Library UniMath.SubstitutionSystems.BinSumOfSignatures
**********************************************************
Benedikt Ahrens, Ralph Matthes
SubstitutionSystems
2015
**********************************************************
Contents:
- Definition of the sum of two signatures (BinSum_of_Signatures), in particular proof of strength laws for the sum
Require Import UniMath.Foundations.PartD.
Require Import UniMath.MoreFoundations.PartA.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
Require Import UniMath.CategoryTheory.PrecategoryBinProduct.
Require Import UniMath.CategoryTheory.PointedFunctors.
Require Import UniMath.CategoryTheory.PointedFunctorsComposition.
Require Import UniMath.SubstitutionSystems.Signatures.
Require Import UniMath.SubstitutionSystems.Notation.
Local Open Scope subsys.
Require Import UniMath.CategoryTheory.Chains.Chains.
Require Import UniMath.CategoryTheory.Chains.OmegaCocontFunctors.
Require Import UniMath.CategoryTheory.Limits.BinProducts.
Local Open Scope cat.
Section binsum_of_signatures.
Context (C D D' : category) (CD : BinCoproducts D).
Section construction.
Local Notation "'CCD'" := (BinCoproducts_functor_precat C D CD : BinCoproducts [C, D]).
Context (H1 H2 : functor [C, D'] [C, D])
(θ1 : θ_source H1 ⟹ θ_target H1)
(θ2 : θ_source H2 ⟹ θ_target H2).
Context (S11 : θ_Strength1 θ1)
(S12 : θ_Strength2 θ1)
(S21 : θ_Strength1 θ2)
(S22 : θ_Strength2 θ2).
Definition H : functor [C, D'] [C, D] := BinCoproduct_of_functors _ _ CCD H1 H2.
Local Definition θ_ob_fun (X : [C, D']) (Z : category_Ptd C) :
∏ c : C,
(functor_composite_data (pr1 Z)
(BinCoproduct_of_functors C D CD (H1 X) (H2 X))) c
--> (BinCoproduct_of_functors C D CD (H1 (functor_composite (pr1 Z) X))
(H2 (functor_composite (pr1 Z) X))) c.
Proof.
intro c.
apply BinCoproductOfArrows.
- exact (pr1 (θ1 (X ⊗ Z)) c).
- exact (pr1 (θ2 (X ⊗ Z)) c).
Defined.
Local Lemma is_nat_trans_θ_ob_fun (X : [C, D']) (Z : category_Ptd C):
is_nat_trans _ _ (θ_ob_fun X Z).
Proof.
intros x x' f.
etrans; [ apply BinCoproductOfArrows_comp | ].
etrans; [ | eapply pathsinv0; apply BinCoproductOfArrows_comp].
apply maponpaths_12.
* apply (nat_trans_ax (θ1 (X ⊗ Z))).
* apply (nat_trans_ax (θ2 (X ⊗ Z))).
Qed.
Definition θ_ob : ∏ XF, θ_source H XF --> θ_target H XF.
Proof.
intros [X Z].
exists (θ_ob_fun X Z).
apply is_nat_trans_θ_ob_fun.
Defined.
Local Lemma is_nat_trans_θ_ob :
is_nat_trans (θ_source H) (θ_target H) θ_ob.
Proof.
intros XZ X'Z' αβ.
assert (Hyp1:= nat_trans_ax θ1 _ _ αβ).
assert (Hyp2:= nat_trans_ax θ2 _ _ αβ).
apply nat_trans_eq.
- apply homset_property.
- intro c; simpl.
destruct XZ as [X Z].
destruct X'Z' as [X' Z'].
destruct αβ as [α β]. simpl in *.
etrans; [ | eapply pathsinv0; apply BinCoproductOfArrows_comp].
etrans. { apply cancel_postcomposition. apply BinCoproductOfArrows_comp. }
etrans. { apply BinCoproductOfArrows_comp. }
apply maponpaths_12.
+ apply (nat_trans_eq_pointwise Hyp1 c).
+ apply (nat_trans_eq_pointwise Hyp2 c).
Qed.
Local Definition θ : θ_source H ⟹ θ_target H.
Proof.
exists θ_ob.
apply is_nat_trans_θ_ob.
Defined.
Lemma SumStrength1 : θ_Strength1 θ.
Proof.
intro X.
apply nat_trans_eq_alt.
intro x; simpl.
etrans; [ apply BinCoproductOfArrows_comp |].
apply pathsinv0, BinCoproduct_endo_is_identity.
+ rewrite BinCoproductOfArrowsIn1.
unfold θ_Strength1 in S11.
assert (Ha := nat_trans_eq_pointwise (S11 X) x).
eapply pathscomp0; [ | apply id_left].
apply cancel_postcomposition.
apply Ha.
+ rewrite BinCoproductOfArrowsIn2.
unfold θ_Strength1 in S21.
assert (Ha := nat_trans_eq_pointwise (S21 X) x).
eapply pathscomp0; [ | apply id_left].
apply cancel_postcomposition.
apply Ha.
Qed.
Lemma SumStrength2 : θ_Strength2 θ.
Proof.
intros X Z Z' Y α.
apply nat_trans_eq_alt; intro x.
etrans; [ apply BinCoproductOfArrows_comp |].
apply pathsinv0.
etrans. { apply cancel_postcomposition. simpl. apply BinCoproductOfArrows_comp. }
etrans; [apply BinCoproductOfArrows_comp |].
apply pathsinv0.
apply maponpaths_12.
- assert (Ha:=S12 X Z Z' Y α).
simpl in Ha.
assert (Ha_x := nat_trans_eq_pointwise Ha x).
apply Ha_x.
- assert (Ha:=S22 X Z Z' Y α).
simpl in Ha.
assert (Ha_x := nat_trans_eq_pointwise Ha x).
apply Ha_x.
Qed.
Context (S11' : θ_Strength1_int θ1)
(S12' : θ_Strength2_int θ1)
(S21' : θ_Strength1_int θ2)
(S22' : θ_Strength2_int θ2).
Lemma SumStrength1' : θ_Strength1_int θ.
Proof.
clear S11 S12 S21 S22 S12' S22'; intro X.
apply nat_trans_eq_alt; intro x.
etrans; [ apply BinCoproductOfArrows_comp |].
apply pathsinv0, BinCoproduct_endo_is_identity.
+ rewrite BinCoproductOfArrowsIn1.
assert (Ha := nat_trans_eq_pointwise (S11' X) x).
simpl in Ha.
etrans; [ | apply id_left].
apply cancel_postcomposition.
apply Ha.
+ rewrite BinCoproductOfArrowsIn2.
assert (Ha := nat_trans_eq_pointwise (S21' X) x).
simpl in Ha.
etrans; [ | apply id_left].
apply cancel_postcomposition.
apply Ha.
Qed.
Lemma SumStrength2' : θ_Strength2_int θ.
Proof.
clear S11 S12 S21 S22 S11' S21'; intros X Z Z'.
apply nat_trans_eq_alt; intro x; simpl; rewrite id_left.
etrans; [ apply BinCoproductOfArrows_comp |].
apply pathsinv0.
etrans; [ apply BinCoproductOfArrows_comp |].
apply pathsinv0.
apply maponpaths_12.
- assert (Ha:=S12' X Z Z').
simpl in Ha.
assert (Ha_x := nat_trans_eq_pointwise Ha x).
simpl in Ha_x.
rewrite id_left in Ha_x.
apply Ha_x.
- assert (Ha:=S22' X Z Z').
simpl in Ha.
assert (Ha_x := nat_trans_eq_pointwise Ha x).
simpl in Ha_x.
rewrite id_left in Ha_x.
apply Ha_x.
Qed.
End construction.
Definition BinSum_of_Signatures (S1 S2 : Signature C D D') : Signature C D D'.
Proof.
destruct S1 as [H1 [θ1 [S11' S12']]].
destruct S2 as [H2 [θ2 [S21' S22']]].
exists (H H1 H2).
exists (θ H1 H2 θ1 θ2).
split.
+ apply SumStrength1'; assumption.
+ apply SumStrength2'; assumption.
Defined.
Lemma is_omega_cocont_BinSum_of_Signatures (S1 S2 : Signature C D D')
(h1 : is_omega_cocont S1) (h2 : is_omega_cocont S2) :
is_omega_cocont (BinSum_of_Signatures S1 S2).
Proof.
apply is_omega_cocont_BinCoproduct_of_functors; assumption.
Defined.
End binsum_of_signatures.