Library UniMath.Bicategories.DisplayedBicats.Examples.CategoriesWithStructure.ParameterizedNNO
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.BinProducts.
Require Import UniMath.CategoryTheory.Limits.Preservation.
Require Import UniMath.CategoryTheory.Arithmetic.ParameterizedNNO.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.BicatOfCats.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat. Import DispBicat.Notations.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Sub1Cell.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Sigma.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.CategoriesWithStructure.FiniteLimits.
Local Open Scope cat.
Section LexCategoriesWithChosenParameterizedNNOAndPreservationUpToIso.
Definition disp_bicat_parameterized_NNO'
: disp_bicat (total_bicat disp_bicat_limits).
Proof.
use disp_subbicat.
- exact (λ C, parameterized_NNO (pr112 C) (pr1 (pr122 C))).
- exact (λ C₁ C₂ N₁ N₂ F, preserves_parameterized_NNO N₁ N₂ _ (pr212 F)).
- intro ; intro ; apply id_preserves_parameterized_NNO.
- exact (λ _ _ _ _ _ _ _ _ p₁ p₂, comp_preserves_parameterized_NNO p₁ p₂).
Defined.
Lemma disp_2cells_iscontr_parameterized_NNO'
: disp_2cells_iscontr disp_bicat_parameterized_NNO'.
Proof.
apply disp_2cells_iscontr_subbicat.
Qed.
Definition disp_bicat_parameterized_NNO
: disp_bicat bicat_of_cats
:= sigma_bicat _ _ disp_bicat_parameterized_NNO'.
Lemma disp_2cells_iscontr_parameterized_NNO
: disp_2cells_iscontr disp_bicat_parameterized_NNO.
Proof.
apply disp_2cells_of_sigma_iscontr.
- apply disp_2cells_iscontr_limits.
- apply disp_2cells_iscontr_parameterized_NNO'.
Qed.
End LexCategoriesWithChosenParameterizedNNOAndPreservationUpToIso.
Definition disp_bicat_parameterized_NNO'
: disp_bicat (total_bicat disp_bicat_limits).
Proof.
use disp_subbicat.
- exact (λ C, parameterized_NNO (pr112 C) (pr1 (pr122 C))).
- exact (λ C₁ C₂ N₁ N₂ F, preserves_parameterized_NNO N₁ N₂ _ (pr212 F)).
- intro ; intro ; apply id_preserves_parameterized_NNO.
- exact (λ _ _ _ _ _ _ _ _ p₁ p₂, comp_preserves_parameterized_NNO p₁ p₂).
Defined.
Lemma disp_2cells_iscontr_parameterized_NNO'
: disp_2cells_iscontr disp_bicat_parameterized_NNO'.
Proof.
apply disp_2cells_iscontr_subbicat.
Qed.
Definition disp_bicat_parameterized_NNO
: disp_bicat bicat_of_cats
:= sigma_bicat _ _ disp_bicat_parameterized_NNO'.
Lemma disp_2cells_iscontr_parameterized_NNO
: disp_2cells_iscontr disp_bicat_parameterized_NNO.
Proof.
apply disp_2cells_of_sigma_iscontr.
- apply disp_2cells_iscontr_limits.
- apply disp_2cells_iscontr_parameterized_NNO'.
Qed.
End LexCategoriesWithChosenParameterizedNNOAndPreservationUpToIso.