Library UniMath.Algebra.Universal.SubAlgebras

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.

Require Export UniMath.Algebra.Universal.SortedTypes.
Require Export UniMath.Algebra.Universal.Signatures.
Require Export UniMath.Algebra.Universal.Algebras.
Require Import UniMath.Algebra.Universal.Algebras_eq.

Open Scope sorted.
Open Scope hom.

Section Embedding.

Definition embedding {σ : signature} (B A : algebra σ) :=
   (i : B s A), ( s, isincl (i s)) × (ishom i).

Definition make_embedding {σ : signature} {B A : algebra σ}
  (i : B s A)
  (ishom : ishom i)
  (isincl : s, isincl (i s))
  : embedding B A
  := (i,,(isincl,,ishom)).

Definition make_embedding' {σ : signature} {B A : algebra σ}
  (i : B A)
  (isincl : s, isincl (i s))
  : embedding B A
  := (hom2fun i,,(isincl,,hom2axiom i)).

Definition embedding_pr1 {σ : signature} {B A : algebra σ} (i:embedding B A)
  : B s A := pr1 i.

Definition embedding_hom {σ : signature} {B A : algebra σ} (i:embedding B A)
  : hom B A
  := (pr1 i,,pr22 i).
Coercion embedding_hom : embedding >-> hom.

Definition embedding_isincl {σ : signature} {B A : algebra σ} (i:embedding B A)
  : s, isincl (i s) := pr12 i.

Definition embedding_ishom {σ : signature} {B A : algebra σ} (i:embedding B A)
  : ishom i := pr22 i.

Lemma isapropisembedding {σ : signature} (B A : algebra σ) (i : B s A)
  (setprop: has_supportsets A)
  : isaprop (( s, isincl (i s)) × (ishom i)).
Proof.
  use isapropdirprod.
  - use impred.
    intro.
    use isapropisincl.
  - use isapropishom.
    use setprop.
Qed.

End Embedding.

Section SubUniverse.

Definition issubuniverse {σ : signature} (A : algebra σ) (B : shsubtype A): UU
  := ∏(nm : names σ) (xs : B (arity nm)),
    B (sort nm) (ops A nm ((λ s, pr1carrier (B s))⋆⋆ (arity nm) xs)).

Definition isapropissubuniverse {σ : signature} (A : algebra σ) (B : shsubtype A)
  : isaprop (issubuniverse A B).
Proof.
  use impred.
  intro.
  use impred.
  intro.
  use propproperty.
Qed.

Definition algebraofsubuniverse {σ : signature}
  {A : algebra σ} {B : shsubtype A}
  (is : issubuniverse A B)
  : algebra σ.
Proof.
  use make_algebra.
  - use B.
  - intros nm xs.
    cbn.
    use make_carrier.
    + use (ops A nm).
      use (h1map (λ s, pr1carrier (B s)) xs).
    + use is.
Defined.

Definition embeddingofsubuniverse {σ : signature}
  {A : algebra σ} {B : shsubtype A}
  (isB : issubuniverse A B)
  : embedding (algebraofsubuniverse isB) A.
Proof.
  use make_embedding.
  - intros s.
    use pr1carrier.
  - intros nm xs.
    apply idpath.
  - intros s.
    use isinclpr1.
    intro a. cbn beta.
    use propproperty.
Defined.

End SubUniverse.

Theorem issubuniverse_image {σ : signature} {A B: algebra σ} (f : B A)
: issubuniverse A (simage_shsubtype f).
Proof.
  intros nm ys.
  use (squash_simage f (arity nm) ys (isapropishinh _)).
  intro fibers.
  use hinhpr.
  use tpair.
  - use ops.
    use (h2lower (h2map (λ s _, pr1) fibers)).
  - cbn.
    eapply pathscomp0.
    { use (hom2axiom f). }
    use maponpaths.
    use hvec_ofpaths.
Qed.

Section embedding_subuniverse_weq.

Context {σ : signature} (A : algebra σ).

Context (setprop : has_supportsets A).

Local Theorem algebraofsubuniverse_image
  (B : algebra σ) (i : embedding B A)
  : B = algebraofsubuniverse (issubuniverse_image i).
Proof.
  use make_algebra_eq.
  - use make_hom.
    + intro s.
      use prtoimage.
    + intros nm xs.
      use subtypePath.
      * intro.
        use propproperty.
      * simpl.
        eapply pathscomp0.
        { use embedding_ishom. }
        use maponpaths.
        use pathsinv0.
        use h1map_compose.
  - intro s.
    use isweqinclandsurj.
      * use isinclprtoimage.
        use embedding_isincl.
      * use issurjprtoimage.
Defined.

Local Theorem embeddingofsubuniverse_image
  (B : algebra σ) (i : embedding B A)
  : transportb (λ arg, embedding arg A) (algebraofsubuniverse_image B i) (embeddingofsubuniverse (issubuniverse_image i)) = i.
Proof.
  use subtypePath.
  { intro.
    use isapropisembedding.
    exact setprop. }
    eapply pathscomp0.
    { use (pr1_transportb (algebraofsubuniverse_image B i) _). }
    simpl.
    use funextsec.
    intro s.
    eapply pathscomp0.
    { use transportf_sfun. }
    use funextsec.
    intro b.
    simpl.
    eapply pathscomp0.
    { refine (maponpaths (pr1carrier (simage_shsubtype (pr1 i) s)) _).
      unfold transportb.
      use (functtransportf support (λ x, x s) (! (! algebraofsubuniverse_image B i)) b). }
    rewrite pathsinv0inv0.
    unfold pr1carrier.
    unfold algebraofsubuniverse_image.
    rewrite support_make_algebra_eq.
    unfold make_algebra_support_eq.
    eapply pathscomp0.
    { eapply (maponpaths pr1).
      eapply pathscomp0.
      { use (transportf_funextfun (idfun UU)). }
      simpl.
      refine (toforallpaths _ _ _ _ b).
      use weqpath_transport. }
    apply idpath.
Defined.

Definition embedding_to_subuniverse
  (B : B : algebra σ, embedding B A)
  : PB : shsubtype A, issubuniverse A PB.
Proof.
  destruct B as [B i].
  exact (simage_shsubtype i,,issubuniverse_image i).
Defined.

Definition subuniverse_to_embedding
  (B : PB : shsubtype A, issubuniverse A PB)
  : B : algebra σ, embedding B A.
Proof.
  destruct B as [PB is_su_PB].
    use (tpair _ (algebraofsubuniverse is_su_PB) (embeddingofsubuniverse is_su_PB)).
Defined.

Lemma subuniverse_to_embedding_to_subuniverse
  (B : B : algebra σ, embedding B A)
  : subuniverse_to_embedding (embedding_to_subuniverse B) = B.
Proof.
  destruct B as [B i].
  use total2_paths2_f.
  + use pathsinv0.
    use algebraofsubuniverse_image.
  + use embeddingofsubuniverse_image.
Qed.

Lemma embedding_to_subuniverse_to_embedding
  (B : PB : shsubtype A, issubuniverse A PB)
  : embedding_to_subuniverse (subuniverse_to_embedding B) = B.
Proof.
  use subtypePath.
  { intro. use isapropissubuniverse. }
  simpl.
  use funextsec.
  intro s.
  use funextsec.
  intro a.
  unfold simage_shsubtype.
  simpl.
  use hPropUnivalence.
  + unfold pr1carrier.
    intro P.
    use (squash_to_prop P).
    { use propproperty. }
    intro b.
    destruct b as [b Hb].
    destruct b as [b Bb].
    simpl in Hb.
    destruct Hb.
    exact Bb.
  + intro Ba.
    use hinhpr.
    unfold pr1carrier.
    simpl.
    use tpair.
    * exact (a,, Ba).
    * apply idpath.
Defined.

Theorem embedding_subuniverse_weq:
  ( (B:algebra σ), embedding B A)
  ( (PB : shsubtype A), issubuniverse A PB).
Proof.
  use weq_iso.
  - use embedding_to_subuniverse.
  - use subuniverse_to_embedding.
  - use subuniverse_to_embedding_to_subuniverse.
  - use embedding_to_subuniverse_to_embedding.
Defined.

End embedding_subuniverse_weq.