Library UniMath.CategoryTheory.DisplayedCats.CatIsoDisplayed
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.catiso.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Isos.
Require Import UniMath.CategoryTheory.DisplayedCats.Total.
Require Import UniMath.CategoryTheory.DisplayedCats.Univalence.
Local Open Scope cat.
Section DisplayedCatIso.
Context {C : category} (D : disp_cat C).
Context
(uo : ∏ c : C, iscontr (D c)).
Context (is_contr_disp_mor : ∏ (c1 c2 : C) (f : C⟦c1,c2⟧),
iscontr (pr1 (uo c1) -->[f] (pr1 (uo c2)))).
Lemma uf_eq {c1 c2 : C} (f : C⟦c1,c2⟧)
: ∏ (d1 : D c1) (d2 : D c2),
(d1 -->[f] d2) ≃ (pr1 (uo c1) -->[f] pr1 (uo c2)).
Proof.
intros d1 d2.
assert (p1 : d1 = pr1 (uo c1)).
{
apply uo.
}
assert (p2 : d2 = pr1 (uo c2)).
{
apply uo.
}
induction p1.
induction p2.
apply idweq.
Defined.
Lemma uf0 {c1 c2 : C} (f : C⟦c1,c2⟧)
: ∏ (d1 : D c1) (d2 : D c2), iscontr (d1 -->[f] d2).
Proof.
intros d1 d2.
use (iscontrweqb' (is_contr_disp_mor _ _ f)).
apply uf_eq.
Defined.
Lemma weq_hom'
{c1 : C} {c2 : C}
(f : C ⟦ c1, c2 ⟧)
: ∃! x : (∑ f0 : C ⟦ c1, c2 ⟧,
pr1 (uo c1) -->[ f0] pr1 (uo c2)),
pr1 x = f.
Proof.
use tpair.
- simple refine ((_ ,, _) ,, _).
+ exact f.
+ apply (pr1 (is_contr_disp_mor _ _ f)).
+ apply idpath.
- intros [[g gg] p].
use subtypePath.
{ intro ; apply homset_property. }
use subtypePath.
{
intro.
apply isapropifcontr.
apply is_contr_disp_mor.
}
exact p.
Qed.
Lemma weq_hom
{c1 : C} {c2 : C}
(d1 : D c1)
(d2 : D c2)
(f : C ⟦ c1, c2 ⟧)
: ∃! x : (∑ f0 : C ⟦ c1, c2 ⟧, d1 -->[ f0] d2), pr1 x = f.
Proof.
use tpair.
- simple refine ((_ ,, _) ,, _).
+ exact f.
+ apply uf0.
+ apply idpath.
- cbn.
intros [[g gg] q].
use subtypePath.
{ intro ; apply homset_property. }
use subtypePath.
{
intro.
apply isapropifcontr.
apply uf0.
}
exact q.
Qed.
Lemma weq_ob (c : C)
: ∃! x : (∑ x : C, D x), pr1 x = c.
Proof.
use tpair.
- simple refine ((c ,, _) ,, _).
+ apply uo.
+ apply idpath.
- intros [[c' d'] p].
cbn in *.
use total2_paths_f.
+ use subtypePath.
{ intro ; apply isapropifcontr, uo. }
exact p.
+ simpl.
etrans. {
apply (transportf_total2_paths_f
(A := C) (B := λ x : C, D x) (λ x : C, x = c)).
}
induction p.
apply idpath.
Qed.
Definition forgetful_is_iso
: is_catiso (pr1_category D).
Proof.
split.
- intros [c1 d1] [c2 d2] f.
apply weq_hom.
- intro c.
apply weq_ob.
Defined.
End DisplayedCatIso.
Section DisplayedCatIsoUnivalence.
Context {C : category}
(D : disp_cat C) (Duniv : is_univalent_disp D).
Context
(uo : ∏ c : C, D c)
(uf : ∏ (c1 c2 : C) (f : C⟦c1,c2⟧) (d1 : D c1) (d2 : D c2),
iscontr (d1 -->[f] d2)).
Lemma only_isos_above_an_iso
{c1 c2 : C}
{f : C⟦c1,c2⟧} {d1 : D c1} {d2 : D c2} (ff : d1 -->[f] d2)
: ∏ fi : is_z_isomorphism f, is_z_iso_disp (_ ,, fi) ff.
Proof.
intro fi.
use tpair.
* apply (uf c2 c1 (pr1 fi)).
* split ; (apply proofirrelevance ;
apply isapropifcontr ;
apply uf).
Qed.
Lemma only_isos_above_an_id
{c : C} (d1 d2 : D c)
: is_z_iso_disp (idtoiso (idpath c)) (pr1 (uf _ _ (identity c) d1 d2)).
Proof.
apply only_isos_above_an_iso.
Qed.
Lemma z_iso_disp_iscontr
{c : C} (d1 d2 : D c)
: iscontr (z_iso_disp (idtoiso (idpath c)) d1 d2).
Proof.
use tpair.
- refine (_ ,, _).
apply only_isos_above_an_id.
- intro i.
use subtypePath.
{ intro ; apply isaprop_is_z_iso_disp. }
apply proofirrelevance.
apply isapropifcontr.
apply uf.
Qed.
Lemma isaprop_uo (c : C)
: isaprop (D c).
Proof.
intros d1 d2.
use tpair.
- use (isotoid_disp Duniv (idpath c)).
exact (_ ,, only_isos_above_an_id d1 d2).
- intro.
apply proofirrelevance.
apply isapropifcontr.
refine (iscontrweqb _ (z_iso_disp_iscontr d1 d2)).
unfold is_univalent_disp in Duniv.
refine ( _ ,, _).
apply Duniv.
Qed.
Definition forgetful_is_iso_univ
: is_catiso (pr1_category D).
Proof.
use forgetful_is_iso.
- intro.
use tpair.
+ apply uo.
+ intro.
apply isaprop_uo.
- intro ; intros ; apply uf.
Defined.
End DisplayedCatIsoUnivalence.
Section CatIsoToContractibleFibers.
Context {C : category} {D : disp_cat C} (F : is_catiso (pr1_category D)).
Let inv_i := inv_catiso (_ ,, F).
Definition object_is_proj (x : C)
: x = pr1 (inv_i x)
:= ! homotweqinvweq (make_weq pr1 (pr2 F)) x.
Definition object_as_proj_equal_fibers (x : C)
: D x ≃ D (pr1 (inv_i x)).
Proof.
induction (object_is_proj x).
apply idweq.
Defined.
Let W := invweq (catiso_ob_weq (_ ,, F)) : ob C ≃ ∑ x : C, D x.
Lemma catiso_is_globally_prop' (x : C)
: ∏ d1 d2 : D x, x ,, d1 = x ,, d2.
Proof.
intros d1 d2.
set (g := isinclweq _ _ _ (pr2 (invweq W)) x).
set (h := g ((x ,, d1) ,, idpath _) ((x ,, d2) ,, idpath _)).
exact (base_paths _ _ (pr1 h)).
Defined.
Lemma catiso_is_globally_prop (x : C)
: ∏ d1 d2 : D x, d1 = d2.
Proof.
intros d1 d2.
set (h := total2_section_path x d2 (λ z, invweq (object_as_proj_equal_fibers z) (pr2 (inv_i z)))).
refine (_ @ h (catiso_is_globally_prop' x _ d2)).
set (h' := total2_section_path x d1 (λ z, invweq (object_as_proj_equal_fibers z) (pr2 (inv_i z)))).
exact (! h' (catiso_is_globally_prop' x _ d1)).
Defined.
Definition catiso_is_globally_contr (x : C)
: iscontr (D x).
Proof.
use (iscontrweqb' _ (object_as_proj_equal_fibers x)).
use tpair.
- exact (pr2 (inv_i x)).
- intro ; apply catiso_is_globally_prop.
Defined.
End CatIsoToContractibleFibers.