Library UniMath.OrderTheory.Lattice.Examples.ScottOpen

1. Lattice operations

  Proposition islatticeop_scott_open_set
    : @islatticeop
        (set_of_scott_open_set D)
        scott_open_set_intersection
        scott_open_set_bin_union.
  Proof.
    repeat split.
    - intros P₁ P₂ P₃ ; use eq_scott_open_set ; intro x ; cbn.
      + intros p.
        induction p as [ [ p₁ p₂ ] p₃ ].
        exact (p₁ ,, p₂ ,, p₃).
      + intros p.
        induction p as [ p₁ [ p₂ p₃ ]].
        exact ((p₁ ,, p₂) ,, p₃).
    - intros P₁ P₂ ; use eq_scott_open_set ; intro x ; cbn.
      + intros p.
        exact (pr2 p ,, pr1 p).
      + intros p.
        exact (pr2 p ,, pr1 p).
    - intros P₁ P₂ P₃ ; use eq_scott_open_set ; intro x.
      + use factor_through_squash_hProp.
        intro p.
        induction p as [ p | p ].
        * revert p.
          use factor_through_squash_hProp.
          intro p.
          induction p as [ p | p ].
          ** use hdisj_in1.
             exact p.
          ** use hdisj_in2.
             use hdisj_in1.
             exact p.
        * do 2 use hdisj_in2.
          exact p.
      + use factor_through_squash_hProp.
        intro p.
        induction p as [ p | p ].
        * do 2 use hdisj_in1.
          exact p.
        * revert p.
          use factor_through_squash_hProp.
          intro p.
          induction p as [ p | p ].
          ** use hdisj_in1.
             use hdisj_in2.
             exact p.
          ** use hdisj_in2.
             exact p.
    - intros P₁ P₂ ; use eq_scott_open_set ; intro x.
      + use factor_through_squash_hProp.
        intro p.
        induction p as [ p | p ].
        * use hdisj_in2.
          exact p.
        * use hdisj_in1.
          exact p.
      + use factor_through_squash_hProp.
        intro p.
        induction p as [ p | p ].
        * use hdisj_in2.
          exact p.
        * use hdisj_in1.
          exact p.
    - intros P₁ P₂ ; use eq_scott_open_set ; intro x.
      + intro p.
        induction p as [ p q ].
        exact p.
      + intro p.
        refine (p ,, _).
        use hdisj_in1.
        exact p.
    - intros P₁ P₂ ; use eq_scott_open_set ; intro x.
      + use factor_through_squash_hProp.
        intros p.
        induction p as [ p | p ].
        * exact p.
        * exact (pr1 p).
      + intro p.
        use hdisj_in1.
        exact p.
  Qed.

  Definition lattice_scott_open_set
    : lattice (set_of_scott_open_set D).
  Proof.
    use make_lattice.
    - exact scott_open_set_intersection.
    - exact scott_open_set_bin_union.
    - exact islatticeop_scott_open_set.
  Defined.

2. Top and bottom element

  Proposition bounded_latticeop_scott_open_set
    : bounded_latticeop
        lattice_scott_open_set
        (false_scott_open_set D)
        (true_scott_open_set D).
  Proof.
    repeat split.
    - intros P ; use eq_scott_open_set ; intro x.
      + use factor_through_squash_hProp.
        intros p.
        induction p as [ p | p ].
        * apply fromempty.
          exact p.
        * exact p.
      + intro p.
        use hdisj_in2.
        exact p.
    - intros P ; use eq_scott_open_set ; intro x.
      + intro p.
        exact (pr2 p).
      + intro p.
        exact (tt ,, p).
  Qed.

  Definition bounded_lattice_scott_open_set
    : bounded_lattice (set_of_scott_open_set D).
  Proof.
    use make_bounded_lattice.
    - exact lattice_scott_open_set.
    - exact (false_scott_open_set D).
    - exact (true_scott_open_set D).
    - exact bounded_latticeop_scott_open_set.
  Defined.

  Proposition bounded_lattice_scott_open_set_le
              {P Q : scott_open_set D}
              (H : (x : D), P x Q x)
    : Lle bounded_lattice_scott_open_set P Q.
  Proof.
    use eq_scott_open_set.
    - intro x ; cbn.
      exact (λ p, pr1 p).
    - intros x p ; cbn.
      refine (p ,, _).
      apply H.
      exact p.
  Qed.

  Proposition from_bounded_lattice_scott_open_set_le
              {P Q : scott_open_set D}
              (H : Lle bounded_lattice_scott_open_set P Q)
              {x : D}
              (p : P x)
    : Q x.
  Proof.
    exact (pr2 (pr2 (weqlogeq _ _ (maponpaths (λ R, pr1 R x) H)) p)).
  Qed.

3. Suprema

  Proposition is_upperbound_union_scott_open
              {I : UU}
              (P : I scott_open_set D)
    : is_upperbound_lattice
        bounded_lattice_scott_open_set
        P
        (scott_open_set_union P).
  Proof.
    intros i.
    use bounded_lattice_scott_open_set_le.
    intros x p.
    exact (hinhpr (i ,, p)).
  Qed.

  Proposition is_least_upperbounded_union_open
              {I : UU}
              (P : I scott_open_set D)
              (Q : scott_open_set D)
              (HQ : is_upperbound_lattice bounded_lattice_scott_open_set P Q)
    : Lle bounded_lattice_scott_open_set (scott_open_set_union P) Q.
  Proof.
    use bounded_lattice_scott_open_set_le.
    intros x.
    use factor_through_squash_hProp.
    intros i.
    induction i as [ i Hi ].
    exact (from_bounded_lattice_scott_open_set_le (HQ i) Hi).
  Qed.

  Definition is_complete_lattice_scott_open_set
    : is_complete_lattice bounded_lattice_scott_open_set.
  Proof.
    intros I P.
    refine (scott_open_set_union P ,, _).
    split.
    - exact (is_upperbound_union_scott_open P).
    - exact (is_least_upperbounded_union_open P).
  Defined.

4. Exponentials

  Proposition exponential_scott_open_law
              (P Q R : scott_open_set D)
    : scott_open_set_intersection R (scott_open_set_exp P Q) = R
      <->
      scott_open_set_intersection (scott_open_set_intersection R P) Q
      =
      scott_open_set_intersection R P.
  Proof.
    split ; intro H ; use eq_scott_open_set ; intro x.
    - cbn.
      exact pr1.
    - cbn.
      intros p.
      refine (p ,, _).
      refine (factor_through_squash_hProp
                _ _
                (pr2 (pr2 (weqlogeq _ _ (maponpaths (λ R, pr1 R x) H)) (pr1 p)))).
      intro j.
      induction j as [ [ S HS₁ ] HS₂ ] ; cbn in HS₂.
      apply HS₁.
      exact (pr2 p ,, HS₂).
    - intro p.
      induction p as [ p q ].
      exact p.
    - intro p.
      refine (p ,, _).
      use hinhpr.
      simple refine ((_ ,, _) ,, _).
      + exact R.
      + cbn.
        intros y q.
        apply (pr2 (weqlogeq _ _ (maponpaths (λ R, pr1 R y) H))) ; cbn.
        exact (pr2 q ,, pr1 q).
      + exact p.
  Qed.

  Definition exponential_scott_open
    : exponential bounded_lattice_scott_open_set.
  Proof.
    use make_exponential.
    - exact (λ P Q, scott_open_set_exp P Q).
    - exact exponential_scott_open_law.
  Defined.

5. The complete Heyting algebra of Scott open sets

  Definition scott_open_cha
    : complete_heyting_algebra.
  Proof.
    use make_complete_heyting_algebra.
    - exact (set_of_scott_open_set D).
    - exact bounded_lattice_scott_open_set.
    - exact is_complete_lattice_scott_open_set.
    - exact exponential_scott_open.
  Defined.

  Proposition scott_open_cha_le
              {X₁ X₂ : scott_open_cha}
              (H : (x : D), pr1 X₁ x pr1 X₂ x)
    : (X₁ X₂)%heyting.
  Proof.
    use bounded_lattice_scott_open_set_le.
    exact H.
  Qed.

6. A basis for this complete Heyting algebra

  Context (B : dcpo_basis D).

  Definition cha_basis_data_scott_open_cha
    : cha_basis_data scott_open_cha.
  Proof.
    use make_cha_basis_data.
    - exact B.
    - exact (λ b, way_below_upper_scott_open_set (continuous_struct_from_basis B) (B b)).
    - exact (λ b₁ b₂, B b₁ B b₂).
  Defined.

  Proposition cha_basis_laws_scott_open_cha
    : cha_basis_laws cha_basis_data_scott_open_cha.
  Proof.
    repeat split ; cbn -[way_below].
    - intros b₁ b₂ b₃ p q.
      exact (trans_way_below p q).
    - intros X.
      use eq_scott_open_set.
      + intros x p.
        assert (Hx : X ( directed_set_from_basis B x)).
        {
          rewrite (approximating_basis_lub B x).
          exact p.
        }
        pose proof (is_scott_open_lub_inaccessible
                      X
                      (directed_set_from_basis B x)
                      Hx)
          as q.
        revert q.
        use factor_through_squash_hProp.
        intros b.
        induction b as [ [ b q₁ ] q₂ ].
        cbn in q₂ ; unfold basis_below_map in q₂ ; cbn in q₂.
        use hinhpr.
        simple refine ((_ ,, _) ,, _).
        * exact b.
        * use bounded_lattice_scott_open_set_le ; cbn -[way_below].
          intros y r.
          refine (is_scott_open_upper_set X q₂ _).
          use way_below_to_le.
          exact r.
        * cbn -[way_below].
          exact q₁.
      + intros x.
        use factor_through_squash_hProp.
        cbn -[way_below].
        intro b.
        induction b as [ [ b p ] q ].
        exact (from_bounded_lattice_scott_open_set_le p q).
    - intros b₁ b₂ p.
      use scott_open_cha_le ; cbn -[way_below].
      intros x q.
      exact (trans_way_below p q).
  Qed.

  Definition cha_basis_scott_open_cha
    : cha_basis scott_open_cha.
  Proof.
    use make_cha_basis.
    - exact cha_basis_data_scott_open_cha.
    - exact cha_basis_laws_scott_open_cha.
  Defined.
End ScottOpenCHA.

7. A basis for the Scott open sets in the rounded ideal completion

Section ScottOpenIdealCompletion.
  Context (B : abstract_basis).

  Definition cha_basis_data_rounded_ideal_completion
    : cha_basis_data (scott_open_cha (rounded_ideal_completion B)).
  Proof.
    use make_cha_basis_data.
    - exact B.
    - exact (λ b, way_below_upper_scott_open_set
                    (rounded_ideal_completion_continuous_struct B)
                    (principal_ideal _ b)).
    - exact (λ b₁ b₂, b₁ b₂).
  Defined.

  Proposition cha_basis_laws_rounded_ideal_completion
    : cha_basis_laws cha_basis_data_rounded_ideal_completion.
  Proof.
    repeat split.
    - cbn.
      intros ? ? ? p q.
      exact (trans_abstract_basis p q).
    - intros X.
      exact (cha_basis_eq
               (cha_basis_scott_open_cha
                  (rounded_ideal_completion B)
                  (rounded_ideal_completion_basis B))
               X).
    - intros b₁ b₂ p.
      use scott_open_cha_le.
      intros I q.
      cbn in p ; cbn -[way_below] in q ; cbn -[way_below].
      refine (trans_way_below _ q).
      use lt_way_below.
      exact p.
  Qed.

  Definition cha_basis_rounded_ideal_completion
    : cha_basis (scott_open_cha (rounded_ideal_completion B)).
  Proof.
    use make_cha_basis.
    - exact cha_basis_data_rounded_ideal_completion.
    - exact cha_basis_laws_rounded_ideal_completion.
  Defined.
End ScottOpenIdealCompletion.