Library UniMath.Bicategories.DoubleCategories.Examples.SpansDoubleCat
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Core.Setcategories.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.TwoSidedDispCat.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.DisplayedFunctor.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.Isos.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.Univalence.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.Strictness.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.Spans.
Require Import UniMath.CategoryTheory.Limits.Pullbacks.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.DoubleCategories.Basics.DoubleCategoryBasics.
Require Import UniMath.Bicategories.DoubleCategories.Core.DoubleCats.
Require Import UniMath.Bicategories.DoubleCategories.Core.UnivalentDoubleCats.
Require Import UniMath.Bicategories.DoubleCategories.Core.PseudoDoubleSetCats.
Require Import UniMath.Bicategories.DoubleCategories.Core.CompanionsAndConjoints.
Local Open Scope cat.
Local Open Scope double_cat.
Section SpansDoubleCat.
Context {C : category}
(PC : Pullbacks C).
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Core.Setcategories.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.TwoSidedDispCat.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.DisplayedFunctor.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.Isos.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.Univalence.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.Strictness.
Require Import UniMath.CategoryTheory.TwoSidedDisplayedCats.Examples.Spans.
Require Import UniMath.CategoryTheory.Limits.Pullbacks.
Require Import UniMath.Bicategories.Core.Bicat.
Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.DoubleCategories.Basics.DoubleCategoryBasics.
Require Import UniMath.Bicategories.DoubleCategories.Core.DoubleCats.
Require Import UniMath.Bicategories.DoubleCategories.Core.UnivalentDoubleCats.
Require Import UniMath.Bicategories.DoubleCategories.Core.PseudoDoubleSetCats.
Require Import UniMath.Bicategories.DoubleCategories.Core.CompanionsAndConjoints.
Local Open Scope cat.
Local Open Scope double_cat.
Section SpansDoubleCat.
Context {C : category}
(PC : Pullbacks C).
Definition spans_double_cat_hor_id_data
: hor_id_data (twosided_disp_cat_of_spans C).
Proof.
use make_hor_id_data.
- exact (id_span C).
- exact (λ x y f, id_span_mor C f).
Defined.
Proposition spans_double_cat_hor_id_laws
: hor_id_laws spans_double_cat_hor_id_data.
Proof.
split.
- intros a.
use span_sqr_eq ; cbn.
apply idpath.
- intros a₁ a₂ a₃ f g.
use span_sqr_eq ; cbn.
apply idpath.
Qed.
Definition spans_double_cat_hor_id
: hor_id (twosided_disp_cat_of_spans C).
Proof.
use make_hor_id.
- exact spans_double_cat_hor_id_data.
- exact spans_double_cat_hor_id_laws.
Defined.
: hor_id_data (twosided_disp_cat_of_spans C).
Proof.
use make_hor_id_data.
- exact (id_span C).
- exact (λ x y f, id_span_mor C f).
Defined.
Proposition spans_double_cat_hor_id_laws
: hor_id_laws spans_double_cat_hor_id_data.
Proof.
split.
- intros a.
use span_sqr_eq ; cbn.
apply idpath.
- intros a₁ a₂ a₃ f g.
use span_sqr_eq ; cbn.
apply idpath.
Qed.
Definition spans_double_cat_hor_id
: hor_id (twosided_disp_cat_of_spans C).
Proof.
use make_hor_id.
- exact spans_double_cat_hor_id_data.
- exact spans_double_cat_hor_id_laws.
Defined.
Definition spans_double_cat_hor_comp_data
: hor_comp_data (twosided_disp_cat_of_spans C).
Proof.
use make_hor_comp_data.
- exact (λ a₁ a₂ a₃ s t, comp_span C PC s t).
- exact (λ _ _ _ _ _ _ _ _ _ _ _ _ _ s₁ s₂, comp_span_mor C PC s₁ s₂).
Defined.
Proposition spans_double_cat_hor_comp_laws
: hor_comp_laws spans_double_cat_hor_comp_data.
Proof.
split.
- intros a₁ a₂ a₃ h₁ h₂.
use span_sqr_eq.
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
+ unfold mor_of_comp_span_mor.
rewrite PullbackArrow_PullbackPr1 ; cbn.
rewrite id_left, id_right.
apply idpath.
+ unfold mor_of_comp_span_mor.
rewrite PullbackArrow_PullbackPr2 ; cbn.
rewrite id_left, id_right.
apply idpath.
- intros.
use span_sqr_eq.
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
+ rewrite !assoc'.
unfold mor_of_comp_span_mor.
rewrite !PullbackArrow_PullbackPr1 ; cbn.
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr1.
rewrite !assoc'.
apply idpath.
+ rewrite !assoc'.
unfold mor_of_comp_span_mor.
rewrite !PullbackArrow_PullbackPr2 ; cbn.
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc'.
apply idpath.
Qed.
Definition spans_double_cat_hor_comp
: hor_comp (twosided_disp_cat_of_spans C).
Proof.
use make_hor_comp.
- exact spans_double_cat_hor_comp_data.
- exact spans_double_cat_hor_comp_laws.
Defined.
: hor_comp_data (twosided_disp_cat_of_spans C).
Proof.
use make_hor_comp_data.
- exact (λ a₁ a₂ a₃ s t, comp_span C PC s t).
- exact (λ _ _ _ _ _ _ _ _ _ _ _ _ _ s₁ s₂, comp_span_mor C PC s₁ s₂).
Defined.
Proposition spans_double_cat_hor_comp_laws
: hor_comp_laws spans_double_cat_hor_comp_data.
Proof.
split.
- intros a₁ a₂ a₃ h₁ h₂.
use span_sqr_eq.
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
+ unfold mor_of_comp_span_mor.
rewrite PullbackArrow_PullbackPr1 ; cbn.
rewrite id_left, id_right.
apply idpath.
+ unfold mor_of_comp_span_mor.
rewrite PullbackArrow_PullbackPr2 ; cbn.
rewrite id_left, id_right.
apply idpath.
- intros.
use span_sqr_eq.
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
+ rewrite !assoc'.
unfold mor_of_comp_span_mor.
rewrite !PullbackArrow_PullbackPr1 ; cbn.
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr1.
rewrite !assoc'.
apply idpath.
+ rewrite !assoc'.
unfold mor_of_comp_span_mor.
rewrite !PullbackArrow_PullbackPr2 ; cbn.
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc'.
apply idpath.
Qed.
Definition spans_double_cat_hor_comp
: hor_comp (twosided_disp_cat_of_spans C).
Proof.
use make_hor_comp.
- exact spans_double_cat_hor_comp_data.
- exact spans_double_cat_hor_comp_laws.
Defined.
Definition spans_double_cat_lunitor_data
: double_lunitor_data
spans_double_cat_hor_id
spans_double_cat_hor_comp.
Proof.
intros x y h.
simple refine (_ ,, _).
- exact (span_lunitor C PC h).
- use is_iso_twosided_disp_span_sqr ; cbn.
apply is_z_iso_span_lunitor_mor.
Defined.
Proposition spans_double_cat_lunitor_laws
: double_lunitor_laws spans_double_cat_lunitor_data.
Proof.
intros x₁ x₂ y₁ y₂ h₁ h₂ v₁ v₂ sq.
use span_sqr_eq.
rewrite transportb_disp_mor2_span ; cbn.
unfold span_lunitor_mor, mor_of_comp_span_mor.
rewrite PullbackArrow_PullbackPr2.
apply idpath.
Qed.
Definition spans_double_cat_lunitor
: double_cat_lunitor
spans_double_cat_hor_id
spans_double_cat_hor_comp.
Proof.
use make_double_lunitor.
- exact spans_double_cat_lunitor_data.
- exact spans_double_cat_lunitor_laws.
Defined.
Definition spans_double_cat_runitor_data
: double_runitor_data
spans_double_cat_hor_id
spans_double_cat_hor_comp.
Proof.
intros x y h.
simple refine (_ ,, _).
- exact (span_runitor C PC h).
- use is_iso_twosided_disp_span_sqr ; cbn.
apply is_z_iso_span_runitor_mor.
Defined.
Proposition spans_double_cat_runitor_laws
: double_runitor_laws spans_double_cat_runitor_data.
Proof.
intros x₁ x₂ y₁ y₂ h₁ h₂ v₁ v₂ sq.
use span_sqr_eq.
rewrite transportb_disp_mor2_span ; cbn.
unfold span_runitor_mor, mor_of_comp_span_mor.
rewrite PullbackArrow_PullbackPr1.
apply idpath.
Qed.
Definition spans_double_cat_runitor
: double_cat_runitor
spans_double_cat_hor_id
spans_double_cat_hor_comp.
Proof.
use make_double_runitor.
- exact spans_double_cat_runitor_data.
- exact spans_double_cat_runitor_laws.
Defined.
Definition spans_double_cat_associator_data
: double_associator_data spans_double_cat_hor_comp.
Proof.
intros w x y z h₁ h₂ h₃.
simple refine (_ ,, _).
- exact (span_associator C PC h₁ h₂ h₃).
- use is_iso_twosided_disp_span_sqr ; cbn.
apply is_z_iso_span_associator_mor.
Defined.
Proposition spans_double_cat_associator_laws
: double_associator_laws spans_double_cat_associator_data.
Proof.
intros w₁ w₂ x₁ x₂ y₁ y₂ z₁ z₂ h₁ h₂ j₁ j₂ k₁ k₂ vw vx vy vz sq₁ sq₂ sq₃.
use span_sqr_eq.
rewrite transportb_disp_mor2_span ; cbn.
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
- rewrite !assoc'.
unfold span_associator_mor, mor_of_comp_span_mor ; cbn.
rewrite !PullbackArrow_PullbackPr1.
rewrite !assoc.
rewrite PullbackArrow_PullbackPr1.
unfold mor_of_comp_span_mor.
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
+ rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr1.
rewrite !assoc.
rewrite PullbackArrow_PullbackPr1.
apply idpath.
+ rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr1.
apply idpath.
- rewrite !assoc'.
unfold span_associator_mor, mor_of_comp_span_mor ; cbn.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc'.
apply maponpaths.
unfold mor_of_comp_span_mor.
rewrite !PullbackArrow_PullbackPr2.
apply idpath.
Qed.
Definition spans_double_cat_associator
: double_cat_associator spans_double_cat_hor_comp.
Proof.
use make_double_associator.
- exact spans_double_cat_associator_data.
- exact spans_double_cat_associator_laws.
Defined.
: double_lunitor_data
spans_double_cat_hor_id
spans_double_cat_hor_comp.
Proof.
intros x y h.
simple refine (_ ,, _).
- exact (span_lunitor C PC h).
- use is_iso_twosided_disp_span_sqr ; cbn.
apply is_z_iso_span_lunitor_mor.
Defined.
Proposition spans_double_cat_lunitor_laws
: double_lunitor_laws spans_double_cat_lunitor_data.
Proof.
intros x₁ x₂ y₁ y₂ h₁ h₂ v₁ v₂ sq.
use span_sqr_eq.
rewrite transportb_disp_mor2_span ; cbn.
unfold span_lunitor_mor, mor_of_comp_span_mor.
rewrite PullbackArrow_PullbackPr2.
apply idpath.
Qed.
Definition spans_double_cat_lunitor
: double_cat_lunitor
spans_double_cat_hor_id
spans_double_cat_hor_comp.
Proof.
use make_double_lunitor.
- exact spans_double_cat_lunitor_data.
- exact spans_double_cat_lunitor_laws.
Defined.
Definition spans_double_cat_runitor_data
: double_runitor_data
spans_double_cat_hor_id
spans_double_cat_hor_comp.
Proof.
intros x y h.
simple refine (_ ,, _).
- exact (span_runitor C PC h).
- use is_iso_twosided_disp_span_sqr ; cbn.
apply is_z_iso_span_runitor_mor.
Defined.
Proposition spans_double_cat_runitor_laws
: double_runitor_laws spans_double_cat_runitor_data.
Proof.
intros x₁ x₂ y₁ y₂ h₁ h₂ v₁ v₂ sq.
use span_sqr_eq.
rewrite transportb_disp_mor2_span ; cbn.
unfold span_runitor_mor, mor_of_comp_span_mor.
rewrite PullbackArrow_PullbackPr1.
apply idpath.
Qed.
Definition spans_double_cat_runitor
: double_cat_runitor
spans_double_cat_hor_id
spans_double_cat_hor_comp.
Proof.
use make_double_runitor.
- exact spans_double_cat_runitor_data.
- exact spans_double_cat_runitor_laws.
Defined.
Definition spans_double_cat_associator_data
: double_associator_data spans_double_cat_hor_comp.
Proof.
intros w x y z h₁ h₂ h₃.
simple refine (_ ,, _).
- exact (span_associator C PC h₁ h₂ h₃).
- use is_iso_twosided_disp_span_sqr ; cbn.
apply is_z_iso_span_associator_mor.
Defined.
Proposition spans_double_cat_associator_laws
: double_associator_laws spans_double_cat_associator_data.
Proof.
intros w₁ w₂ x₁ x₂ y₁ y₂ z₁ z₂ h₁ h₂ j₁ j₂ k₁ k₂ vw vx vy vz sq₁ sq₂ sq₃.
use span_sqr_eq.
rewrite transportb_disp_mor2_span ; cbn.
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
- rewrite !assoc'.
unfold span_associator_mor, mor_of_comp_span_mor ; cbn.
rewrite !PullbackArrow_PullbackPr1.
rewrite !assoc.
rewrite PullbackArrow_PullbackPr1.
unfold mor_of_comp_span_mor.
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
+ rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr1.
rewrite !assoc.
rewrite PullbackArrow_PullbackPr1.
apply idpath.
+ rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr1.
apply idpath.
- rewrite !assoc'.
unfold span_associator_mor, mor_of_comp_span_mor ; cbn.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc'.
apply maponpaths.
unfold mor_of_comp_span_mor.
rewrite !PullbackArrow_PullbackPr2.
apply idpath.
Qed.
Definition spans_double_cat_associator
: double_cat_associator spans_double_cat_hor_comp.
Proof.
use make_double_associator.
- exact spans_double_cat_associator_data.
- exact spans_double_cat_associator_laws.
Defined.
Proposition spans_double_cat_triangle
: triangle_law
spans_double_cat_lunitor
spans_double_cat_runitor
spans_double_cat_associator.
Proof.
intro ; intros.
use span_sqr_eq.
rewrite transportb_disp_mor2_span ; cbn.
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
- unfold span_associator_mor, mor_of_comp_span_mor ; cbn.
rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr1.
rewrite !assoc.
rewrite PullbackArrow_PullbackPr1.
unfold span_runitor_mor.
rewrite PullbackArrow_PullbackPr1, id_right.
apply idpath.
- unfold span_associator_mor, mor_of_comp_span_mor ; cbn.
rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc.
rewrite PullbackArrow_PullbackPr2.
refine (id_right _ @ _).
apply idpath.
Qed.
Proposition spans_double_cat_pentagon
: pentagon_law spans_double_cat_associator.
Proof.
intro ; intros.
use span_sqr_eq.
rewrite transportb_disp_mor2_span ; cbn.
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
- unfold span_associator_mor, mor_of_comp_span_mor ; cbn.
rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr1.
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
+ rewrite !assoc'.
unfold span_associator_mor.
rewrite !PullbackArrow_PullbackPr1.
refine (!_).
etrans.
{
apply maponpaths.
refine (assoc _ _ _ @ _).
rewrite PullbackArrow_PullbackPr1.
apply idpath.
}
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
* rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr1.
apply id_right.
* rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr2.
etrans.
{
apply maponpaths.
refine (assoc _ _ _ @ _).
rewrite !PullbackArrow_PullbackPr2.
apply idpath.
}
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc'.
apply maponpaths.
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr1.
apply idpath.
+ rewrite !assoc'.
unfold span_associator_mor.
rewrite !PullbackArrow_PullbackPr2.
refine (!_).
etrans.
{
apply maponpaths.
refine (assoc _ _ _ @ _).
rewrite PullbackArrow_PullbackPr1.
refine (assoc _ _ _ @ _).
rewrite PullbackArrow_PullbackPr2.
apply idpath.
}
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc'.
apply maponpaths.
rewrite !assoc.
rewrite PullbackArrow_PullbackPr1.
rewrite PullbackArrow_PullbackPr2.
apply idpath.
- unfold span_associator_mor, mor_of_comp_span_mor.
rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc'.
refine (!_).
etrans.
{
apply maponpaths.
refine (assoc _ _ _ @ _).
rewrite PullbackArrow_PullbackPr2.
apply idpath.
}
rewrite !assoc.
unfold span_sqr_ob_mor ; cbn.
rewrite id_right.
rewrite PullbackArrow_PullbackPr2.
unfold span_associator_mor .
rewrite !assoc'.
rewrite PullbackArrow_PullbackPr2.
apply idpath.
Qed.
: triangle_law
spans_double_cat_lunitor
spans_double_cat_runitor
spans_double_cat_associator.
Proof.
intro ; intros.
use span_sqr_eq.
rewrite transportb_disp_mor2_span ; cbn.
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
- unfold span_associator_mor, mor_of_comp_span_mor ; cbn.
rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr1.
rewrite !assoc.
rewrite PullbackArrow_PullbackPr1.
unfold span_runitor_mor.
rewrite PullbackArrow_PullbackPr1, id_right.
apply idpath.
- unfold span_associator_mor, mor_of_comp_span_mor ; cbn.
rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc.
rewrite PullbackArrow_PullbackPr2.
refine (id_right _ @ _).
apply idpath.
Qed.
Proposition spans_double_cat_pentagon
: pentagon_law spans_double_cat_associator.
Proof.
intro ; intros.
use span_sqr_eq.
rewrite transportb_disp_mor2_span ; cbn.
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
- unfold span_associator_mor, mor_of_comp_span_mor ; cbn.
rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr1.
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
+ rewrite !assoc'.
unfold span_associator_mor.
rewrite !PullbackArrow_PullbackPr1.
refine (!_).
etrans.
{
apply maponpaths.
refine (assoc _ _ _ @ _).
rewrite PullbackArrow_PullbackPr1.
apply idpath.
}
use (MorphismsIntoPullbackEqual (isPullback_Pullback (PC _ _ _ _ _))) ; cbn.
* rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr1.
apply id_right.
* rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr2.
etrans.
{
apply maponpaths.
refine (assoc _ _ _ @ _).
rewrite !PullbackArrow_PullbackPr2.
apply idpath.
}
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc'.
apply maponpaths.
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr1.
apply idpath.
+ rewrite !assoc'.
unfold span_associator_mor.
rewrite !PullbackArrow_PullbackPr2.
refine (!_).
etrans.
{
apply maponpaths.
refine (assoc _ _ _ @ _).
rewrite PullbackArrow_PullbackPr1.
refine (assoc _ _ _ @ _).
rewrite PullbackArrow_PullbackPr2.
apply idpath.
}
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc'.
apply maponpaths.
rewrite !assoc.
rewrite PullbackArrow_PullbackPr1.
rewrite PullbackArrow_PullbackPr2.
apply idpath.
- unfold span_associator_mor, mor_of_comp_span_mor.
rewrite !assoc'.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc.
rewrite !PullbackArrow_PullbackPr2.
rewrite !assoc'.
refine (!_).
etrans.
{
apply maponpaths.
refine (assoc _ _ _ @ _).
rewrite PullbackArrow_PullbackPr2.
apply idpath.
}
rewrite !assoc.
unfold span_sqr_ob_mor ; cbn.
rewrite id_right.
rewrite PullbackArrow_PullbackPr2.
unfold span_associator_mor .
rewrite !assoc'.
rewrite PullbackArrow_PullbackPr2.
apply idpath.
Qed.
Definition spans_double_cat
: double_cat.
Proof.
use make_double_cat.
- exact C.
- exact (twosided_disp_cat_of_spans C).
- exact spans_double_cat_hor_id.
- exact spans_double_cat_hor_comp.
- exact spans_double_cat_lunitor.
- exact spans_double_cat_runitor.
- exact spans_double_cat_associator.
- exact spans_double_cat_triangle.
- exact spans_double_cat_pentagon.
Defined.
Definition spans_double_cat_ver_weq_square
: ver_weq_square spans_double_cat.
Proof.
intros x y f g.
use isweqimplimpl.
- cbn.
intros fg.
induction fg as [ h [ p q ]].
rewrite id_left, id_right in p.
rewrite id_left, id_right in q.
rewrite p, q.
apply idpath.
- apply homset_property.
- use invproofirrelevance.
intros φ₁ φ₂.
use subtypePath.
{
intro.
apply isapropdirprod ; apply homset_property.
}
pose (p₁ := pr12 φ₁).
pose (p₂ := pr12 φ₂).
cbn in p₁, p₂.
rewrite id_left, id_right in p₁.
rewrite id_left, id_right in p₂.
rewrite <- p₁.
rewrite p₂.
apply idpath.
Qed.
Definition all_companions_spans
: all_companions_double_cat spans_double_cat.
Proof.
intros x y f.
simple refine (_ ,, _).
- exact (span_companion C f).
- use make_double_cat_are_companions'.
+ exact (span_companion_unit C f).
+ exact (span_companion_counit C f).
+ abstract
(use span_sqr_eq ;
refine (transportf_disp_mor2_span _ _ _ _ @ _) ;
cbn ;
unfold mor_of_comp_span_mor, span_runitor_mor, span_linvunitor ;
rewrite !assoc' ;
rewrite PullbackArrow_PullbackPr1 ;
rewrite !assoc ;
rewrite PullbackArrow_PullbackPr1 ;
cbn ;
apply id_left).
+ abstract
(use span_sqr_eq ;
refine (transportf_disp_mor2_span _ _ _ _ @ _) ;
cbn ;
apply id_left).
Defined.
Definition all_conjoints_spans
: all_conjoints_double_cat spans_double_cat.
Proof.
intros x y f.
simple refine (_ ,, _).
- exact (span_conjoint C f).
- use make_double_cat_are_conjoints'.
+ exact (span_conjoint_unit C f).
+ exact (span_conjoint_counit C f).
+ abstract
(use span_sqr_eq ;
refine (transportf_disp_mor2_span _ _ _ _ @ _) ;
cbn ;
unfold mor_of_comp_span_mor, span_lunitor_mor, span_rinvunitor ;
rewrite PullbackArrow_PullbackPr2 ;
rewrite !assoc ;
rewrite PullbackArrow_PullbackPr2 ;
cbn ;
apply id_left).
+ abstract
(use span_sqr_eq ;
refine (transportf_disp_mor2_span _ _ _ _ @ _) ;
cbn ;
apply id_left).
Defined.
End SpansDoubleCat.
Definition spans_univalent_double_cat
{C : univalent_category}
(PC : Pullbacks C)
: univalent_double_cat.
Proof.
use make_univalent_double_cat.
- exact (spans_double_cat PC).
- split.
+ apply univalent_category_is_univalent.
+ use is_univalent_spans_twosided_disp_cat.
apply univalent_category_is_univalent.
Defined.
Definition spans_pseudo_double_setcat
{C : setcategory}
(PC : Pullbacks C)
: pseudo_double_setcat.
Proof.
use make_pseudo_double_setcat.
- exact (spans_double_cat PC).
- apply C.
- use is_strict_spans_twosided_disp_cat.
apply C.
Defined.
: double_cat.
Proof.
use make_double_cat.
- exact C.
- exact (twosided_disp_cat_of_spans C).
- exact spans_double_cat_hor_id.
- exact spans_double_cat_hor_comp.
- exact spans_double_cat_lunitor.
- exact spans_double_cat_runitor.
- exact spans_double_cat_associator.
- exact spans_double_cat_triangle.
- exact spans_double_cat_pentagon.
Defined.
Definition spans_double_cat_ver_weq_square
: ver_weq_square spans_double_cat.
Proof.
intros x y f g.
use isweqimplimpl.
- cbn.
intros fg.
induction fg as [ h [ p q ]].
rewrite id_left, id_right in p.
rewrite id_left, id_right in q.
rewrite p, q.
apply idpath.
- apply homset_property.
- use invproofirrelevance.
intros φ₁ φ₂.
use subtypePath.
{
intro.
apply isapropdirprod ; apply homset_property.
}
pose (p₁ := pr12 φ₁).
pose (p₂ := pr12 φ₂).
cbn in p₁, p₂.
rewrite id_left, id_right in p₁.
rewrite id_left, id_right in p₂.
rewrite <- p₁.
rewrite p₂.
apply idpath.
Qed.
Definition all_companions_spans
: all_companions_double_cat spans_double_cat.
Proof.
intros x y f.
simple refine (_ ,, _).
- exact (span_companion C f).
- use make_double_cat_are_companions'.
+ exact (span_companion_unit C f).
+ exact (span_companion_counit C f).
+ abstract
(use span_sqr_eq ;
refine (transportf_disp_mor2_span _ _ _ _ @ _) ;
cbn ;
unfold mor_of_comp_span_mor, span_runitor_mor, span_linvunitor ;
rewrite !assoc' ;
rewrite PullbackArrow_PullbackPr1 ;
rewrite !assoc ;
rewrite PullbackArrow_PullbackPr1 ;
cbn ;
apply id_left).
+ abstract
(use span_sqr_eq ;
refine (transportf_disp_mor2_span _ _ _ _ @ _) ;
cbn ;
apply id_left).
Defined.
Definition all_conjoints_spans
: all_conjoints_double_cat spans_double_cat.
Proof.
intros x y f.
simple refine (_ ,, _).
- exact (span_conjoint C f).
- use make_double_cat_are_conjoints'.
+ exact (span_conjoint_unit C f).
+ exact (span_conjoint_counit C f).
+ abstract
(use span_sqr_eq ;
refine (transportf_disp_mor2_span _ _ _ _ @ _) ;
cbn ;
unfold mor_of_comp_span_mor, span_lunitor_mor, span_rinvunitor ;
rewrite PullbackArrow_PullbackPr2 ;
rewrite !assoc ;
rewrite PullbackArrow_PullbackPr2 ;
cbn ;
apply id_left).
+ abstract
(use span_sqr_eq ;
refine (transportf_disp_mor2_span _ _ _ _ @ _) ;
cbn ;
apply id_left).
Defined.
End SpansDoubleCat.
Definition spans_univalent_double_cat
{C : univalent_category}
(PC : Pullbacks C)
: univalent_double_cat.
Proof.
use make_univalent_double_cat.
- exact (spans_double_cat PC).
- split.
+ apply univalent_category_is_univalent.
+ use is_univalent_spans_twosided_disp_cat.
apply univalent_category_is_univalent.
Defined.
Definition spans_pseudo_double_setcat
{C : setcategory}
(PC : Pullbacks C)
: pseudo_double_setcat.
Proof.
use make_pseudo_double_setcat.
- exact (spans_double_cat PC).
- apply C.
- use is_strict_spans_twosided_disp_cat.
apply C.
Defined.