Library UniMath.CategoryTheory.WeakEquivalences.Reflection.Exponentials

Reflection Of Exponents
In this file, we show how weak equivalences reflect exponential objects. That is: Let F : C₀ → C₁ be a weak equivalence. Then, to test whether an object in C₀ is an exponential, it suffices to prove that the image hereof is an exponential in C₁.
Contents 1. Weak Equivalences reflect exponential objects weak_equiv_reflects_exponential_objects
1. Weak Equivalences Reflect Exponential Objects
Section WeakEquivReflectsExponentialObjects.

  Context {C₀ C₁ : category}
    (P₀ : BinProducts C₀) (P₁ : BinProducts C₁)
    {F : C₀ C₁} (F_weq : is_weak_equiv F).

  Definition weak_equiv_z_iso_binprod (x y : C₀)
    : z_iso (P₁ (F x) (F y)) (F (P₀ x y)).
  Proof.
    exact (z_iso_inv (preserves_binproduct_to_z_iso F (weak_equiv_preserves_binproducts F_weq)
                        (P₀ _ _) (P₁ (F _) (F _)))).
  Defined.

  Context {x₀ y₀ e₀ : C₀}
    (ev₀ : C₀P₀ x₀ e₀, y₀)
    (ev_uvp : is_exponent_uvp P₁ (weak_equiv_z_iso_binprod _ _ · # F ev₀))
    {a₀ : C₀}
    (f₀ : C₀P₀ x₀ a₀, y₀).

  Let f₁ : C₁P₁ (F x₀) (F a₀), F y₀ := weak_equiv_z_iso_binprod _ _ · #F f₀.

  Let f₁_corefl : coreflection_data (F y₀) (constprod_functor1 P₁ (F x₀))
      := make_coreflection_data (F := constprod_functor1 _ _) _ f₁.

  Definition weak_equiv_reflect_exp_lam : C₀a₀, e₀
    := (fully_faithful_inv_hom (pr2 F_weq) _ _ (pr11 (ev_uvp f₁_corefl))).

  Lemma weak_equiv_reflect_exp_lam_helper (ψ : C₀a₀, e₀)
    : BinProductOfArrows C₁ (P₁ _ _) (P₁ _ _)
         (identity (F x₀)) (#F ψ)
         · inv_from_z_iso
         (preserves_binproduct_to_z_iso F (weak_equiv_preserves_binproducts F_weq)
            (P₀ x₀ e₀) (P₁ (F x₀) (F e₀)))
       = weak_equiv_z_iso_binprod x₀ a₀
           · # F (BinProductOfArrows C₀ (P₀ x₀ e₀) (P₀ x₀ a₀)
                    (identity x₀) ψ).
  Proof.
    set (t' := preserves_binproduct_of_arrows (BC₁ := P₀) (BC₂ := P₁)
                 (weak_equiv_preserves_binproducts F_weq) (identity x₀) ψ).
    refine (_ @ ! t').
    do 2 apply maponpaths_2.
    apply pathsinv0, functor_id.
  Qed.

  Lemma weak_equiv_reflect_exp_lam_app
    : f₀ =
        BinProductOfArrows C₀ (P₀ x₀ e₀) (P₀ x₀ a₀) (identity x₀) weak_equiv_reflect_exp_lam · ev₀.
  Proof.
    set(t := pr21 (ev_uvp f₁_corefl)).
    simpl in t ; unfold BinProduct_of_functors_mor in t ; simpl in t.

    use (faithful_reflects_morphism_equality _ (pr2 F_weq)).
    use (cancel_z_iso' (weak_equiv_z_iso_binprod _ _)).

    refine (t @ _).
    rewrite functor_comp.
    rewrite ! assoc.
    apply maponpaths_2.
    refine (_ @ weak_equiv_reflect_exp_lam_helper weak_equiv_reflect_exp_lam).
    apply maponpaths_2, maponpaths.
    apply pathsinv0, functor_on_fully_faithful_inv_hom.
  Qed.

  Section WeakEquivReflectsExponentialsObjectsUniqueness.

    Let A := ( f' : C₀ a₀, e₀ , f₀ = # (constprod_functor1 P₀ x₀) f' · ev₀).

    Lemma weak_equiv_exp_lam_app (ϕ : A)
      : f₁ = BinProductOfArrows C₁ (P₁ (F x₀) (F e₀)) (P₁ (F x₀) (F a₀))
                (identity (F x₀)) (# F (pr1 ϕ))
                · (weak_equiv_z_iso_binprod x₀ e₀ · # F ev₀).
    Proof.
      use (cancel_z_iso' (z_iso_inv (weak_equiv_z_iso_binprod _ _))).
      refine (_ @ maponpaths #F (pr2 ϕ) @ _).
      - refine (assoc _ _ _ @ _).
        refine (_ @ id_left _).
        apply maponpaths_2.
        apply z_iso_inv_after_z_iso.
      - rewrite functor_comp.
        rewrite ! assoc.
        apply maponpaths_2.
        rewrite assoc'.
        use z_iso_inv_to_left.
        exact (! weak_equiv_reflect_exp_lam_helper (pr1 ϕ)).
    Qed.

    Lemma weak_equiv_reflects_exponential_objects_uniqueness
      : isaprop A.
    Proof.
      use invproofirrelevance.
      intros ϕ₁ ϕ₂.
      use subtypePath.
      { intro ; apply homset_property. }

      use (faithful_reflects_morphism_equality _ (pr2 F_weq)).
      set (t₁ := ! pr2 (ev_uvp (F a₀ ,, f₁)) (#F (pr1 ϕ₁) ,, weak_equiv_exp_lam_app ϕ₁)).
      set (t₂ := ! pr2 (ev_uvp (F a₀ ,, f₁)) (#F (pr1 ϕ₂) ,, weak_equiv_exp_lam_app ϕ₂)).
      exact (! base_paths _ _ t₁ @ base_paths _ _ t₂).
    Qed.

  End WeakEquivReflectsExponentialsObjectsUniqueness.

  Proposition weak_equiv_reflects_exponential_objects_uvp
    : ∃! f' : C₀ a₀, e₀ , f₀ = # (constprod_functor1 P₀ x₀) f' · ev₀.
  Proof.
    use iscontraprop1.
    { exact weak_equiv_reflects_exponential_objects_uniqueness. }
    use tpair.
    - exact weak_equiv_reflect_exp_lam.
    - exact weak_equiv_reflect_exp_lam_app.
  Defined.

End WeakEquivReflectsExponentialObjects.

Proposition weak_equiv_reflects_exponential_objects
  {C₀ C₁ : category} (P₀ : BinProducts C₀) (P₁ : BinProducts C₁)
  {F : functor C₀ C₁} (F_weq : is_weak_equiv F)
  : reflects_exponential_objects P₀ P₁ (weak_equiv_preserves_binproducts F_weq).
Proof.
  intros x₀ y₀ e₀ ev₀ ev_uvp f₀.
  apply (weak_equiv_reflects_exponential_objects_uvp P₀ P₁ F_weq).
  assumption.
Defined.