Library UniMath.AlgebraicTheories.AlgebraicTheories

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.Combinatorics.Vectors.

Require Import UniMath.AlgebraicTheories.AlgebraicTheoryCategoryCore.
Require Import UniMath.Combinatorics.Tuples.

Declare Scope algebraic_theories.

Local Open Scope cat.
Local Open Scope algebraic_theories.

1. The definition of algebraic theories


Definition algebraic_theory_data : UU := algebraic_theory_data_cat.

Definition algebraic_theory_data_to_function
  (T : algebraic_theory_data)
  : nat hSet
  := pr1 T.

Coercion algebraic_theory_data_to_function : algebraic_theory_data >-> Funclass.

Definition var
  {T : algebraic_theory_data}
  {n : nat}
  (i : stn n)
  : var_ax T n i
  := pr12 T n i.

Definition subst
  {T : algebraic_theory_data}
  {m n : nat}
  (f : T m)
  (g : stn m T n)
  : subst_ax T m n f g
  := pr22 T m n f g.

Notation "f • g" :=
  (subst f g)
  (at level 35) : algebraic_theories.

Definition algebraic_theory : UU := algebraic_theory_cat.

Coercion algebraic_theory_to_algebraic_theory_data (T : algebraic_theory)
  : algebraic_theory_data
  := pr1 T.

Definition make_algebraic_theory_data
  (T : nat hSet)
  (var : n i, var_ax T n i)
  (subst : m n f g, subst_ax T m n f g)
  : algebraic_theory_data
  := T ,, var ,, subst.

Definition subst_subst_ax
  (T : algebraic_theory_data)
  (l m n : nat)
  (f_l : T l)
  (f_m : stn l T m)
  (f_n : stn m T n)
  : UU
  := f_l f_m f_n = f_l (λ t_l, f_m t_l f_n).

Arguments subst_subst_ax /.

Definition var_subst_ax
  (T : algebraic_theory_data)
  (m n : nat)
  (i : stn m)
  (f : stn m T n)
  : UU
  := var i f = f i.

Arguments var_subst_ax /.

Definition subst_var_ax
  (T : algebraic_theory_data)
  (n : nat)
  (f : T n)
  : UU
  := f var = f.

Arguments subst_var_ax /.

Definition is_algebraic_theory (T : algebraic_theory_data) : UU :=
  ( l m n f_l f_m f_n, subst_subst_ax T l m n f_l f_m f_n) ×
  ( m n i f, var_subst_ax T m n i f) ×
  ( n f, subst_var_ax T n f).

Definition make_is_algebraic_theory
  (T : algebraic_theory_data)
  (H1 : l m n f_l f_m f_n, subst_subst_ax T l m n f_l f_m f_n)
  (H2 : m n i f, var_subst_ax T m n i f)
  (H3 : n f, subst_var_ax T n f)
  : is_algebraic_theory T
  := H1 ,, H2 ,, H3.

Definition make_algebraic_theory
  (T : algebraic_theory_data)
  (H : is_algebraic_theory T)
  : algebraic_theory
  := T ,, H.

Definition subst_subst
  (T : algebraic_theory)
  {l m n : nat}
  (f_l : T l)
  (f_m : stn l T m)
  (f_n : stn m T n)
  : subst_subst_ax (T : algebraic_theory_data) l m n f_l f_m f_n
  := pr12 T l m n f_l f_m f_n.

Definition var_subst
  (T : algebraic_theory)
  {m n : nat}
  (i : stn m)
  (f : stn m T n)
  : var_subst_ax (T : algebraic_theory_data) m n i f
  := pr122 T m n i f.

Definition subst_var
  (T : algebraic_theory)
  {n : nat}
  (f : T n)
  : subst_var_ax (T : algebraic_theory_data) n f
  := pr222 T n f.

2. Some useful definitions and their properties


Definition lift_constant {T : algebraic_theory_data} (n : nat) (f : (T 0 : hSet))
  : (T n : hSet)
  := f weqvecfun _ vnil.

Definition inflate {T : algebraic_theory_data} {n : nat} (f : T n) : T (S n)
  := f (λ i, var (stnweq (inl i))).

Definition inflate_var (T : algebraic_theory) {n : nat} (i : stn n)
  : inflate (var i) = var (stnweq (inl i))
  := var_subst T _ _.

Definition inflate_subst (T : algebraic_theory) {m n : nat} (f : T m) (g : stn m T n)
  : inflate (subst f g) = subst f (λ i, inflate (g i))
  := subst_subst _ _ _ _.

Lemma subst_inflate (T : algebraic_theory) {m n : nat} (f : T m) (g : stn (S m) T n)
  : subst (inflate f) g = subst f (λ i, g (stnweq (inl i))).
Proof.
  unfold inflate.
  rewrite subst_subst.
  apply maponpaths.
  apply funextfun.
  intro i.
  apply var_subst.
Qed.

Lemma subst_inflate_extend_tuple
  (T : algebraic_theory)
  {m : nat}
  (f : T 0)
  (g : stn 0 T m)
  : inflate f extend_tuple g (lift_constant _ f) = f g.
Proof.
  refine (subst_inflate _ f _ @ _).
  apply maponpaths.
  apply proofirrelevancecontr.
  apply iscontr_empty_tuple.
Qed.