Library UniMath.Bicategories.RezkCompletions.StructuredCats.RegularAndExact


Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.

Require Import UniMath.CategoryTheory.WeakEquivalences.Core.
Require Import UniMath.CategoryTheory.WeakEquivalences.RegularEpi.
Require Import UniMath.CategoryTheory.WeakEquivalences.Regular.
Require Import UniMath.CategoryTheory.WeakEquivalences.Exact.

Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.BicatOfCats.

Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.PseudoFunctors.UniversalArrow.
Import PseudoFunctor.Notations.
Import DispBicat.Notations.

Require Import UniMath.Bicategories.PseudoFunctors.Examples.BicatOfCatToUnivCat.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.DispBicatOnCatToUniv.
Require Import UniMath.Bicategories.DisplayedBicats.DisplayedUniversalArrow.
Require Import UniMath.Bicategories.DisplayedBicats.DisplayedUniversalArrowOnCat.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Sigma.

Require Import UniMath.Bicategories.DisplayedBicats.Examples.CategoriesWithStructure.RegularAndExact.
Require Import UniMath.Bicategories.RezkCompletions.DisplayedRezkCompletions.
Require Import UniMath.Bicategories.RezkCompletions.StructuredCats.FiniteLimits.

Local Open Scope cat.

1. Lifting Of Rezk Completions To Regular Categories

Section RegularCategoriesAdmitRezkCompletions.

  Context (LUR : left_universal_arrow univ_cats_to_cats)
    (η_weak_equiv : C : category, is_weak_equiv (pr12 LUR C)).

  Lemma disp_bicat_regular_has_RC
    : cat_with_struct_has_RC η_weak_equiv disp_bicat_regular.
  Proof.
    use make_cat_with_struct_has_RC_from_sigma ; cbn.
    - exact (disp_bicat_limits_has_RC _ η_weak_equiv).
    - simpl ; intros C₁ C₂ C₂_univ F F_weq [[T ?] [? [[P ?] ?]]] [[A₁ B₁] ?].
      refine (_ ,, tt).
      split.
      + exact (Rezk_completion_has_coeqs_of_kernel_pair F_weq C₂_univ P A₁).
      + exact (Rezk_completion_regular_epi_pb_stable F_weq C₂_univ B₁).
    - cbn ; intro ; intros.
      refine (tt ,, _).
      apply (weak_equiv_preserves_regular_epi (η_weak_equiv _)).
    - cbn ; intros C₁ C₂ C₃ F G H α
        ? ?
        ? ?
        ? ?
        G_weq
        ?
        [? Fre].
      refine (tt ,, _).
      exact (weak_equiv_lifts_preserves_regular_epi C₂ C₃ α G_weq Fre).
  Defined.

  Theorem disp_bicat_regular_has_Rezk_completion
    : cat_with_structure_has_RezkCompletion disp_bicat_regular.
  Proof.
    apply (make_RezkCompletion_from_locally_contractible η_weak_equiv).
    - exact disp_bicat_regular_has_RC.
    - apply disp_2cells_iscontr_regular.
  Defined.

End RegularCategoriesAdmitRezkCompletions.

2. Lifting Of Rezk Completions To Exact Categories

Section ExactCategoriesAdmitRezkCompletions.

  Context (LUR : left_universal_arrow univ_cats_to_cats)
    (η_weak_equiv : C : category, is_weak_equiv (pr12 LUR C)).

  Lemma disp_bicat_exact_has_RC
    : cat_with_struct_has_RC η_weak_equiv disp_bicat_exact.
  Proof.
    use make_cat_with_struct_has_RC_from_sigma ; cbn.
    - exact (disp_bicat_regular_has_RC _ η_weak_equiv).
    - simpl ; intros C₁ C₂ C₂_univ F F_weq [[? [? [[P ?] C]]] R] H.
      exact (weak_equiv_effective_internal_eqrel F_weq C₂_univ P H).
    - cbn ; intro ; intros ; exact tt.
    - intro ; intros ; exact tt.
  Defined.

  Theorem disp_bicat_exact_has_Rezk_completion
    : cat_with_structure_has_RezkCompletion disp_bicat_exact.
  Proof.
    apply (make_RezkCompletion_from_locally_contractible η_weak_equiv).
    - exact disp_bicat_exact_has_RC.
    - apply disp_2cells_iscontr_exact.
  Defined.

End ExactCategoriesAdmitRezkCompletions.