Library UniMath.AlgebraicTheories.Examples.EmptyPresheaf
Require Import UniMath.Foundations.All.
Require Import UniMath.AlgebraicTheories.AlgebraicTheories.
Require Import UniMath.AlgebraicTheories.Presheaves.
Require Import UniMath.AlgebraicTheories.AlgebraicTheories.
Require Import UniMath.AlgebraicTheories.Presheaves.
Section EmptyPresheaf.
Context (L : algebraic_theory).
Definition empty_presheaf_data
: presheaf_data L.
Proof.
use make_presheaf_data.
- intro n.
exact (make_hSet ∅ isasetempty).
- intros m n f g.
induction f.
Defined.
Lemma empty_is_presheaf
: is_presheaf empty_presheaf_data.
Proof.
use make_is_presheaf;
intros;
apply fromempty;
assumption.
Qed.
Definition empty_presheaf
: presheaf L
:= make_presheaf
empty_presheaf_data
empty_is_presheaf.
End EmptyPresheaf.