Library UniMath.Bicategories.RezkCompletions.StructuredCats.ParameterizedNNO
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.WeakEquivalences.Core.
Require Import UniMath.CategoryTheory.WeakEquivalences.Terminal.
Require Import UniMath.CategoryTheory.WeakEquivalences.PNNO.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.BicatOfCats.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.PseudoFunctors.UniversalArrow.
Import PseudoFunctor.Notations.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.BicatOfCatToUnivCat.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.DispBicatOnCatToUniv.
Require Import UniMath.Bicategories.DisplayedBicats.DisplayedUniversalArrow.
Require Import UniMath.Bicategories.DisplayedBicats.DisplayedUniversalArrowOnCat.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Sigma.
Require Import UniMath.CategoryTheory.Arithmetic.ParameterizedNNO.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.CategoriesWithStructure.ParameterizedNNO.
Require Import UniMath.Bicategories.RezkCompletions.DisplayedRezkCompletions.
Require Import UniMath.Bicategories.RezkCompletions.StructuredCats.FiniteLimits.
Local Open Scope cat.
Section CategoriesNNOAdmitRezkCompletions.
Context (LUR : left_universal_arrow univ_cats_to_cats)
(η_weak_equiv : ∏ C : category, is_weak_equiv (pr12 LUR C)).
Lemma disp_bicat_parameterized_NNO_has_RC
: cat_with_struct_has_RC η_weak_equiv disp_bicat_parameterized_NNO.
Proof.
use make_cat_with_struct_has_RC_from_sigma ; cbn.
- exact (disp_bicat_limits_has_RC _ η_weak_equiv).
- simpl ; intros C₁ C₂ C₂_univ F F_weq ? [N₁ ?].
refine (_ ,, tt).
apply (weak_equiv_creates_parameterized_NNO F_weq N₁).
- cbn ; intros C [[T ?] [BP ?]] [Ω ?].
refine (tt ,, _).
apply weak_equiv_preserves_parameterized_NNO'.
- cbn ; intros C₁ C₂ C₃ F G H α
? [N₁ ?]
? [N₂ ?]
? [N₃ ?]
G_weq
?
[? FN].
refine (tt ,, _).
exact (weak_equiv_lifts_preserves_parameterized_NNO α G_weq N₁ N₂ N₃ FN).
Defined.
Theorem disp_bicat_parameterized_NNO_has_Rezk_completion
: cat_with_structure_has_RezkCompletion disp_bicat_parameterized_NNO.
Proof.
apply (make_RezkCompletion_from_locally_contractible η_weak_equiv).
- exact disp_bicat_parameterized_NNO_has_RC.
- apply disp_2cells_iscontr_parameterized_NNO.
Defined.
End CategoriesNNOAdmitRezkCompletions.