (induced_precategory_incl j) p1)
(# (induced_precategory_incl j) p2) H ->
isPullback H.
Proof.
exact (λ pb T, pb (j T)).
Qed.
The type of pullbacks on a given diagram is a proposition
Definition eq_Pullback
{C : category}
{x y z : C}
{f : x --> z}
{g : y --> z}
(p₁ p₂ : Pullback f g)
(e₁ : PullbackObject p₁ = PullbackObject p₂)
(e₂ : idtoiso e₁ · PullbackPr1 p₂
=
PullbackPr1 p₁)
(e₃ : idtoiso e₁ · PullbackPr2 p₂
=
PullbackPr2 p₁)
: p₁ = p₂.
Proof.
use subtypePath.
{
intro.
use isaproptotal2.
{
intro.
apply isaprop_isPullback.
}
intros.
apply homset_property.
}
induction p₁ as [ [ p₁ [ h₁ k₁ ]] ? ].
induction p₂ as [ [ p₂ [ h₂ k₂ ]] ? ].
cbn in *.
induction e₁.
cbn in *.
rewrite !id_left in *.
apply maponpaths.
apply pathsdirprod.
- exact (!e₂).
- exact (!e₃).
Qed.
Definition isaprop_Pullback
{C : category}
(HC : is_univalent C)
{x y z : C}
(f : x --> z)
(g : y --> z)
: isaprop (Pullback f g).
Proof.
use invproofirrelevance.
intros p₁ p₂.
use eq_Pullback.
- refine (isotoid _ HC _).
apply z_iso_from_Pullback_to_Pullback.
- rewrite idtoiso_isotoid ; cbn.
apply PullbackArrow_PullbackPr1.
- rewrite idtoiso_isotoid ; cbn.
apply PullbackArrow_PullbackPr2.
Qed.
{C : category}
{x y z : C}
{f : x --> z}
{g : y --> z}
(p₁ p₂ : Pullback f g)
(e₁ : PullbackObject p₁ = PullbackObject p₂)
(e₂ : idtoiso e₁ · PullbackPr1 p₂
=
PullbackPr1 p₁)
(e₃ : idtoiso e₁ · PullbackPr2 p₂
=
PullbackPr2 p₁)
: p₁ = p₂.
Proof.
use subtypePath.
{
intro.
use isaproptotal2.
{
intro.
apply isaprop_isPullback.
}
intros.
apply homset_property.
}
induction p₁ as [ [ p₁ [ h₁ k₁ ]] ? ].
induction p₂ as [ [ p₂ [ h₂ k₂ ]] ? ].
cbn in *.
induction e₁.
cbn in *.
rewrite !id_left in *.
apply maponpaths.
apply pathsdirprod.
- exact (!e₂).
- exact (!e₃).
Qed.
Definition isaprop_Pullback
{C : category}
(HC : is_univalent C)
{x y z : C}
(f : x --> z)
(g : y --> z)
: isaprop (Pullback f g).
Proof.
use invproofirrelevance.
intros p₁ p₂.
use eq_Pullback.
- refine (isotoid _ HC _).
apply z_iso_from_Pullback_to_Pullback.
- rewrite idtoiso_isotoid ; cbn.
apply PullbackArrow_PullbackPr1.
- rewrite idtoiso_isotoid ; cbn.
apply PullbackArrow_PullbackPr2.
Qed.
Isos between pullbacks
Section IsoIsPullback.
Context {C : category}
{x y z : C}
{f : x --> z}
{g : y --> z}
{pb pb' : C}
{π₁ : pb --> x}
{π₂ : pb --> y}
(sqr : π₁ · f = π₂ · g)
{π₁' : pb' --> x}
{π₂' : pb' --> y}
(sqr' : π₁' · f = π₂' · g)
(H : isPullback sqr)
(i : z_iso pb pb')
(iπ₁' : i · π₁' = π₁)
(iπ₂' : i · π₂' = π₂).
Let P : Pullback f g := make_Pullback _ H.
Section UMP.
Context {w : C}
{h₁ : w --> x}
{h₂ : w --> y}
(q : h₁ · f = h₂ · g).
Definition isPullback_z_iso_unique
: isaprop (∑ (hk : w --> pb'), hk · π₁' = h₁ × hk · π₂' = h₂).
Proof.
use invproofirrelevance.
intros φ₁ φ₂.
use subtypePath.
{
intro.
apply isapropdirprod ; apply homset_property.
}
refine (!(id_right _) @ _ @ id_right _).
rewrite <- (z_iso_after_z_iso_inv i).
rewrite !assoc.
apply maponpaths_2.
use (MorphismsIntoPullbackEqual H).
- pose (maponpaths (λ z, inv_from_z_iso i · z) iπ₁') as p.
cbn in p.
rewrite !assoc in p.
rewrite !z_iso_after_z_iso_inv in p.
rewrite id_left in p.
rewrite !assoc'.
rewrite <- p.
exact (pr12 φ₁ @ !(pr12 φ₂)).
- pose (maponpaths (λ z, inv_from_z_iso i · z) iπ₂') as p.
cbn in p.
rewrite !assoc in p.
rewrite !z_iso_after_z_iso_inv in p.
rewrite id_left in p.
rewrite !assoc'.
rewrite <- p.
exact (pr22 φ₁ @ !(pr22 φ₂)).
Qed.
Definition isPullback_z_iso_mor
: w --> pb'
:= PullbackArrow P _ h₁ h₂ q · i.
Definition isPullback_z_iso_pr1
: isPullback_z_iso_mor · π₁' = h₁.
Proof.
unfold isPullback_z_iso_mor.
rewrite !assoc'.
etrans.
{
apply maponpaths.
exact iπ₁'.
}
apply PullbackArrow_PullbackPr1.
Qed.
Definition isPullback_z_iso_pr2
: isPullback_z_iso_mor · π₂' = h₂.
Proof.
unfold isPullback_z_iso_mor.
rewrite !assoc'.
etrans.
{
apply maponpaths.
exact iπ₂'.
}
apply PullbackArrow_PullbackPr2.
Qed.
End UMP.
Definition isPullback_z_iso
: isPullback sqr'.
Proof.
intros w h₁ h₂ q.
use iscontraprop1.
- apply isPullback_z_iso_unique.
- refine (isPullback_z_iso_mor q ,, _ ,, _).
+ apply isPullback_z_iso_pr1.
+ apply isPullback_z_iso_pr2.
Defined.
End IsoIsPullback.
Context {C : category}
{x y z : C}
{f : x --> z}
{g : y --> z}
{pb pb' : C}
{π₁ : pb --> x}
{π₂ : pb --> y}
(sqr : π₁ · f = π₂ · g)
{π₁' : pb' --> x}
{π₂' : pb' --> y}
(sqr' : π₁' · f = π₂' · g)
(H : isPullback sqr)
(i : z_iso pb pb')
(iπ₁' : i · π₁' = π₁)
(iπ₂' : i · π₂' = π₂).
Let P : Pullback f g := make_Pullback _ H.
Section UMP.
Context {w : C}
{h₁ : w --> x}
{h₂ : w --> y}
(q : h₁ · f = h₂ · g).
Definition isPullback_z_iso_unique
: isaprop (∑ (hk : w --> pb'), hk · π₁' = h₁ × hk · π₂' = h₂).
Proof.
use invproofirrelevance.
intros φ₁ φ₂.
use subtypePath.
{
intro.
apply isapropdirprod ; apply homset_property.
}
refine (!(id_right _) @ _ @ id_right _).
rewrite <- (z_iso_after_z_iso_inv i).
rewrite !assoc.
apply maponpaths_2.
use (MorphismsIntoPullbackEqual H).
- pose (maponpaths (λ z, inv_from_z_iso i · z) iπ₁') as p.
cbn in p.
rewrite !assoc in p.
rewrite !z_iso_after_z_iso_inv in p.
rewrite id_left in p.
rewrite !assoc'.
rewrite <- p.
exact (pr12 φ₁ @ !(pr12 φ₂)).
- pose (maponpaths (λ z, inv_from_z_iso i · z) iπ₂') as p.
cbn in p.
rewrite !assoc in p.
rewrite !z_iso_after_z_iso_inv in p.
rewrite id_left in p.
rewrite !assoc'.
rewrite <- p.
exact (pr22 φ₁ @ !(pr22 φ₂)).
Qed.
Definition isPullback_z_iso_mor
: w --> pb'
:= PullbackArrow P _ h₁ h₂ q · i.
Definition isPullback_z_iso_pr1
: isPullback_z_iso_mor · π₁' = h₁.
Proof.
unfold isPullback_z_iso_mor.
rewrite !assoc'.
etrans.
{
apply maponpaths.
exact iπ₁'.
}
apply PullbackArrow_PullbackPr1.
Qed.
Definition isPullback_z_iso_pr2
: isPullback_z_iso_mor · π₂' = h₂.
Proof.
unfold isPullback_z_iso_mor.
rewrite !assoc'.
etrans.
{
apply maponpaths.
exact iπ₂'.
}
apply PullbackArrow_PullbackPr2.
Qed.
End UMP.
Definition isPullback_z_iso
: isPullback sqr'.
Proof.
intros w h₁ h₂ q.
use iscontraprop1.
- apply isPullback_z_iso_unique.
- refine (isPullback_z_iso_mor q ,, _ ,, _).
+ apply isPullback_z_iso_pr1.
+ apply isPullback_z_iso_pr2.
Defined.
End IsoIsPullback.
A general statement to get isos between pullbacks
Section IsoOfPullbacks.
Context {C : category}
{pb pb' x x' y y' z z' : C}
{f : x --> z}
{f' : x' --> z'}
{g : y --> z}
{g' : y' --> z'}
{π₁ : pb --> x}
{π₂ : pb --> y}
{π₁' : pb' --> x'}
{π₂' : pb' --> y'}
(sqr : π₁ · f = π₂ · g)
(sqr' : π₁' · f' = π₂' · g')
(H : isPullback sqr)
(H' : isPullback sqr')
(ix : z_iso x x')
(iy : z_iso y y')
(iz : z_iso z z')
(pf : ix · f' = f · iz)
(pg : iy · g' = g · iz).
Let P : Pullback f g := make_Pullback _ H.
Let P' : Pullback f' g' := make_Pullback _ H'.
Lemma iso_between_pullbacks_help_path
: inv_from_z_iso ix · f = f' · inv_from_z_iso iz.
Proof.
use z_iso_inv_on_left.
rewrite !assoc'.
refine (!_).
use z_iso_inv_on_right.
exact (!pf).
Qed.
Lemma iso_between_pullbacks_other_help_path
: inv_from_z_iso iy · g = g' · inv_from_z_iso iz.
Proof.
use z_iso_inv_on_left.
rewrite !assoc'.
refine (!_).
use z_iso_inv_on_right.
exact (!pg).
Qed.
Definition iso_between_pullbacks_map : pb --> pb'.
Proof.
use (PullbackArrow P' _ (π₁ · ix) (π₂ · iy)).
abstract
(rewrite !assoc' ;
rewrite pf, pg ;
rewrite !assoc ;
apply maponpaths_2 ;
exact sqr).
Defined.
Definition iso_between_pullbacks_inv : pb' --> pb.
Proof.
use (PullbackArrow P _ (π₁' · inv_from_z_iso ix) (π₂' · inv_from_z_iso iy)).
abstract
(rewrite !assoc' ;
rewrite iso_between_pullbacks_help_path, iso_between_pullbacks_other_help_path ;
rewrite !assoc ;
apply maponpaths_2 ;
exact sqr').
Defined.
Lemma iso_between_pullbacks_are_inv
: is_inverse_in_precat iso_between_pullbacks_map iso_between_pullbacks_inv.
Proof.
split ; unfold iso_between_pullbacks_map, iso_between_pullbacks_inv.
- use (MorphismsIntoPullbackEqual H).
+ rewrite !assoc'.
rewrite (PullbackArrow_PullbackPr1 P).
rewrite !assoc.
rewrite (PullbackArrow_PullbackPr1 P').
rewrite !assoc'.
rewrite z_iso_inv_after_z_iso.
rewrite id_left, id_right.
apply idpath.
+ rewrite !assoc'.
rewrite (PullbackArrow_PullbackPr2 P).
rewrite !assoc.
rewrite (PullbackArrow_PullbackPr2 P').
rewrite !assoc'.
rewrite z_iso_inv_after_z_iso.
rewrite id_left, id_right.
apply idpath.
- use (MorphismsIntoPullbackEqual H').
+ rewrite !assoc'.
rewrite (PullbackArrow_PullbackPr1 P').
rewrite !assoc.
rewrite (PullbackArrow_PullbackPr1 P).
rewrite !assoc'.
rewrite z_iso_after_z_iso_inv.
rewrite id_left, id_right.
apply idpath.
+ rewrite !assoc'.
rewrite (PullbackArrow_PullbackPr2 P').
rewrite !assoc.
rewrite (PullbackArrow_PullbackPr2 P).
rewrite !assoc'.
rewrite z_iso_after_z_iso_inv.
rewrite id_left, id_right.
apply idpath.
Qed.
Definition iso_between_pullbacks
: z_iso pb pb'.
Proof.
use make_z_iso.
- exact iso_between_pullbacks_map.
- exact iso_between_pullbacks_inv.
- exact iso_between_pullbacks_are_inv.
Defined.
End IsoOfPullbacks.
Context {C : category}
{pb pb' x x' y y' z z' : C}
{f : x --> z}
{f' : x' --> z'}
{g : y --> z}
{g' : y' --> z'}
{π₁ : pb --> x}
{π₂ : pb --> y}
{π₁' : pb' --> x'}
{π₂' : pb' --> y'}
(sqr : π₁ · f = π₂ · g)
(sqr' : π₁' · f' = π₂' · g')
(H : isPullback sqr)
(H' : isPullback sqr')
(ix : z_iso x x')
(iy : z_iso y y')
(iz : z_iso z z')
(pf : ix · f' = f · iz)
(pg : iy · g' = g · iz).
Let P : Pullback f g := make_Pullback _ H.
Let P' : Pullback f' g' := make_Pullback _ H'.
Lemma iso_between_pullbacks_help_path
: inv_from_z_iso ix · f = f' · inv_from_z_iso iz.
Proof.
use z_iso_inv_on_left.
rewrite !assoc'.
refine (!_).
use z_iso_inv_on_right.
exact (!pf).
Qed.
Lemma iso_between_pullbacks_other_help_path
: inv_from_z_iso iy · g = g' · inv_from_z_iso iz.
Proof.
use z_iso_inv_on_left.
rewrite !assoc'.
refine (!_).
use z_iso_inv_on_right.
exact (!pg).
Qed.
Definition iso_between_pullbacks_map : pb --> pb'.
Proof.
use (PullbackArrow P' _ (π₁ · ix) (π₂ · iy)).
abstract
(rewrite !assoc' ;
rewrite pf, pg ;
rewrite !assoc ;
apply maponpaths_2 ;
exact sqr).
Defined.
Definition iso_between_pullbacks_inv : pb' --> pb.
Proof.
use (PullbackArrow P _ (π₁' · inv_from_z_iso ix) (π₂' · inv_from_z_iso iy)).
abstract
(rewrite !assoc' ;
rewrite iso_between_pullbacks_help_path, iso_between_pullbacks_other_help_path ;
rewrite !assoc ;
apply maponpaths_2 ;
exact sqr').
Defined.
Lemma iso_between_pullbacks_are_inv
: is_inverse_in_precat iso_between_pullbacks_map iso_between_pullbacks_inv.
Proof.
split ; unfold iso_between_pullbacks_map, iso_between_pullbacks_inv.
- use (MorphismsIntoPullbackEqual H).
+ rewrite !assoc'.
rewrite (PullbackArrow_PullbackPr1 P).
rewrite !assoc.
rewrite (PullbackArrow_PullbackPr1 P').
rewrite !assoc'.
rewrite z_iso_inv_after_z_iso.
rewrite id_left, id_right.
apply idpath.
+ rewrite !assoc'.
rewrite (PullbackArrow_PullbackPr2 P).
rewrite !assoc.
rewrite (PullbackArrow_PullbackPr2 P').
rewrite !assoc'.
rewrite z_iso_inv_after_z_iso.
rewrite id_left, id_right.
apply idpath.
- use (MorphismsIntoPullbackEqual H').
+ rewrite !assoc'.
rewrite (PullbackArrow_PullbackPr1 P').
rewrite !assoc.
rewrite (PullbackArrow_PullbackPr1 P).
rewrite !assoc'.
rewrite z_iso_after_z_iso_inv.
rewrite id_left, id_right.
apply idpath.
+ rewrite !assoc'.
rewrite (PullbackArrow_PullbackPr2 P').
rewrite !assoc.
rewrite (PullbackArrow_PullbackPr2 P).
rewrite !assoc'.
rewrite z_iso_after_z_iso_inv.
rewrite id_left, id_right.
apply idpath.
Qed.
Definition iso_between_pullbacks
: z_iso pb pb'.
Proof.
use make_z_iso.
- exact iso_between_pullbacks_map.
- exact iso_between_pullbacks_inv.
- exact iso_between_pullbacks_are_inv.
Defined.
End IsoOfPullbacks.
Definition swap_pullback_mor
{C : category}
{x y z : C}
(f : x --> z)
(g : y --> z)
(Pfg : Pullback f g)
(Pgf : Pullback g f)
: Pfg --> Pgf.
Proof.
use PullbackArrow.
- apply PullbackPr2.
- apply PullbackPr1.
- abstract
(refine (!_) ;
apply PullbackSqrCommutes).
Defined.
Proposition swap_pullback_mor_eq
{C : category}
{x y z : C}
(f : x --> z)
(g : y --> z)
(Pfg : Pullback f g)
(Pgf : Pullback g f)
: swap_pullback_mor f g Pfg Pgf · swap_pullback_mor g f Pgf Pfg = identity Pfg.
Proof.
unfold swap_pullback_mor.
use (MorphismsIntoPullbackEqual (isPullback_Pullback Pfg)).
- rewrite !assoc'.
rewrite PullbackArrow_PullbackPr1.
rewrite PullbackArrow_PullbackPr2.
rewrite id_left.
apply idpath.
- rewrite !assoc'.
rewrite PullbackArrow_PullbackPr2.
rewrite PullbackArrow_PullbackPr1.
rewrite id_left.
apply idpath.
Qed.
Definition swap_pullback_z_iso
{C : category}
{x y z : C}
(f : x --> z)
(g : y --> z)
(Pfg : Pullback f g)
(Pgf : Pullback g f)
: z_iso Pfg Pgf.
Proof.
use make_z_iso.
- apply swap_pullback_mor.
- apply swap_pullback_mor.
- abstract
(split ; apply swap_pullback_mor_eq).
Defined.
Section PullbackIso.
Context {C : category}.
Lemma Pullback_eq
(P : Pullbacks C)
{x x' y y' z z' : ob C}
{f : C⟦x, z⟧} {g : C⟦y, z⟧}
{f' : C⟦x', z'⟧} {g' : C⟦y', z'⟧}
(i_x : x' = x) (i_y : y' = y) (i_z : z = z')
(p1 : idtoiso i_x · f · idtoiso i_z = f')
(p2 : idtoiso i_y · g · idtoiso i_z = g')
: z_iso (P _ _ _ f g) (P _ _ _ f' g').
Proof.
induction i_x, i_y, i_z, p1, p2.
cbn.
rewrite ! id_left, ! id_right.
apply identity_z_iso.
Defined.
Lemma transport_Pullback {x y z : ob C}
{f f' : C⟦x, z⟧} {g g' : C⟦y, z⟧}
(p1 : f = f') (p2 : g = g')
: Pullback f g ≃ Pullback f' g'.
Proof.
induction p1, p2.
apply idweq.
Defined.
Context {x y z p : ob C}
{π_y : C⟦p, y⟧} {π_x : C⟦p, x⟧} {f_y : C⟦y, z⟧} {f_x : C⟦x, z⟧}
(r_p : π_x · f_x = π_y · f_y).
Context {x' y' z' p' : ob C}
{π'_y : C⟦p', y'⟧} {π'_x : C⟦p', x'⟧} {f'_y : C⟦y', z'⟧} {f'_x : C⟦x', z'⟧}
{r'_p : π'_x · f'_x = π'_y · f'_y}
(pr_p : isPullback r_p).
Context (i_x : z_iso x' x) (i_y : z_iso y' y) (i_z : z_iso z' z) (i_p : z_iso p' p).
Context (p_xf : i_x · f_x = f'_x · i_z)
(p_yf : i_y · f_y = f'_y · i_z)
(π_ix : i_p · π_x = π'_x · i_x)
(π_iy : π'_y · i_y = i_p · π_y).
Section Aux.
Context {e : C} {g_x : C⟦e, x'⟧} {g_y : C⟦e, y'⟧} (r : g_x · f'_x = g_y · f'_y).
Lemma pf : g_x · i_x · f_x = g_y · i_y · f_y.
Proof.
use (cancel_z_iso _ _ (z_iso_inv i_z)).
refine (_ @ r @ _).
- rewrite ! assoc'.
apply maponpaths.
rewrite assoc.
use z_iso_inv_to_right.
exact p_xf.
- rewrite ! assoc'.
apply maponpaths.
rewrite assoc.
use z_iso_inv_on_left.
exact p_yf.
Qed.
Let t := pr_p e (g_x · i_x) (g_y · i_y) pf.
Definition Pullback_iso_squares_existence_mor
: C⟦e, p'⟧
:= pr11 t · z_iso_inv i_p.
Lemma Pullback_iso_squares_existence_comm₀
: Pullback_iso_squares_existence_mor · π'_x = g_x.
Proof.
refine (_ @ ! (z_iso_inv_on_left _ _ _ _ _ _ (pr121 t))).
unfold Pullback_iso_squares_existence_mor.
rewrite ! assoc'.
apply maponpaths.
use z_iso_inv_on_left.
rewrite assoc'.
use z_iso_inv_to_left.
exact π_ix.
Qed.
Lemma Pullback_iso_squares_existence_comm₁
: Pullback_iso_squares_existence_mor · π'_y = g_y.
Proof.
simpl.
refine (_ @ ! (z_iso_inv_on_left _ _ _ _ _ _ (pr221 t))).
unfold Pullback_iso_squares_existence_mor.
rewrite ! assoc'.
apply maponpaths.
use z_iso_inv_on_left.
rewrite assoc'.
apply pathsinv0.
use z_iso_inv_on_right.
exact π_iy.
Qed.
Lemma Pullback_iso_squares_existence
: ∑ hk : C ⟦ e, p' ⟧, hk · π'_x = g_x × hk · π'_y = g_y.
Proof.
simple refine (_ ,, _ ,, _).
- exact Pullback_iso_squares_existence_mor.
- exact Pullback_iso_squares_existence_comm₀.
- exact Pullback_iso_squares_existence_comm₁.
Defined.
Lemma Pullback_iso_squares_uniqueness
(s : ∑ hk : C ⟦ e, p' ⟧, hk · π'_x = g_x × hk · π'_y = g_y)
: s = Pullback_iso_squares_existence.
Proof.
induction s as [s₁ [qₗ qᵣ]].
use subtypePath.
{ intro ; apply isapropdirprod ; apply homset_property. }
cbn.
use z_iso_inv_on_left.
apply pathsinv0.
use (base_paths _ _ (pr2 t (s₁ · i_p ,, _ ,, _))).
+ rewrite assoc', π_ix.
rewrite assoc.
now rewrite qₗ.
+ simpl.
rewrite assoc'.
rewrite <- π_iy.
rewrite assoc.
now rewrite qᵣ.
Qed.
End Aux.
Lemma Pullback_iso_squares
: isPullback r'_p.
Proof.
intros e g_x g_y r.
use tpair.
- exact (Pullback_iso_squares_existence r).
- intro ; apply Pullback_iso_squares_uniqueness.
Qed.
End PullbackIso.
{C : category}
{x y z : C}
(f : x --> z)
(g : y --> z)
(Pfg : Pullback f g)
(Pgf : Pullback g f)
: Pfg --> Pgf.
Proof.
use PullbackArrow.
- apply PullbackPr2.
- apply PullbackPr1.
- abstract
(refine (!_) ;
apply PullbackSqrCommutes).
Defined.
Proposition swap_pullback_mor_eq
{C : category}
{x y z : C}
(f : x --> z)
(g : y --> z)
(Pfg : Pullback f g)
(Pgf : Pullback g f)
: swap_pullback_mor f g Pfg Pgf · swap_pullback_mor g f Pgf Pfg = identity Pfg.
Proof.
unfold swap_pullback_mor.
use (MorphismsIntoPullbackEqual (isPullback_Pullback Pfg)).
- rewrite !assoc'.
rewrite PullbackArrow_PullbackPr1.
rewrite PullbackArrow_PullbackPr2.
rewrite id_left.
apply idpath.
- rewrite !assoc'.
rewrite PullbackArrow_PullbackPr2.
rewrite PullbackArrow_PullbackPr1.
rewrite id_left.
apply idpath.
Qed.
Definition swap_pullback_z_iso
{C : category}
{x y z : C}
(f : x --> z)
(g : y --> z)
(Pfg : Pullback f g)
(Pgf : Pullback g f)
: z_iso Pfg Pgf.
Proof.
use make_z_iso.
- apply swap_pullback_mor.
- apply swap_pullback_mor.
- abstract
(split ; apply swap_pullback_mor_eq).
Defined.
Section PullbackIso.
Context {C : category}.
Lemma Pullback_eq
(P : Pullbacks C)
{x x' y y' z z' : ob C}
{f : C⟦x, z⟧} {g : C⟦y, z⟧}
{f' : C⟦x', z'⟧} {g' : C⟦y', z'⟧}
(i_x : x' = x) (i_y : y' = y) (i_z : z = z')
(p1 : idtoiso i_x · f · idtoiso i_z = f')
(p2 : idtoiso i_y · g · idtoiso i_z = g')
: z_iso (P _ _ _ f g) (P _ _ _ f' g').
Proof.
induction i_x, i_y, i_z, p1, p2.
cbn.
rewrite ! id_left, ! id_right.
apply identity_z_iso.
Defined.
Lemma transport_Pullback {x y z : ob C}
{f f' : C⟦x, z⟧} {g g' : C⟦y, z⟧}
(p1 : f = f') (p2 : g = g')
: Pullback f g ≃ Pullback f' g'.
Proof.
induction p1, p2.
apply idweq.
Defined.
Context {x y z p : ob C}
{π_y : C⟦p, y⟧} {π_x : C⟦p, x⟧} {f_y : C⟦y, z⟧} {f_x : C⟦x, z⟧}
(r_p : π_x · f_x = π_y · f_y).
Context {x' y' z' p' : ob C}
{π'_y : C⟦p', y'⟧} {π'_x : C⟦p', x'⟧} {f'_y : C⟦y', z'⟧} {f'_x : C⟦x', z'⟧}
{r'_p : π'_x · f'_x = π'_y · f'_y}
(pr_p : isPullback r_p).
Context (i_x : z_iso x' x) (i_y : z_iso y' y) (i_z : z_iso z' z) (i_p : z_iso p' p).
Context (p_xf : i_x · f_x = f'_x · i_z)
(p_yf : i_y · f_y = f'_y · i_z)
(π_ix : i_p · π_x = π'_x · i_x)
(π_iy : π'_y · i_y = i_p · π_y).
Section Aux.
Context {e : C} {g_x : C⟦e, x'⟧} {g_y : C⟦e, y'⟧} (r : g_x · f'_x = g_y · f'_y).
Lemma pf : g_x · i_x · f_x = g_y · i_y · f_y.
Proof.
use (cancel_z_iso _ _ (z_iso_inv i_z)).
refine (_ @ r @ _).
- rewrite ! assoc'.
apply maponpaths.
rewrite assoc.
use z_iso_inv_to_right.
exact p_xf.
- rewrite ! assoc'.
apply maponpaths.
rewrite assoc.
use z_iso_inv_on_left.
exact p_yf.
Qed.
Let t := pr_p e (g_x · i_x) (g_y · i_y) pf.
Definition Pullback_iso_squares_existence_mor
: C⟦e, p'⟧
:= pr11 t · z_iso_inv i_p.
Lemma Pullback_iso_squares_existence_comm₀
: Pullback_iso_squares_existence_mor · π'_x = g_x.
Proof.
refine (_ @ ! (z_iso_inv_on_left _ _ _ _ _ _ (pr121 t))).
unfold Pullback_iso_squares_existence_mor.
rewrite ! assoc'.
apply maponpaths.
use z_iso_inv_on_left.
rewrite assoc'.
use z_iso_inv_to_left.
exact π_ix.
Qed.
Lemma Pullback_iso_squares_existence_comm₁
: Pullback_iso_squares_existence_mor · π'_y = g_y.
Proof.
simpl.
refine (_ @ ! (z_iso_inv_on_left _ _ _ _ _ _ (pr221 t))).
unfold Pullback_iso_squares_existence_mor.
rewrite ! assoc'.
apply maponpaths.
use z_iso_inv_on_left.
rewrite assoc'.
apply pathsinv0.
use z_iso_inv_on_right.
exact π_iy.
Qed.
Lemma Pullback_iso_squares_existence
: ∑ hk : C ⟦ e, p' ⟧, hk · π'_x = g_x × hk · π'_y = g_y.
Proof.
simple refine (_ ,, _ ,, _).
- exact Pullback_iso_squares_existence_mor.
- exact Pullback_iso_squares_existence_comm₀.
- exact Pullback_iso_squares_existence_comm₁.
Defined.
Lemma Pullback_iso_squares_uniqueness
(s : ∑ hk : C ⟦ e, p' ⟧, hk · π'_x = g_x × hk · π'_y = g_y)
: s = Pullback_iso_squares_existence.
Proof.
induction s as [s₁ [qₗ qᵣ]].
use subtypePath.
{ intro ; apply isapropdirprod ; apply homset_property. }
cbn.
use z_iso_inv_on_left.
apply pathsinv0.
use (base_paths _ _ (pr2 t (s₁ · i_p ,, _ ,, _))).
+ rewrite assoc', π_ix.
rewrite assoc.
now rewrite qₗ.
+ simpl.
rewrite assoc'.
rewrite <- π_iy.
rewrite assoc.
now rewrite qᵣ.
Qed.
End Aux.
Lemma Pullback_iso_squares
: isPullback r'_p.
Proof.
intros e g_x g_y r.
use tpair.
- exact (Pullback_iso_squares_existence r).
- intro ; apply Pullback_iso_squares_uniqueness.
Qed.
End PullbackIso.