Library UniMath.OrderTheory.DCPOs.Examples.IdealCompletion
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.OrderTheory.Posets.
Require Import UniMath.OrderTheory.DCPOs.Core.DirectedSets.
Require Import UniMath.OrderTheory.DCPOs.Core.Basics.
Require Import UniMath.OrderTheory.DCPOs.Core.ScottContinuous.
Require Import UniMath.OrderTheory.DCPOs.Core.WayBelow.
Require Import UniMath.OrderTheory.DCPOs.Basis.Continuous.
Require Import UniMath.OrderTheory.DCPOs.Basis.Algebraic.
Require Import UniMath.OrderTheory.DCPOs.Basis.Basis.
Require Import UniMath.OrderTheory.DCPOs.Basis.CompactBasis.
Require Import UniMath.OrderTheory.DCPOs.Elements.Maximal.
Require Import UniMath.OrderTheory.DCPOs.Examples.Products.
Require Import UniMath.OrderTheory.DCPOs.Examples.SubDCPO.
Require Import UniMath.OrderTheory.DCPOs.Examples.Propositions.
Local Open Scope dcpo.
Require Import UniMath.OrderTheory.Posets.
Require Import UniMath.OrderTheory.DCPOs.Core.DirectedSets.
Require Import UniMath.OrderTheory.DCPOs.Core.Basics.
Require Import UniMath.OrderTheory.DCPOs.Core.ScottContinuous.
Require Import UniMath.OrderTheory.DCPOs.Core.WayBelow.
Require Import UniMath.OrderTheory.DCPOs.Basis.Continuous.
Require Import UniMath.OrderTheory.DCPOs.Basis.Algebraic.
Require Import UniMath.OrderTheory.DCPOs.Basis.Basis.
Require Import UniMath.OrderTheory.DCPOs.Basis.CompactBasis.
Require Import UniMath.OrderTheory.DCPOs.Elements.Maximal.
Require Import UniMath.OrderTheory.DCPOs.Examples.Products.
Require Import UniMath.OrderTheory.DCPOs.Examples.SubDCPO.
Require Import UniMath.OrderTheory.DCPOs.Examples.Propositions.
Local Open Scope dcpo.
1. Abstract bases
Definition abstract_basis_data
: UU
:= ∑ (X : UU), X → X → hProp.
Coercion type_of_abstract_basis_data
(B : abstract_basis_data)
: UU
:= pr1 B.
Definition rel_of_abstract_basis_data
{B : abstract_basis_data}
(b₁ b₂ : B)
: hProp
:= pr2 B b₁ b₂.
Notation "b₁ ≺ b₂" := (rel_of_abstract_basis_data b₁ b₂) (at level 70).
Definition make_abstract_basis_data
(X : Type)
(R : X → X → UU)
(HR : ∏ (x y : X), isaprop (R x y))
: abstract_basis_data
:= X ,, λ x y, make_hProp (R x y) (HR x y).
Definition abstract_basis_laws
(B : abstract_basis_data)
: UU
:= (istrans (λ (b₁ b₂ : B), b₁ ≺ b₂)
×
(∏ (a : B), ∃ (b : B), b ≺ a)
×
(∏ (a₁ a₂ b : B), a₁ ≺ b → a₂ ≺ b → ∃ (a : B), a ≺ b × a₁ ≺ a × a₂ ≺ a))%type.
Definition abstract_basis
: UU
:= ∑ (B : abstract_basis_data), abstract_basis_laws B.
Definition make_abstract_basis
(B : abstract_basis_data)
(HB : abstract_basis_laws B)
: abstract_basis
:= B ,, HB.
Coercion abstract_basis_to_data
(B : abstract_basis)
: abstract_basis_data
:= pr1 B.
Proposition trans_abstract_basis
{B : abstract_basis}
{b₁ b₂ b₃ : B}
(p : b₁ ≺ b₂)
(q : b₂ ≺ b₃)
: b₁ ≺ b₃.
Proof.
exact (pr12 B b₁ b₂ b₃ p q).
Qed.
Proposition nullary_interpolation_abstract_basis
{B : abstract_basis}
(a : B)
: ∃ (b : B), b ≺ a.
Proof.
exact (pr122 B a).
Qed.
Proposition binary_interpolation_abstract_basis
{B : abstract_basis}
{a₁ a₂ b : B}
(p : a₁ ≺ b)
(q : a₂ ≺ b)
: (∃ (a : B), a ≺ b × a₁ ≺ a × a₂ ≺ a)%type.
Proof.
exact (pr222 B a₁ a₂ b p q).
Qed.
Definition is_reflexive_abstract_basis
(B : abstract_basis)
: UU
:= isrefl (λ (b₁ b₂ : B), b₁ ≺ b₂).
: UU
:= ∑ (X : UU), X → X → hProp.
Coercion type_of_abstract_basis_data
(B : abstract_basis_data)
: UU
:= pr1 B.
Definition rel_of_abstract_basis_data
{B : abstract_basis_data}
(b₁ b₂ : B)
: hProp
:= pr2 B b₁ b₂.
Notation "b₁ ≺ b₂" := (rel_of_abstract_basis_data b₁ b₂) (at level 70).
Definition make_abstract_basis_data
(X : Type)
(R : X → X → UU)
(HR : ∏ (x y : X), isaprop (R x y))
: abstract_basis_data
:= X ,, λ x y, make_hProp (R x y) (HR x y).
Definition abstract_basis_laws
(B : abstract_basis_data)
: UU
:= (istrans (λ (b₁ b₂ : B), b₁ ≺ b₂)
×
(∏ (a : B), ∃ (b : B), b ≺ a)
×
(∏ (a₁ a₂ b : B), a₁ ≺ b → a₂ ≺ b → ∃ (a : B), a ≺ b × a₁ ≺ a × a₂ ≺ a))%type.
Definition abstract_basis
: UU
:= ∑ (B : abstract_basis_data), abstract_basis_laws B.
Definition make_abstract_basis
(B : abstract_basis_data)
(HB : abstract_basis_laws B)
: abstract_basis
:= B ,, HB.
Coercion abstract_basis_to_data
(B : abstract_basis)
: abstract_basis_data
:= pr1 B.
Proposition trans_abstract_basis
{B : abstract_basis}
{b₁ b₂ b₃ : B}
(p : b₁ ≺ b₂)
(q : b₂ ≺ b₃)
: b₁ ≺ b₃.
Proof.
exact (pr12 B b₁ b₂ b₃ p q).
Qed.
Proposition nullary_interpolation_abstract_basis
{B : abstract_basis}
(a : B)
: ∃ (b : B), b ≺ a.
Proof.
exact (pr122 B a).
Qed.
Proposition binary_interpolation_abstract_basis
{B : abstract_basis}
{a₁ a₂ b : B}
(p : a₁ ≺ b)
(q : a₂ ≺ b)
: (∃ (a : B), a ≺ b × a₁ ≺ a × a₂ ≺ a)%type.
Proof.
exact (pr222 B a₁ a₂ b p q).
Qed.
Definition is_reflexive_abstract_basis
(B : abstract_basis)
: UU
:= isrefl (λ (b₁ b₂ : B), b₁ ≺ b₂).
2. Preorder to abstract basis
Section PreorderToBasis.
Context (X : PreorderedSet).
Definition preorder_to_abstract_basis_data
: abstract_basis_data.
Proof.
use make_abstract_basis_data.
- exact X.
- exact (λ x y, PreorderedSetRelation X x y).
- intros x y.
apply propproperty.
Defined.
Proposition preorder_to_abstract_basis_laws
: abstract_basis_laws preorder_to_abstract_basis_data.
Proof.
repeat split.
- apply istrans_po.
- intros a.
refine (hinhpr (a ,, _)).
apply isrefl_po.
- intros a₁ a₂ b p q.
refine (hinhpr (b ,, _ ,, p ,, q)).
apply isrefl_po.
Qed.
Definition preorder_to_abstract_basis
: abstract_basis.
Proof.
use make_abstract_basis.
- exact preorder_to_abstract_basis_data.
- exact preorder_to_abstract_basis_laws.
Defined.
End PreorderToBasis.
Context (X : PreorderedSet).
Definition preorder_to_abstract_basis_data
: abstract_basis_data.
Proof.
use make_abstract_basis_data.
- exact X.
- exact (λ x y, PreorderedSetRelation X x y).
- intros x y.
apply propproperty.
Defined.
Proposition preorder_to_abstract_basis_laws
: abstract_basis_laws preorder_to_abstract_basis_data.
Proof.
repeat split.
- apply istrans_po.
- intros a.
refine (hinhpr (a ,, _)).
apply isrefl_po.
- intros a₁ a₂ b p q.
refine (hinhpr (b ,, _ ,, p ,, q)).
apply isrefl_po.
Qed.
Definition preorder_to_abstract_basis
: abstract_basis.
Proof.
use make_abstract_basis.
- exact preorder_to_abstract_basis_data.
- exact preorder_to_abstract_basis_laws.
Defined.
End PreorderToBasis.
3. Ideals
Section Ideals.
Context {B : abstract_basis}.
Definition is_ideal
(P : B → hProp)
: hProp
:= ((∃ (b : B), P b)
∧
(∀ (a₁ a₂ : B), P a₁ ⇒ P a₂ ⇒ ∃ (b : B), P b ∧ a₁ ≺ b ∧ a₂ ≺ b)
∧
(∀ (a b : B), P b ⇒ a ≺ b ⇒ P a))%logic.
Definition is_ideal_el
{P : B → hProp}
(HP : is_ideal P)
: ∃ (b : B), P b
:= pr1 HP.
Definition is_ideal_top
{P : B → hProp}
(HP : is_ideal P)
{a₁ a₂ : B}
(Ha₁ : P a₁)
(Ha₂ : P a₂)
: ∃ (b : B), P b ∧ a₁ ≺ b ∧ a₂ ≺ b
:= pr12 HP a₁ a₂ Ha₁ Ha₂.
Definition is_ideal_lower_set
{P : B → hProp}
(HP : is_ideal P)
{a b : B}
(Hb : P b)
(p : a ≺ b)
: P a
:= pr22 HP a b Hb p.
Proposition is_ideal_rounded
{P : B → hProp}
(HP : is_ideal P)
{a : B}
(Ha : P a)
: ∃ (b : B), a ≺ b ∧ P b.
Proof.
assert (H := is_ideal_top HP Ha Ha).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros b.
induction b as ( b & p₁ & p₂ & p₃ ).
exact (hinhpr (b ,, p₂ ,, p₁)).
Qed.
End Ideals.
Context {B : abstract_basis}.
Definition is_ideal
(P : B → hProp)
: hProp
:= ((∃ (b : B), P b)
∧
(∀ (a₁ a₂ : B), P a₁ ⇒ P a₂ ⇒ ∃ (b : B), P b ∧ a₁ ≺ b ∧ a₂ ≺ b)
∧
(∀ (a b : B), P b ⇒ a ≺ b ⇒ P a))%logic.
Definition is_ideal_el
{P : B → hProp}
(HP : is_ideal P)
: ∃ (b : B), P b
:= pr1 HP.
Definition is_ideal_top
{P : B → hProp}
(HP : is_ideal P)
{a₁ a₂ : B}
(Ha₁ : P a₁)
(Ha₂ : P a₂)
: ∃ (b : B), P b ∧ a₁ ≺ b ∧ a₂ ≺ b
:= pr12 HP a₁ a₂ Ha₁ Ha₂.
Definition is_ideal_lower_set
{P : B → hProp}
(HP : is_ideal P)
{a b : B}
(Hb : P b)
(p : a ≺ b)
: P a
:= pr22 HP a b Hb p.
Proposition is_ideal_rounded
{P : B → hProp}
(HP : is_ideal P)
{a : B}
(Ha : P a)
: ∃ (b : B), a ≺ b ∧ P b.
Proof.
assert (H := is_ideal_top HP Ha Ha).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros b.
induction b as ( b & p₁ & p₂ & p₃ ).
exact (hinhpr (b ,, p₂ ,, p₁)).
Qed.
End Ideals.
4. Rounded ideal completion
Section RoundedIdealCompletion.
Context (B : abstract_basis).
Proposition lub_of_ideals
(D : directed_set (funset_dcpo B hProp_dcpo))
(HD : ∏ (d : D), is_ideal (D d))
: is_ideal (⨆ D).
Proof.
simple refine (_ ,, _ ,, _).
- assert (H := directed_set_el D).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intro d.
assert (H := is_ideal_el (HD d)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intro b.
induction b as [ b p ].
exact (hinhpr (b ,, hinhpr (d ,, p))).
- intros a₁ a₂.
use factor_through_squash.
{
apply propproperty.
}
intros Ha₁ ; cbn in Ha₁.
induction Ha₁ as [ d₁ p₁ ].
use factor_through_squash.
{
apply propproperty.
}
intros Ha₂ ; cbn in Ha₂.
induction Ha₂ as [ d₂ p₂ ].
assert (H := directed_set_top D d₁ d₂).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intro H ; cbn in H.
induction H as [ dt [ H₁ H₂ ]].
assert (H := is_ideal_top (HD dt) (H₁ a₁ p₁) (H₂ a₂ p₂)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros H.
induction H as ( b & q₁ & q₂ & q₃ ).
exact (hinhpr (b ,, hinhpr (dt ,, q₁) ,, q₂ ,, q₃)).
- intros a b.
use factor_through_squash.
{
apply propproperty.
}
intros H q ; cbn in H.
induction H as [ d p ] ; cbn.
refine (hinhpr (d ,, _)).
exact (is_ideal_lower_set (HD d) p q).
Qed.
Definition rounded_ideal_completion
: dcpo
:= sub_dcpo
(funset_dcpo B hProp_dcpo)
is_ideal
lub_of_ideals.
Definition in_rounded_ideal
(b : B)
(I : rounded_ideal_completion)
: hProp
:= pr1 I b.
Local Notation "b ∈ I" := (in_rounded_ideal b I).
Proposition is_ideal_principal_ideal
(b : B)
: is_ideal (λ a, a ≺ b).
Proof.
repeat split.
- exact (nullary_interpolation_abstract_basis b).
- intros a₁ a₂ p q.
exact (binary_interpolation_abstract_basis p q).
- intros a₁ a₂ p q.
exact (trans_abstract_basis q p).
Qed.
Definition principal_ideal
: B → rounded_ideal_completion
:= λ b, ((λ a, a ≺ b) ,, is_ideal_principal_ideal b).
Proposition principal_ideal_monotone
{b₁ b₂ : B}
(p : b₁ ≺ b₂)
: principal_ideal b₁ ⊑ principal_ideal b₂.
Proof.
intros a q ; cbn in *.
exact (trans_abstract_basis q p).
Qed.
Proposition is_directed_below_ideal
(I : rounded_ideal_completion)
: is_directed
rounded_ideal_completion
(λ (b : ∑ b : B, b ∈ I), principal_ideal (pr1 b)).
Proof.
split.
- exact (is_ideal_el (pr2 I)).
- intros i j.
assert (H := is_ideal_top (pr2 I) (pr2 i) (pr2 j)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intro t.
induction t as ( t & p₁ & p₂ & p₃ ).
refine (hinhpr ((t ,, p₁) ,, _ ,, _)) ; cbn.
+ intros x q.
exact (trans_abstract_basis q p₂).
+ intros x q.
exact (trans_abstract_basis q p₃).
Qed.
Definition below_ideal_directed_set
(I : rounded_ideal_completion)
: directed_set rounded_ideal_completion.
Proof.
use make_directed_set.
- exact (∑ (b : B), b ∈ I).
- exact (λ b, principal_ideal (pr1 b)).
- exact (is_directed_below_ideal I).
Defined.
Proposition rounded_ideal_lub_2
(I : rounded_ideal_completion)
: ⨆ below_ideal_directed_set I ⊑ I.
Proof.
apply dcpo_lub_is_least.
intros [b Hb].
intros x Hx. simpl in Hx.
use (is_ideal_lower_set _ Hb Hx).
apply I.
Qed.
Proposition rounded_ideal_lub_1
(I : rounded_ideal_completion)
: I ⊑ ⨆ below_ideal_directed_set I.
Proof.
intros x Hx.
assert (H := is_ideal_rounded (pr2 I) Hx).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros b.
induction b as [ b [ p₁ p₂ ]].
exact (hinhpr ((b ,, p₂) ,, p₁)).
Qed.
Proposition rounded_ideal_lub
(I : rounded_ideal_completion)
: I = ⨆ below_ideal_directed_set I.
Proof.
apply antisymm_dcpo.
- apply rounded_ideal_lub_1.
- apply rounded_ideal_lub_2.
Qed.
Proposition principal_ideal_way_below
{I : rounded_ideal_completion}
(b : B)
(Hb : b ∈ I)
: principal_ideal b ≪ I.
Proof.
intros D HD.
assert (H := HD _ Hb). revert H.
use factor_through_squash_hProp.
intro d ; cbn in d.
induction d as [ d Hd ].
refine (hinhpr (d ,, _)).
cbn ; intros x Hx.
exact (is_ideal_lower_set (pr2 (D d)) Hd Hx).
Qed.
Proposition lt_way_below
(b1 b2 : B)
(Hb : b1 ≺ b2)
: principal_ideal b1 ≪ principal_ideal b2.
Proof.
apply principal_ideal_way_below.
exact Hb.
Qed.
Proposition from_way_below_ideal_completion
{I J : rounded_ideal_completion}
(Hb : I ≪ J)
: ∃ b₁, b₁ ∈ J ∧ I ⊑ principal_ideal b₁.
Proof.
specialize (Hb (below_ideal_directed_set J) (rounded_ideal_lub_1 J)).
revert Hb.
use factor_through_squash.
{
apply propproperty.
}
intros [[b' Hb'] Hi]. simpl in Hi.
assert (H := is_ideal_el (pr2 I)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros [b₀ Hb0].
use (hinhpr (b',, (Hb',, _))).
- simpl. intros x Hx.
apply Hi. exact Hx.
Qed.
Proposition to_way_below_ideal_completion
{I J : rounded_ideal_completion}
(b₁ : B)
(Hb1 : b₁ ∈ J)
(HI : I ⊑ principal_ideal b₁)
: I ≪ J.
Proof.
intros D HJ.
assert (HbJ : principal_ideal b₁ ≪ J).
{ apply principal_ideal_way_below, Hb1. }
specialize (HbJ D HJ).
revert HbJ.
use factor_through_squash.
{
apply propproperty.
}
intros [i Hi].
use (hinhpr (i,, _)).
exact (trans_dcpo HI Hi).
Qed.
Proposition way_below_ideal_completion_eq (I J : rounded_ideal_completion) :
I ≪ J ≃ ∃ b₁, b₁ ∈ J ∧ I ⊑ principal_ideal b₁.
Proof.
use weqimplimpl.
- apply from_way_below_ideal_completion.
- use factor_through_squash.
{ apply propproperty. }
intros [b [HJ HI]].
apply (to_way_below_ideal_completion b HJ HI).
- apply propproperty.
- apply propproperty.
Defined.
Definition rounded_ideal_completion_basis_data
: dcpo_basis_data rounded_ideal_completion.
Proof.
use make_dcpo_basis_data.
- exact B.
- exact principal_ideal.
Defined.
Proposition rounded_ideal_completion_basis_laws
: dcpo_basis_laws
rounded_ideal_completion
rounded_ideal_completion_basis_data.
Proof.
intro I.
split.
- split.
+ assert (H := is_ideal_el (pr2 I)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros b.
induction b as [ b p ].
refine (hinhpr (b ,, _)).
apply principal_ideal_way_below.
exact p.
+ intros b₁ b₂.
induction b₁ as [ b₁ p₁ ].
induction b₂ as [ b₂ p₂ ].
cbn -[way_below] in b₁, p₁, b₂, p₂.
assert (H := p₁ _ (rounded_ideal_lub_1 I)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros c₁.
induction c₁ as ( ( c₁ & q₁ ) & s₁ ).
assert (H := p₂ _ (rounded_ideal_lub_1 I)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros c₂.
induction c₂ as ( ( c₂ & q₂ ) & s₂ ).
cbn in c₁, q₁, s₁, c₂, q₂, s₂.
assert (H := is_ideal_top (pr2 I) q₁ q₂).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros t.
induction t as ( t & r₁ & r₂ & r₃ ).
simple refine (hinhpr ((t ,, _) ,, (_ ,, _))) ; cbn -[way_below].
* apply principal_ideal_way_below.
exact r₁.
* intros x v.
refine (trans_abstract_basis _ r₂).
use s₁.
exact v.
* intros x v.
refine (trans_abstract_basis _ r₃).
use s₂.
exact v.
-
split.
+ intros b x p.
induction b as [ b q ].
cbn -[way_below] in b, q, p.
exact (way_below_to_le q x p).
+ intros I' HI' x p.
assert (H := is_ideal_rounded (pr2 I) p).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros b.
induction b as [ b [ q₁ q₂ ]].
assert (H : principal_ideal b ≪ I).
{
apply principal_ideal_way_below.
exact q₂.
}
exact (HI' (b ,, H) x q₁).
Qed.
Definition rounded_ideal_completion_basis
: dcpo_basis rounded_ideal_completion.
Proof.
use make_dcpo_basis.
- exact rounded_ideal_completion_basis_data.
- exact rounded_ideal_completion_basis_laws.
Defined.
Definition rounded_ideal_completion_continuous_struct
: continuous_dcpo_struct rounded_ideal_completion.
Proof.
use continuous_struct_from_basis.
exact rounded_ideal_completion_basis.
Defined.
End RoundedIdealCompletion.
Context (B : abstract_basis).
Proposition lub_of_ideals
(D : directed_set (funset_dcpo B hProp_dcpo))
(HD : ∏ (d : D), is_ideal (D d))
: is_ideal (⨆ D).
Proof.
simple refine (_ ,, _ ,, _).
- assert (H := directed_set_el D).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intro d.
assert (H := is_ideal_el (HD d)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intro b.
induction b as [ b p ].
exact (hinhpr (b ,, hinhpr (d ,, p))).
- intros a₁ a₂.
use factor_through_squash.
{
apply propproperty.
}
intros Ha₁ ; cbn in Ha₁.
induction Ha₁ as [ d₁ p₁ ].
use factor_through_squash.
{
apply propproperty.
}
intros Ha₂ ; cbn in Ha₂.
induction Ha₂ as [ d₂ p₂ ].
assert (H := directed_set_top D d₁ d₂).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intro H ; cbn in H.
induction H as [ dt [ H₁ H₂ ]].
assert (H := is_ideal_top (HD dt) (H₁ a₁ p₁) (H₂ a₂ p₂)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros H.
induction H as ( b & q₁ & q₂ & q₃ ).
exact (hinhpr (b ,, hinhpr (dt ,, q₁) ,, q₂ ,, q₃)).
- intros a b.
use factor_through_squash.
{
apply propproperty.
}
intros H q ; cbn in H.
induction H as [ d p ] ; cbn.
refine (hinhpr (d ,, _)).
exact (is_ideal_lower_set (HD d) p q).
Qed.
Definition rounded_ideal_completion
: dcpo
:= sub_dcpo
(funset_dcpo B hProp_dcpo)
is_ideal
lub_of_ideals.
Definition in_rounded_ideal
(b : B)
(I : rounded_ideal_completion)
: hProp
:= pr1 I b.
Local Notation "b ∈ I" := (in_rounded_ideal b I).
Proposition is_ideal_principal_ideal
(b : B)
: is_ideal (λ a, a ≺ b).
Proof.
repeat split.
- exact (nullary_interpolation_abstract_basis b).
- intros a₁ a₂ p q.
exact (binary_interpolation_abstract_basis p q).
- intros a₁ a₂ p q.
exact (trans_abstract_basis q p).
Qed.
Definition principal_ideal
: B → rounded_ideal_completion
:= λ b, ((λ a, a ≺ b) ,, is_ideal_principal_ideal b).
Proposition principal_ideal_monotone
{b₁ b₂ : B}
(p : b₁ ≺ b₂)
: principal_ideal b₁ ⊑ principal_ideal b₂.
Proof.
intros a q ; cbn in *.
exact (trans_abstract_basis q p).
Qed.
Proposition is_directed_below_ideal
(I : rounded_ideal_completion)
: is_directed
rounded_ideal_completion
(λ (b : ∑ b : B, b ∈ I), principal_ideal (pr1 b)).
Proof.
split.
- exact (is_ideal_el (pr2 I)).
- intros i j.
assert (H := is_ideal_top (pr2 I) (pr2 i) (pr2 j)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intro t.
induction t as ( t & p₁ & p₂ & p₃ ).
refine (hinhpr ((t ,, p₁) ,, _ ,, _)) ; cbn.
+ intros x q.
exact (trans_abstract_basis q p₂).
+ intros x q.
exact (trans_abstract_basis q p₃).
Qed.
Definition below_ideal_directed_set
(I : rounded_ideal_completion)
: directed_set rounded_ideal_completion.
Proof.
use make_directed_set.
- exact (∑ (b : B), b ∈ I).
- exact (λ b, principal_ideal (pr1 b)).
- exact (is_directed_below_ideal I).
Defined.
Proposition rounded_ideal_lub_2
(I : rounded_ideal_completion)
: ⨆ below_ideal_directed_set I ⊑ I.
Proof.
apply dcpo_lub_is_least.
intros [b Hb].
intros x Hx. simpl in Hx.
use (is_ideal_lower_set _ Hb Hx).
apply I.
Qed.
Proposition rounded_ideal_lub_1
(I : rounded_ideal_completion)
: I ⊑ ⨆ below_ideal_directed_set I.
Proof.
intros x Hx.
assert (H := is_ideal_rounded (pr2 I) Hx).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros b.
induction b as [ b [ p₁ p₂ ]].
exact (hinhpr ((b ,, p₂) ,, p₁)).
Qed.
Proposition rounded_ideal_lub
(I : rounded_ideal_completion)
: I = ⨆ below_ideal_directed_set I.
Proof.
apply antisymm_dcpo.
- apply rounded_ideal_lub_1.
- apply rounded_ideal_lub_2.
Qed.
Proposition principal_ideal_way_below
{I : rounded_ideal_completion}
(b : B)
(Hb : b ∈ I)
: principal_ideal b ≪ I.
Proof.
intros D HD.
assert (H := HD _ Hb). revert H.
use factor_through_squash_hProp.
intro d ; cbn in d.
induction d as [ d Hd ].
refine (hinhpr (d ,, _)).
cbn ; intros x Hx.
exact (is_ideal_lower_set (pr2 (D d)) Hd Hx).
Qed.
Proposition lt_way_below
(b1 b2 : B)
(Hb : b1 ≺ b2)
: principal_ideal b1 ≪ principal_ideal b2.
Proof.
apply principal_ideal_way_below.
exact Hb.
Qed.
Proposition from_way_below_ideal_completion
{I J : rounded_ideal_completion}
(Hb : I ≪ J)
: ∃ b₁, b₁ ∈ J ∧ I ⊑ principal_ideal b₁.
Proof.
specialize (Hb (below_ideal_directed_set J) (rounded_ideal_lub_1 J)).
revert Hb.
use factor_through_squash.
{
apply propproperty.
}
intros [[b' Hb'] Hi]. simpl in Hi.
assert (H := is_ideal_el (pr2 I)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros [b₀ Hb0].
use (hinhpr (b',, (Hb',, _))).
- simpl. intros x Hx.
apply Hi. exact Hx.
Qed.
Proposition to_way_below_ideal_completion
{I J : rounded_ideal_completion}
(b₁ : B)
(Hb1 : b₁ ∈ J)
(HI : I ⊑ principal_ideal b₁)
: I ≪ J.
Proof.
intros D HJ.
assert (HbJ : principal_ideal b₁ ≪ J).
{ apply principal_ideal_way_below, Hb1. }
specialize (HbJ D HJ).
revert HbJ.
use factor_through_squash.
{
apply propproperty.
}
intros [i Hi].
use (hinhpr (i,, _)).
exact (trans_dcpo HI Hi).
Qed.
Proposition way_below_ideal_completion_eq (I J : rounded_ideal_completion) :
I ≪ J ≃ ∃ b₁, b₁ ∈ J ∧ I ⊑ principal_ideal b₁.
Proof.
use weqimplimpl.
- apply from_way_below_ideal_completion.
- use factor_through_squash.
{ apply propproperty. }
intros [b [HJ HI]].
apply (to_way_below_ideal_completion b HJ HI).
- apply propproperty.
- apply propproperty.
Defined.
Definition rounded_ideal_completion_basis_data
: dcpo_basis_data rounded_ideal_completion.
Proof.
use make_dcpo_basis_data.
- exact B.
- exact principal_ideal.
Defined.
Proposition rounded_ideal_completion_basis_laws
: dcpo_basis_laws
rounded_ideal_completion
rounded_ideal_completion_basis_data.
Proof.
intro I.
split.
- split.
+ assert (H := is_ideal_el (pr2 I)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros b.
induction b as [ b p ].
refine (hinhpr (b ,, _)).
apply principal_ideal_way_below.
exact p.
+ intros b₁ b₂.
induction b₁ as [ b₁ p₁ ].
induction b₂ as [ b₂ p₂ ].
cbn -[way_below] in b₁, p₁, b₂, p₂.
assert (H := p₁ _ (rounded_ideal_lub_1 I)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros c₁.
induction c₁ as ( ( c₁ & q₁ ) & s₁ ).
assert (H := p₂ _ (rounded_ideal_lub_1 I)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros c₂.
induction c₂ as ( ( c₂ & q₂ ) & s₂ ).
cbn in c₁, q₁, s₁, c₂, q₂, s₂.
assert (H := is_ideal_top (pr2 I) q₁ q₂).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros t.
induction t as ( t & r₁ & r₂ & r₃ ).
simple refine (hinhpr ((t ,, _) ,, (_ ,, _))) ; cbn -[way_below].
* apply principal_ideal_way_below.
exact r₁.
* intros x v.
refine (trans_abstract_basis _ r₂).
use s₁.
exact v.
* intros x v.
refine (trans_abstract_basis _ r₃).
use s₂.
exact v.
-
split.
+ intros b x p.
induction b as [ b q ].
cbn -[way_below] in b, q, p.
exact (way_below_to_le q x p).
+ intros I' HI' x p.
assert (H := is_ideal_rounded (pr2 I) p).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros b.
induction b as [ b [ q₁ q₂ ]].
assert (H : principal_ideal b ≪ I).
{
apply principal_ideal_way_below.
exact q₂.
}
exact (HI' (b ,, H) x q₁).
Qed.
Definition rounded_ideal_completion_basis
: dcpo_basis rounded_ideal_completion.
Proof.
use make_dcpo_basis.
- exact rounded_ideal_completion_basis_data.
- exact rounded_ideal_completion_basis_laws.
Defined.
Definition rounded_ideal_completion_continuous_struct
: continuous_dcpo_struct rounded_ideal_completion.
Proof.
use continuous_struct_from_basis.
exact rounded_ideal_completion_basis.
Defined.
End RoundedIdealCompletion.
5. Rounded ideal completion for reflexive bases
Section RoundedIdealCompletionAlgebraic.
Context (B : abstract_basis)
(HB : is_reflexive_abstract_basis B).
Proposition rounded_ideal_completion_compact_basis_laws
: compact_basis_laws
(rounded_ideal_completion B)
(rounded_ideal_completion_basis_data B).
Proof.
refine (_ ,, _ ,, _).
- intros b ; cbn -[way_below] in *.
apply principal_ideal_way_below.
apply HB.
- intro I.
split.
+ assert (H := is_ideal_el (pr2 I)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros b.
induction b as [ b p ].
refine (hinhpr (b ,, _)).
intros x q ; cbn in q.
exact (is_ideal_lower_set (pr2 I) p q).
+ intros b₁ b₂.
induction b₁ as [ b₁ p₁ ].
induction b₂ as [ b₂ p₂ ].
cbn in b₁, p₁, b₂, p₂.
assert (Hb₁ : in_rounded_ideal B b₁ I).
{
apply p₁.
apply HB.
}
assert (Hb₂ : in_rounded_ideal B b₂ I).
{
apply p₂.
apply HB.
}
assert (H := is_ideal_top (pr2 I) Hb₁ Hb₂).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intro t.
induction t as ( t & q₁ & q₂ & q₃ ).
simple refine (hinhpr ((t ,, _) ,, _ ,, _)) ; cbn.
* intros x r.
exact (is_ideal_lower_set (pr2 I) q₁ r).
* intros x r.
exact (trans_abstract_basis r q₂).
* intros x r.
exact (trans_abstract_basis r q₃).
-
intro I.
split.
+ intros b x p.
induction b as [ b q ].
cbn in b, q, p.
apply q.
exact p.
+ intros I' HI' x p.
assert (H := is_ideal_rounded (pr2 I) p).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros b.
induction b as [ b [ q₁ q₂ ]].
refine (HI' (b ,, _) x q₁) ; cbn.
intros c r.
exact (is_ideal_lower_set (pr2 I) q₂ r).
Qed.
Definition rounded_ideal_completion_compact_basis
: compact_basis (rounded_ideal_completion B).
Proof.
use make_compact_basis.
- exact (rounded_ideal_completion_basis_data B).
- exact rounded_ideal_completion_compact_basis_laws.
Defined.
End RoundedIdealCompletionAlgebraic.
Context (B : abstract_basis)
(HB : is_reflexive_abstract_basis B).
Proposition rounded_ideal_completion_compact_basis_laws
: compact_basis_laws
(rounded_ideal_completion B)
(rounded_ideal_completion_basis_data B).
Proof.
refine (_ ,, _ ,, _).
- intros b ; cbn -[way_below] in *.
apply principal_ideal_way_below.
apply HB.
- intro I.
split.
+ assert (H := is_ideal_el (pr2 I)).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros b.
induction b as [ b p ].
refine (hinhpr (b ,, _)).
intros x q ; cbn in q.
exact (is_ideal_lower_set (pr2 I) p q).
+ intros b₁ b₂.
induction b₁ as [ b₁ p₁ ].
induction b₂ as [ b₂ p₂ ].
cbn in b₁, p₁, b₂, p₂.
assert (Hb₁ : in_rounded_ideal B b₁ I).
{
apply p₁.
apply HB.
}
assert (Hb₂ : in_rounded_ideal B b₂ I).
{
apply p₂.
apply HB.
}
assert (H := is_ideal_top (pr2 I) Hb₁ Hb₂).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intro t.
induction t as ( t & q₁ & q₂ & q₃ ).
simple refine (hinhpr ((t ,, _) ,, _ ,, _)) ; cbn.
* intros x r.
exact (is_ideal_lower_set (pr2 I) q₁ r).
* intros x r.
exact (trans_abstract_basis r q₂).
* intros x r.
exact (trans_abstract_basis r q₃).
-
intro I.
split.
+ intros b x p.
induction b as [ b q ].
cbn in b, q, p.
apply q.
exact p.
+ intros I' HI' x p.
assert (H := is_ideal_rounded (pr2 I) p).
revert H.
use factor_through_squash.
{
apply propproperty.
}
intros b.
induction b as [ b [ q₁ q₂ ]].
refine (HI' (b ,, _) x q₁) ; cbn.
intros c r.
exact (is_ideal_lower_set (pr2 I) q₂ r).
Qed.
Definition rounded_ideal_completion_compact_basis
: compact_basis (rounded_ideal_completion B).
Proof.
use make_compact_basis.
- exact (rounded_ideal_completion_basis_data B).
- exact rounded_ideal_completion_compact_basis_laws.
Defined.
End RoundedIdealCompletionAlgebraic.
Lemma hausdorff_separated_ideal_completion
(B : abstract_basis)
(x y : rounded_ideal_completion B)
: is_hausdorff_separated x y
≃
(∃ (b1 b2 : B),
in_rounded_ideal _ b1 x
∧
in_rounded_ideal _ b2 y
∧
¬(∃ (b3 : B),
principal_ideal _ b1 ≪ principal_ideal _ b3
∧
principal_ideal _ b2 ≪ principal_ideal _ b3))%logic.
Proof.
use logeqweq.
- intros H.
assert (H' := hausdorff_separated_continuous_dcpo_weq
(rounded_ideal_completion_basis B)
x y
H).
revert H'.
use factor_through_squash_hProp.
intros ( b₁ & b₂ & p₁ & p₂ & p₃ ).
assert (Q := from_way_below_ideal_completion B p₁).
revert Q.
use factor_through_squash_hProp.
intros ( c & r₁ & r₂ ).
assert (Q := from_way_below_ideal_completion B p₂).
revert Q.
use factor_through_squash_hProp.
intros ( d & s₁ & s₂ ).
refine (hinhpr (c ,, d ,, _ ,, _ ,, _)).
+ exact r₁.
+ exact s₁.
+ use factor_through_squash.
{
apply isapropempty.
}
intros ( e & t₁ & t₂ ).
refine (p₃ _).
refine (hinhpr (e ,, _ ,, _)).
* exact (trans_le_way_below r₂ t₁).
* exact (trans_le_way_below s₂ t₂).
- use factor_through_squash_hProp.
intros ( b₁ & b₂ & p₁ & p₂ & p₃ ).
apply (invmap
(hausdorff_separated_continuous_dcpo_weq
(rounded_ideal_completion_basis B)
x y)).
refine (hinhpr (b₁ ,, b₂ ,, _ ,, _ ,, _)).
+ apply principal_ideal_way_below.
exact p₁.
+ apply principal_ideal_way_below.
exact p₂.
+ exact p₃.
Defined.
(B : abstract_basis)
(x y : rounded_ideal_completion B)
: is_hausdorff_separated x y
≃
(∃ (b1 b2 : B),
in_rounded_ideal _ b1 x
∧
in_rounded_ideal _ b2 y
∧
¬(∃ (b3 : B),
principal_ideal _ b1 ≪ principal_ideal _ b3
∧
principal_ideal _ b2 ≪ principal_ideal _ b3))%logic.
Proof.
use logeqweq.
- intros H.
assert (H' := hausdorff_separated_continuous_dcpo_weq
(rounded_ideal_completion_basis B)
x y
H).
revert H'.
use factor_through_squash_hProp.
intros ( b₁ & b₂ & p₁ & p₂ & p₃ ).
assert (Q := from_way_below_ideal_completion B p₁).
revert Q.
use factor_through_squash_hProp.
intros ( c & r₁ & r₂ ).
assert (Q := from_way_below_ideal_completion B p₂).
revert Q.
use factor_through_squash_hProp.
intros ( d & s₁ & s₂ ).
refine (hinhpr (c ,, d ,, _ ,, _ ,, _)).
+ exact r₁.
+ exact s₁.
+ use factor_through_squash.
{
apply isapropempty.
}
intros ( e & t₁ & t₂ ).
refine (p₃ _).
refine (hinhpr (e ,, _ ,, _)).
* exact (trans_le_way_below r₂ t₁).
* exact (trans_le_way_below s₂ t₂).
- use factor_through_squash_hProp.
intros ( b₁ & b₂ & p₁ & p₂ & p₃ ).
apply (invmap
(hausdorff_separated_continuous_dcpo_weq
(rounded_ideal_completion_basis B)
x y)).
refine (hinhpr (b₁ ,, b₂ ,, _ ,, _ ,, _)).
+ apply principal_ideal_way_below.
exact p₁.
+ apply principal_ideal_way_below.
exact p₂.
+ exact p₃.
Defined.