Library UniMath.Algebra.Universal.FreeAlgebras

Free algebras.

Gianluca Amato, Marco Maggesi, Cosimo Perini Brogi 2019-2021
This file contains a formalization of free algebras over a signature (i.e., the algebra of terms over a signature and a set of variables.

Require Import UniMath.Foundations.All.

Require Export UniMath.Algebra.Universal.Algebras.
Require Export UniMath.Algebra.Universal.VTerms.

Local Open Scope sorted.
Local Open Scope hom.

Section FreeAlgebras.

  Definition free_algebra (σ: signature) (V: varspec σ): algebra σ :=
    @make_algebra σ (termset σ V) build_term.

  Context {σ: signature} (a : algebra σ) {V: varspec σ} (α: assignment a V).

  Definition eval: free_algebra σ V s a := fromterm (ops a) α.

  Lemma evalstep (nm: names σ) (v: (term σ V)⋆ (arity nm))
    : eval (sort nm) (build_term nm v) = ops a nm (eval⋆⋆ (arity nm) v).
  Proof.
    unfold eval.
    change (sort nm) with (sort nm).
    apply fromtermstep.
  Defined.

  Lemma ishomeval: ishom eval.
  Proof.
    red.
    intros.
    apply evalstep.
  Defined.

  Definition evalhom: free_algebra σ V a := make_hom ishomeval.

  Definition universalmap: h: free_algebra σ V a, v: V, h _ (varterm v) = α v.
  Proof.
    exists evalhom.
    intro v.
    simpl.
    unfold eval, varterm.
    apply fromtermstep'.
  Defined.

  Lemma universalmap_is_unique (h: free_algebra σ V a) (honvars: v: V, h (varsort v) (varterm v) = α v): pr1 h = pr1 universalmap.
  Proof.
    induction h as [h hishom].
    simpl.
    apply funextsec.
    intro s.
    apply funextfun.
    unfold homot.
    revert s.
    apply (term_ind(σ := vsignature σ V)).
    unfold term_ind_HP.
    intros nm hv IHhv.
    induction nm as [nm | v].
    * change (inl nm) with (namelift V nm).
      change (sort (namelift V nm)) with (sort nm).
      change (build_gterm (namelift V nm) hv) with (ops (free_algebra σ V) nm hv) at 1.
      change (build_gterm (namelift V nm) hv) with (build_term nm hv).
      rewrite hishom.
      rewrite evalstep.
      apply maponpaths.
      revert hv IHhv.
      change (@arity (vsignature σ V) (inl nm)) with (arity nm).
      generalize (arity nm).
      refine (list_ind _ _ _).
      -- reflexivity.
      -- intros x xs IHxs hv IHhv.
         unfold starfun.
           simpl.
           simpl in IHhv.
           apply hcons_paths.
           + exact (pr1 IHhv).
           + exact (IHxs (pr2 hv) (pr2 IHhv)).
    * induction hv.
      change (inr v) with (varname v).
      change (sort (varname v)) with (varsort v).
      change (build_gterm (varname v) tt) with (varterm v).
      rewrite honvars.
      unfold eval.
      rewrite fromtermstep'.
      apply idpath.
  Qed.

  Definition iscontr_universalmap (setprop: has_supportsets a)
    : iscontr ( h: free_algebra σ V a, v: V, h (varsort v) (varterm v) = α v).
  Proof.
    exists universalmap.
    intro h.
    induction h as [h honvars].
    apply subtypePairEquality'.
    - apply subtypePairEquality'.
      + apply universalmap_is_unique.
        assumption.
      + apply isapropishom.
        assumption.
    - apply impred_isaprop.
      intros.
      apply (setprop (varsort t)).
  Defined.

End FreeAlgebras.