Library UniMath.Combinatorics.Lists

Lists

This file contains a formalization of lists define as iterated products (list).
Written by: Anders Mörtberg, 2016 (inspired by a remark of Vladimir Voevodsky), Floris van Doorn, december 2017

Lists over an arbitrary type

Section lists.

Context {A : UU}.

The type of lists
Definition list : UU := n, vec A n.

Length of a list
Definition length : list -> nat := pr1.

Coercion to a vector
Definition list_to_vec: l: list, vec A (length l) := pr2.
Coercion list_to_vec: list >-> vec.

The empty list
Definition nil : list := (0,, vnil).

List cons
Definition cons (x : A) (xs : list) : list :=
  (S (pr1 xs),, vcons x xs).

Local Notation "[]" := nil (at level 0, format "[]").
Local Infix "::" := cons.

Lemma list_ind : (P : list -> UU),
     P nil
  -> ( (x : A) (xs : list), P xs -> P (x :: xs))
  -> xs, P xs.
Proof.
intros P Hnil Hcons xs.
induction xs as [n xs].
induction n as [|n IHn].
- induction xs.
  apply Hnil.
- simpl in xs.
  induction xs as [x xs].
  apply (Hcons x (n,,xs) (IHn xs)).
Defined.

Lemma list_ind_compute_2
      (P : list -> UU)
      (p0 : P nil)
      (ind : (x : A) (xs : list), P xs -> P (x :: xs))
      (x : A) (xs : list)
      (f := list_ind P p0 ind) :
  f (x::xs) = ind x xs (f xs).
Proof.
  apply idpath.
Defined.

Definition foldr {B : UU} (f : A -> B -> B) (b : B) : list -> B :=
  list_ind (λ _, B) b (λ a _ b', f a b').

Variation of foldr that returns a for the empty list and folds the rest with the first element as new default value
Definition foldr1 (f : A -> A -> A) (a : A) : list A.
Proof.
  apply list_ind.
  - exact a.
  - intros a' l fl. revert l. apply list_ind.
    + exact a'.
    + intros _ _ _. exact (f a' fl).
Defined.

Variation of foldr1 with embedded mapping, see below for foldr1_foldr1_map
Definition foldr1_map {B : UU} (f : B -> B -> B) (b : B) (h : A -> B) : list B.
Proof.
  apply list_ind.
  - exact b.
  - intros a' l fl. revert l. apply list_ind.
    + exact (h a').
    + intros _ _ _. exact (f (h a') fl).
Defined.

The n-th element of a list

Definition nth x : stn(length x) -> A := el (pr2 x).

Definition functionToList' n : (stn n -> A) -> vec A n.
Proof.
  intros f.
  induction n as [|n I].
  - exact tt.
  - exists (f (0))%stn.
    exact (I(f dni (0)))%stn.
Defined.

Definition functionToList n : (stn n -> A) -> list.
Proof.
  intros f.
  exact (n ,, make_vec f).
Defined.

Section Test.

  Local Open Scope stn.

  Context {a b c d:A}.
  Let x := a::b::c::d::[].
  Goal nth x (●0) = a. apply idpath. Qed.
  Goal nth x (●1) = b. apply idpath. Qed.
  Goal nth x (●2) = c. apply idpath. Qed.
  Goal nth x (●3) = d. apply idpath. Qed.

  Goal functionToList _ (nth x) = x. apply idpath. Qed.

End Test.

End lists.

Make the type not implicit for list
Arguments list : clear implicits.

Section more_lists.

Definition map {A B : UU} (f : A -> B) : list A -> list B :=
  foldr (λ a l, cons (f a) l) nil.

Lemma mapStep {A B : UU} (f : A -> B) (a:A) (x:list A) : map f (cons a x) = cons (f a) (map f x).
Proof.
  apply idpath.
Defined.

Various unfolding lemmas
Lemma foldr_nil {A B : UU} (f : A -> B -> B) (b : B) : foldr f b nil = b.
Proof.
  apply idpath.
Qed.

Lemma foldr_cons {A B : UU} (f : A -> B -> B) (b : B) (x : A) (xs : list A) :
  foldr f b (cons x xs) = f x (foldr f b xs).
Proof.
  apply idpath.
Qed.

Lemma map_nil {A B : UU} (f : A -> B) : map f nil = nil.
Proof.
  apply idpath.
Qed.

Lemma map_cons {A B : UU} (f : A -> B) (x : A) (xs : list A) :
  map f (cons x xs) = cons (f x) (map f xs).
Proof.
  apply idpath.
Qed.

Lemma map_compose {A B C : UU} (f : A B) (g : B C) (xs : list A) :
  map (g f) xs = map g (map f xs).
Proof.
  revert xs. apply list_ind.
  - apply idpath.
  - intros x xs IH. now rewrite !map_cons, IH.
Defined.

Lemma map_idfun {A : UU} (xs : list A) :
  map (idfun A) xs = xs.
Proof.
  revert xs. apply list_ind.
  - apply idpath.
  - intros x xs IH. now rewrite !map_cons, IH.
Defined.

Lemma map_homot {A B : UU} {f g : A B} (h : f ~ g) (xs : list A) :
  map f xs = map g xs.
Proof.
  revert xs. apply list_ind.
  - apply idpath.
  - intros x xs IH. now rewrite !map_cons, h, IH.
Defined.

Lemma foldr1_nil {A: UU} (f : A -> A -> A) (a : A) : foldr1 f a nil = a.
Proof.
  apply idpath.
Qed.

Lemma foldr1_cons_nil {A : UU} (f : A -> A -> A) (a : A) (x : A) :
  foldr1 f a (cons x nil) = x.
Proof.
apply idpath.
Qed.

Lemma foldr1_cons {A : UU} (f : A -> A -> A) (a : A) (x y : A) (xs : list A) :
  foldr1 f a (cons x (cons y xs)) = f x (foldr1 f a (cons y xs)).
Proof.
apply idpath.
Qed.

Lemma foldr1_map_nil {A : UU} {B : UU} (f : B -> B -> B) (b : B) (h : A -> B) :
  foldr1_map f b h nil = b.
Proof.
  apply idpath.
Qed.

Lemma foldr1_map_cons_nil {A : UU} {B : UU} (f : B -> B -> B) (b : B) (h : A -> B)
  (x : A) : foldr1_map f b h (cons x nil) = h x.
Proof.
  apply idpath.
Qed.

Lemma foldr1_map_cons {A : UU} {B : UU} (f : B -> B -> B) (b : B) (h : A -> B)
  (x y : A) (xs : list A) :
  foldr1_map f b h (cons x (cons y xs)) = f (h x) (foldr1_map f b h (cons y xs)).
Proof.
  apply idpath.
Qed.

an induction principle for foldr1_map
P takes the list argument xs of foldr1_map and the purported value of foldr1_map f b h xs P0 and P1 ask that P is correct for lists of length <=1 P2 deals with longer lists and reflects the effect of adding a subsequent element a2 to the list, where res keeps the result of foldr1_map f b h (cons a1 xs) abstract
Definition foldr1_map_ind {A B : UU} (f : B -> B -> B) (b : B) (h : A -> B) (P : list A -> B -> UU)
  (P0 : P nil b)
  (P1 : a, P (cons a nil) (h a))
  (P2 : a1 xs a2 res, P (cons a1 xs) res -> P (cons a2 (cons a1 xs)) (f (h a2) res))
  (xs : list A) : P xs (foldr1_map f b h xs).
Proof.
  revert xs.
  induction xs as [[|n] xs].
  - induction xs.
    apply P0.
  - induction n as [|n IH].
    + induction xs as [m []].
      apply P1.
    + induction xs as [m [k xs]].
      assert (IHinst := IH (k,,xs)).
      exact (P2 k (n,,xs) m (foldr1_map f b h (S n,, k,, xs)) IHinst).
Defined.

Definition foldr1_map_ind_nodep {A B : UU} (f : B -> B -> B) (b : B) (h : A -> B) (P : B -> UU)
  (P0 : P b)
  (P1 : a, P (h a))
  (P2 : a res, P res -> P (f (h a) res))
  (xs : list A) : P (foldr1_map f b h xs).
Proof.
  set (Pdep := fun (_ : list A) (res : B) => P res).
  apply (foldr1_map_ind f b h Pdep).
  - exact P0.
  - exact P1.
  - intros a1 xs' a2 res H. apply P2. exact H.
Defined.

Lemma foldr1_foldr1_map {A B : UU} (f : B -> B -> B) (b : B) (h : A -> B) (xs : list A) :
  foldr1_map f b h xs = foldr1 f b (map h xs).
Proof.
  set (P := fun xs res => res = foldr1 f b (map h xs)).
  apply (foldr1_map_ind f b h P).
  - apply idpath.
  - intro a. apply idpath.
  - intros a1 xs' a2 res H.
    red.
    do 2 rewrite map_cons.
    rewrite foldr1_cons.
    apply maponpaths.
    red in H.
    rewrite map_cons in H.
    exact H.
Qed.

End more_lists.

Local Notation "[]" := nil (at level 0, format "[]").
Local Infix "::" := cons.

concatenate two lists

Definition concatenate {X} : list X -> list X -> list X
  := λ r s, foldr cons s r.

Local Infix "++" := concatenate.

Lemma concatenateStep {X} (x:X) (r s:list X) :
  (x::r) ++ s = x :: (r ++ s).
Proof.
  apply idpath.
Defined.

Lemma nil_concatenate {X} (r : list X) : nil ++ r = r.
Proof. apply idpath. Defined.

Lemma concatenate_nil {X} (r : list X) : r ++ nil = r.
Proof. revert r. apply list_ind. apply idpath. intros x xs p. exact (maponpaths (cons x) p). Defined.

Lemma assoc_concatenate {X} (r s t : list X) : (r ++ s) ++ t = r ++ (s ++ t).
Proof.
  revert r. apply list_ind.
  - apply idpath.
  - intros x xs p. now rewrite !concatenateStep, p.
Defined.

Lemma map_concatenate {X Y} (f : X Y) (r s : list X) : map f (r ++ s) = map f r ++ map f s.
Proof.
  revert r. apply list_ind.
  - apply idpath.
  - intros x xs p. now rewrite mapStep, !concatenateStep, mapStep, p.
Defined.

Lemma foldr_concatenate {X Y : UU} (f : X Y) (l : list X) :
  foldr concatenate [] (map (λ x, f x::[]) l) = map f l.
Proof.
  revert l. apply list_ind.
  - apply idpath.
  - intros x l IH. now rewrite !map_cons, foldr_cons, IH.
Qed.

Lemma foldr1_map_concatenate {X Y : UU} (f : X Y) (l : list X) :
  map f l = foldr1_map concatenate [] (λ x, f x::[]) l.
Proof.
  set (P := fun xs res => map f xs = res).
  refine (foldr1_map_ind _ _ _ P _ _ _ l).
  - apply idpath.
  - intro; apply idpath.
  - intros x' l' x'' res Hyp.
    exact (maponpaths (cons (f x'')) Hyp).
Qed.

Lemma foldr1_concatenate {X Y : UU} (f : X Y) (l : list X) :
  map f l = foldr1 concatenate [] (map (λ x, f x::[]) l).
Proof.
  simple refine (foldr1_map_concatenate _ _ @ _).
  apply foldr1_foldr1_map.
Qed.

Append a single element to a list

Definition append {X} (x : X) (l : list X) : list X :=
  l ++ x::[].

Lemma appendStep {X} (x y : X) (l : list X) : append x (y::l) = y::append x l.
  Proof. apply idpath. Defined.

Lemma append_concatenate {X} (x : X) (l s : list X) : append x (l ++ s) = l ++ append x s.
  Proof. apply assoc_concatenate. Defined.

Lemma map_append {X Y} (f : X Y) (x : X) (r : list X) : map f (append x r) = append (f x) (map f r).
  Proof. exact (map_concatenate _ _ _). Defined.

Reverse a list

Definition reverse {X} : list X list X :=
  foldr append [].

Lemma reverse_nil (X : Type) : reverse (@nil X) = [].
Proof. apply idpath. Defined.

Lemma reverseStep {X} (x : X) (r : list X) : reverse (x::r) = append x (reverse r).
Proof. apply idpath. Defined.

Lemma map_reverse {X Y} (f : X Y) (r : list X) : map f (reverse r) = reverse (map f r).
Proof.
  revert r. apply list_ind.
  - apply idpath.
  - intros x xs p. now rewrite mapStep, !reverseStep, map_append, p.
Defined.

Lemma reverse_concatenate {X} (l s : list X) : reverse (l ++ s) = reverse s ++ reverse l.
Proof.
  revert l. apply list_ind.
  - symmetry. apply concatenate_nil.
  - intros x xs p. now rewrite concatenateStep, !reverseStep, p, append_concatenate.
Defined.

Lemma reverse_append {X} (x : X) (l : list X) : reverse (append x l) = x :: reverse l.
Proof. unfold append. now rewrite reverse_concatenate, reverseStep, reverse_nil. Defined.

Lemma reverse_reverse {X} (r : list X) : reverse (reverse r) = r.
Proof.
  revert r. apply list_ind.
  - apply idpath.
  - intros x xs p. now rewrite !reverseStep, reverse_append, p.
Defined.

flatten lists of lists

Definition flatten {X} : list (list X) list X.
Proof.
  apply list_ind.
  + exact [].
  + intros s _ f. exact (concatenate s f).
Defined.

Lemma flattenStep {X} (x:list X) (m : list(list X)) : flatten (x::m) = concatenate x (flatten m).
Proof.
  unfold flatten.
  rewrite list_ind_compute_2.
  apply idpath.
Defined.

Lemma isofhlevellist (n : nat) {X : UU} (is1 : isofhlevel (S (S n)) X) : isofhlevel (S (S n)) (list X).
Proof.
  use isofhleveltotal2.
  - intros m k. apply isofhlevelsnprop, isasetnat.
  - intro m. apply isofhlevelvec, is1.
Defined.