Library UniMath.OrderTheory.Posets.Examples.StandardFiniteSet
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Local Open Scope stn.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Local Open Scope stn.
Definition stnposet ( n : nat ) : Poset.
Proof.
unfold Poset.
exists (_,,isasetstn n).
unfold PartialOrder.
exists (λ i j: ⟦n⟧, i ≤ j)%dnat.
unfold isPartialOrder.
split.
- unfold ispreorder.
split.
* intros i j k. apply istransnatleh.
* intros i. apply isreflnatleh.
- intros i j r s. apply (invmaponpathsincl _ ( isinclstntonat _ )).
apply isantisymmnatleh; assumption.
Defined.