Library UniMath.CategoryTheory.Categories.Commrig
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.Foundations.UnivalenceAxiom.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.Algebra.Monoids.
Require Import UniMath.Algebra.RigsAndRings.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Local Open Scope cat.
Section def_commrig_precategory.
Definition commrig_fun_space (A B : commrig) : hSet := make_hSet (rigfun A B) (isasetrigfun A B).
Definition commrig_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob -> ob -> UU) commrig (λ A B : commrig, commrig_fun_space A B).
Definition commrig_precategory_data : precategory_data :=
make_precategory_data
commrig_precategory_ob_mor (λ (X : commrig), (rigisotorigfun (idrigiso X)))
(fun (X Y Z : commrig) (f : rigfun X Y) (g : rigfun Y Z) => rigfuncomp f g).
Local Lemma commrig_id_left (X Y : commrig) (f : rigfun X Y) :
rigfuncomp (rigisotorigfun (idrigiso X)) f = f.
Proof.
use rigfun_paths. apply idpath.
Defined.
Opaque commrig_id_left.
Local Lemma commrig_id_commright (X Y : commrig) (f : rigfun X Y) :
rigfuncomp f (rigisotorigfun (idrigiso Y)) = f.
Proof.
use rigfun_paths. apply idpath.
Defined.
Opaque commrig_id_commright.
Local Lemma commrig_assoc (X Y Z W : commrig) (f : rigfun X Y) (g : rigfun Y Z) (h : rigfun Z W) :
rigfuncomp f (rigfuncomp g h) = rigfuncomp (rigfuncomp f g) h.
Proof.
use rigfun_paths. apply idpath.
Defined.
Opaque commrig_assoc.
Lemma is_precategory_commrig_precategory_data : is_precategory commrig_precategory_data.
Proof.
use make_is_precategory_one_assoc.
- intros a b f. use commrig_id_left.
- intros a b f. use commrig_id_commright.
- intros a b c d f g h. use commrig_assoc.
Qed.
Definition commrig_precategory : precategory :=
make_precategory commrig_precategory_data is_precategory_commrig_precategory_data.
Lemma has_homsets_commrig_precategory : has_homsets commrig_precategory.
Proof.
intros X Y. use isasetrigfun.
Qed.
End def_commrig_precategory.
Definition commrig_fun_space (A B : commrig) : hSet := make_hSet (rigfun A B) (isasetrigfun A B).
Definition commrig_precategory_ob_mor : precategory_ob_mor :=
tpair (λ ob : UU, ob -> ob -> UU) commrig (λ A B : commrig, commrig_fun_space A B).
Definition commrig_precategory_data : precategory_data :=
make_precategory_data
commrig_precategory_ob_mor (λ (X : commrig), (rigisotorigfun (idrigiso X)))
(fun (X Y Z : commrig) (f : rigfun X Y) (g : rigfun Y Z) => rigfuncomp f g).
Local Lemma commrig_id_left (X Y : commrig) (f : rigfun X Y) :
rigfuncomp (rigisotorigfun (idrigiso X)) f = f.
Proof.
use rigfun_paths. apply idpath.
Defined.
Opaque commrig_id_left.
Local Lemma commrig_id_commright (X Y : commrig) (f : rigfun X Y) :
rigfuncomp f (rigisotorigfun (idrigiso Y)) = f.
Proof.
use rigfun_paths. apply idpath.
Defined.
Opaque commrig_id_commright.
Local Lemma commrig_assoc (X Y Z W : commrig) (f : rigfun X Y) (g : rigfun Y Z) (h : rigfun Z W) :
rigfuncomp f (rigfuncomp g h) = rigfuncomp (rigfuncomp f g) h.
Proof.
use rigfun_paths. apply idpath.
Defined.
Opaque commrig_assoc.
Lemma is_precategory_commrig_precategory_data : is_precategory commrig_precategory_data.
Proof.
use make_is_precategory_one_assoc.
- intros a b f. use commrig_id_left.
- intros a b f. use commrig_id_commright.
- intros a b c d f g h. use commrig_assoc.
Qed.
Definition commrig_precategory : precategory :=
make_precategory commrig_precategory_data is_precategory_commrig_precategory_data.
Lemma has_homsets_commrig_precategory : has_homsets commrig_precategory.
Proof.
intros X Y. use isasetrigfun.
Qed.
End def_commrig_precategory.
Section def_commrig_category.
Definition commrig_category : category := make_category _ has_homsets_commrig_precategory.
Definition commrig_category : category := make_category _ has_homsets_commrig_precategory.
Lemma commrig_iso_is_equiv (A B : ob commrig_category) (f : z_iso A B) : isweq (pr1 (pr1 f)).
Proof.
use isweq_iso.
- exact (pr1rigfun _ _ (inv_from_z_iso f)).
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (z_iso_inv_after_z_iso f)) x).
intros x0. use isapropisrigfun.
- intros x.
use (toforallpaths _ _ _ (subtypeInjectivity _ _ _ _ (z_iso_after_z_iso_inv f)) x).
intros x0. use isapropisrigfun.
Defined.
Opaque commrig_iso_is_equiv.
Lemma commrig_iso_equiv (X Y : ob commrig_category) :
z_iso X Y -> rigiso (X : commrig) (Y : commrig).
Proof.
intro f.
use make_rigiso.
- exact (make_weq (pr1 (pr1 f)) (commrig_iso_is_equiv X Y f)).
- exact (pr2 (pr1 f)).
Defined.
Lemma commrig_equiv_is_z_iso (X Y : ob commrig_category)
(f : rigiso (X : commrig) (Y : commrig)) :
@is_z_isomorphism commrig_precategory X Y (rigfunconstr (pr2 f)).
Proof.
exists (rigfunconstr (pr2 (invrigiso f))).
use make_is_inverse_in_precat.
- use rigfun_paths. use funextfun. intros x. use homotinvweqweq.
- use rigfun_paths. use funextfun. intros y. use homotweqinvweq.
Defined.
Opaque commrig_equiv_is_z_iso.
Lemma commrig_equiv_iso (X Y : ob commrig_category) :
rigiso (X : commrig) (Y : commrig) -> z_iso X Y.
Proof.
intros f. exact (_,,commrig_equiv_is_z_iso X Y f).
Defined.
Lemma commrig_iso_equiv_is_equiv (X Y : commrig_category) : isweq (commrig_iso_equiv X Y).
Proof.
use isweq_iso.
- exact (commrig_equiv_iso X Y).
- intros x. use z_iso_eq. use rigfun_paths. apply idpath.
- intros y. use rigiso_paths. use subtypePath.
+ intros x0. use isapropisweq.
+ apply idpath.
Defined.
Opaque commrig_iso_equiv_is_equiv.
Definition commrig_iso_equiv_weq (X Y : ob commrig_category) :
weq (z_iso X Y) (rigiso (X : commrig) (Y : commrig)).
Proof.
use make_weq.
- exact (commrig_iso_equiv X Y).
- exact (commrig_iso_equiv_is_equiv X Y).
Defined.
Lemma commrig_equiv_iso_is_equiv (X Y : ob commrig_category) : isweq (commrig_equiv_iso X Y).
Proof.
use isweq_iso.
- exact (commrig_iso_equiv X Y).
- intros y. use rigiso_paths. use subtypePath.
+ intros x0. use isapropisweq.
+ apply idpath.
- intros x. use z_iso_eq. use rigfun_paths. apply idpath.
Defined.
Opaque commrig_equiv_iso_is_equiv.
Definition commrig_equiv_weq_iso (X Y : ob commrig_category) :
(rigiso (X : commrig) (Y : commrig)) ≃ (z_iso X Y).
Proof.
use make_weq.
- exact (commrig_equiv_iso X Y).
- exact (commrig_equiv_iso_is_equiv X Y).
Defined.
Definition commrig_category_isweq (X Y : ob commrig_category) :
isweq (λ p : X = Y, idtoiso p).
Proof.
use (@isweqhomot
(X = Y) (z_iso X Y)
(pr1weq (weqcomp (commrig_univalence X Y) (commrig_equiv_weq_iso X Y)))
_ _ (weqproperty (weqcomp (commrig_univalence X Y) (commrig_equiv_weq_iso X Y)))).
intros e. induction e.
use (pathscomp0 weqcomp_to_funcomp_app).
use total2_paths_f.
- apply idpath.
- use proofirrelevance. use isaprop_is_z_isomorphism.
Defined.
Opaque commrig_category_isweq.
Definition commrig_category_is_univalent : is_univalent commrig_category.
Proof.
intros X Y. exact (commrig_category_isweq X Y).
Defined.
Definition commrig_univalent_category : univalent_category :=
make_univalent_category commrig_category commrig_category_is_univalent.
End def_commrig_category.