Library UniMath.CategoryTheory.Limits.Preservation
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.BinProducts.
Require Import UniMath.CategoryTheory.Limits.Equalizers.
Require Import UniMath.CategoryTheory.Limits.Pullbacks.
Require Import UniMath.CategoryTheory.Limits.Initial.
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
Require Import UniMath.CategoryTheory.Limits.Products.
Require Import UniMath.CategoryTheory.Limits.Coequalizers.
Require Import UniMath.CategoryTheory.Limits.Coproducts.
Require Import UniMath.CategoryTheory.Limits.Pushouts.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Local Open Scope cat.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.BinProducts.
Require Import UniMath.CategoryTheory.Limits.Equalizers.
Require Import UniMath.CategoryTheory.Limits.Pullbacks.
Require Import UniMath.CategoryTheory.Limits.Initial.
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
Require Import UniMath.CategoryTheory.Limits.Products.
Require Import UniMath.CategoryTheory.Limits.Coequalizers.
Require Import UniMath.CategoryTheory.Limits.Coproducts.
Require Import UniMath.CategoryTheory.Limits.Pushouts.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Local Open Scope cat.
1. Preservation of terminal objects
Section PreservesTerminal.
Context {C₁ C₂ : category}.
Context (F : C₁ ⟶ C₂).
Definition preserves_terminal
: UU
:= ∏ (x : C₁), isTerminal C₁ x → isTerminal C₂ (F x).
Context (H : preserves_terminal)
(T : Terminal C₁)
(T' : Terminal C₂).
Definition preserves_terminal_to_terminal
: Terminal C₂
:= make_Terminal _ (H _ (pr2 T)).
Definition preserves_terminal_to_z_iso
: z_iso preserves_terminal_to_terminal T'
:= z_iso_Terminals _ _.
End PreservesTerminal.
Proposition functor_on_terminal_arrow
{C₁ C₂ : category}
(T : Terminal C₁)
{F : C₁ ⟶ C₂}
(HF : preserves_terminal F)
(x : C₁)
: #F (TerminalArrow T x)
=
TerminalArrow (preserves_terminal_to_terminal F HF T) _.
Proof.
apply (TerminalArrowEq (T := preserves_terminal_to_terminal F HF T)).
Qed.
Definition identity_preserves_terminal
(C : category)
: preserves_terminal (functor_identity C)
:= λ x Hx, Hx.
Definition composition_preserves_terminal
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_terminal F)
(HG : preserves_terminal G)
: preserves_terminal (F ∙ G)
:= λ x Hx, HG _ (HF _ Hx).
Definition isaprop_preserves_terminal
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_terminal F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_terminal
{C₁ C₂ : category}
(HC₁ : Terminal C₁)
(F : C₁ ⟶ C₂)
: UU
:= isTerminal C₂ (F (TerminalObject HC₁)).
Definition preserves_terminal_if_preserves_chosen
{C₁ C₂ : category}
(HC₁ : Terminal C₁)
(F : C₁ ⟶ C₂)
(HF : preserves_chosen_terminal HC₁ F)
: preserves_terminal F.
Proof.
intros x Hx.
exact (iso_to_Terminal
(make_Terminal _ HF)
_
(functor_on_z_iso
F
(z_iso_Terminals HC₁ (make_Terminal _ Hx)))).
Defined.
Definition preserves_chosen_terminal_to_z_iso
{C₁ C₂ : category}
{T₁ : Terminal C₁}
{F : C₁ ⟶ C₂}
(F_T : preserves_chosen_terminal T₁ F)
: ∏ T₂ : Terminal C₂, z_iso T₂ (F T₁).
Proof.
intro T₂.
use (z_iso_inv (preserves_terminal_to_z_iso _ _ T₁ T₂)).
exact (preserves_terminal_if_preserves_chosen _ _ F_T).
Defined.
Definition preserves_terminal_chosen_to_chosen
{C₁ C₂ : category}
(T₁ : Terminal C₁)
(T₂ : Terminal C₂)
(F : C₁ ⟶ C₂)
(HF : is_z_isomorphism (TerminalArrow T₂ (F T₁)))
: preserves_terminal F.
Proof.
use (preserves_terminal_if_preserves_chosen T₁).
unfold preserves_chosen_terminal.
use iso_to_Terminal.
- exact T₂.
- exact (z_iso_inv (_ ,, HF)).
Defined.
Definition preserves_terminal_chosen_to_chosen_z_iso
{C₁ C₂ : category}
(T₁ : Terminal C₁)
(T₂ : Terminal C₂)
(F : C₁ ⟶ C₂)
(HF : z_iso T₂ (F T₁))
: preserves_terminal F.
Proof.
use (preserves_terminal_if_preserves_chosen T₁).
unfold preserves_chosen_terminal.
use iso_to_Terminal.
- exact T₂.
- exact HF.
Defined.
Lemma identity_preserves_chosen_terminal
{C : category} (T : Terminal C)
: preserves_chosen_terminal T (functor_identity C).
Proof.
apply T.
Qed.
Lemma composition_preserves_chosen_terminal
{C₀ C₁ C₂ : category}
{F : functor C₀ C₁} {G : functor C₁ C₂}
{T₀ : Terminal C₀} {T₁ : Terminal C₁}
(F_pT : preserves_chosen_terminal T₀ F)
(G_pT : preserves_chosen_terminal T₁ G)
: preserves_chosen_terminal T₀ (functor_composite F G).
Proof.
set (t₁ := preserves_terminal_if_preserves_chosen _ _ F_pT).
set (t₂ := preserves_terminal_if_preserves_chosen _ _ G_pT).
apply (t₂ _ (t₁ _ (pr2 T₀))).
Qed.
Definition preserves_chosen_terminal_eq
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
(T₁ : Terminal C₁)
(T₂ : Terminal C₂)
: UU
:= ∥ F T₁ = T₂ ∥.
Proposition identity_preserves_chosen_terminal_eq
{C : category}
(T : Terminal C)
: preserves_chosen_terminal_eq (functor_identity C) T T.
Proof.
apply hinhpr.
apply idpath.
Qed.
Proposition composition_preserves_chosen_terminal_eq
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
{T₁ : Terminal C₁}
{T₂ : Terminal C₂}
{T₃ : Terminal C₃}
(HF : preserves_chosen_terminal_eq F T₁ T₂)
(HG : preserves_chosen_terminal_eq G T₂ T₃)
: preserves_chosen_terminal_eq (F ∙ G) T₁ T₃.
Proof.
revert HF.
use factor_through_squash.
{
apply propproperty.
}
intro p.
revert HG.
use factor_through_squash.
{
apply propproperty.
}
intro q.
cbn.
apply hinhpr.
rewrite p, q.
apply idpath.
Qed.
Context {C₁ C₂ : category}.
Context (F : C₁ ⟶ C₂).
Definition preserves_terminal
: UU
:= ∏ (x : C₁), isTerminal C₁ x → isTerminal C₂ (F x).
Context (H : preserves_terminal)
(T : Terminal C₁)
(T' : Terminal C₂).
Definition preserves_terminal_to_terminal
: Terminal C₂
:= make_Terminal _ (H _ (pr2 T)).
Definition preserves_terminal_to_z_iso
: z_iso preserves_terminal_to_terminal T'
:= z_iso_Terminals _ _.
End PreservesTerminal.
Proposition functor_on_terminal_arrow
{C₁ C₂ : category}
(T : Terminal C₁)
{F : C₁ ⟶ C₂}
(HF : preserves_terminal F)
(x : C₁)
: #F (TerminalArrow T x)
=
TerminalArrow (preserves_terminal_to_terminal F HF T) _.
Proof.
apply (TerminalArrowEq (T := preserves_terminal_to_terminal F HF T)).
Qed.
Definition identity_preserves_terminal
(C : category)
: preserves_terminal (functor_identity C)
:= λ x Hx, Hx.
Definition composition_preserves_terminal
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_terminal F)
(HG : preserves_terminal G)
: preserves_terminal (F ∙ G)
:= λ x Hx, HG _ (HF _ Hx).
Definition isaprop_preserves_terminal
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_terminal F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_terminal
{C₁ C₂ : category}
(HC₁ : Terminal C₁)
(F : C₁ ⟶ C₂)
: UU
:= isTerminal C₂ (F (TerminalObject HC₁)).
Definition preserves_terminal_if_preserves_chosen
{C₁ C₂ : category}
(HC₁ : Terminal C₁)
(F : C₁ ⟶ C₂)
(HF : preserves_chosen_terminal HC₁ F)
: preserves_terminal F.
Proof.
intros x Hx.
exact (iso_to_Terminal
(make_Terminal _ HF)
_
(functor_on_z_iso
F
(z_iso_Terminals HC₁ (make_Terminal _ Hx)))).
Defined.
Definition preserves_chosen_terminal_to_z_iso
{C₁ C₂ : category}
{T₁ : Terminal C₁}
{F : C₁ ⟶ C₂}
(F_T : preserves_chosen_terminal T₁ F)
: ∏ T₂ : Terminal C₂, z_iso T₂ (F T₁).
Proof.
intro T₂.
use (z_iso_inv (preserves_terminal_to_z_iso _ _ T₁ T₂)).
exact (preserves_terminal_if_preserves_chosen _ _ F_T).
Defined.
Definition preserves_terminal_chosen_to_chosen
{C₁ C₂ : category}
(T₁ : Terminal C₁)
(T₂ : Terminal C₂)
(F : C₁ ⟶ C₂)
(HF : is_z_isomorphism (TerminalArrow T₂ (F T₁)))
: preserves_terminal F.
Proof.
use (preserves_terminal_if_preserves_chosen T₁).
unfold preserves_chosen_terminal.
use iso_to_Terminal.
- exact T₂.
- exact (z_iso_inv (_ ,, HF)).
Defined.
Definition preserves_terminal_chosen_to_chosen_z_iso
{C₁ C₂ : category}
(T₁ : Terminal C₁)
(T₂ : Terminal C₂)
(F : C₁ ⟶ C₂)
(HF : z_iso T₂ (F T₁))
: preserves_terminal F.
Proof.
use (preserves_terminal_if_preserves_chosen T₁).
unfold preserves_chosen_terminal.
use iso_to_Terminal.
- exact T₂.
- exact HF.
Defined.
Lemma identity_preserves_chosen_terminal
{C : category} (T : Terminal C)
: preserves_chosen_terminal T (functor_identity C).
Proof.
apply T.
Qed.
Lemma composition_preserves_chosen_terminal
{C₀ C₁ C₂ : category}
{F : functor C₀ C₁} {G : functor C₁ C₂}
{T₀ : Terminal C₀} {T₁ : Terminal C₁}
(F_pT : preserves_chosen_terminal T₀ F)
(G_pT : preserves_chosen_terminal T₁ G)
: preserves_chosen_terminal T₀ (functor_composite F G).
Proof.
set (t₁ := preserves_terminal_if_preserves_chosen _ _ F_pT).
set (t₂ := preserves_terminal_if_preserves_chosen _ _ G_pT).
apply (t₂ _ (t₁ _ (pr2 T₀))).
Qed.
Definition preserves_chosen_terminal_eq
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
(T₁ : Terminal C₁)
(T₂ : Terminal C₂)
: UU
:= ∥ F T₁ = T₂ ∥.
Proposition identity_preserves_chosen_terminal_eq
{C : category}
(T : Terminal C)
: preserves_chosen_terminal_eq (functor_identity C) T T.
Proof.
apply hinhpr.
apply idpath.
Qed.
Proposition composition_preserves_chosen_terminal_eq
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
{T₁ : Terminal C₁}
{T₂ : Terminal C₂}
{T₃ : Terminal C₃}
(HF : preserves_chosen_terminal_eq F T₁ T₂)
(HG : preserves_chosen_terminal_eq G T₂ T₃)
: preserves_chosen_terminal_eq (F ∙ G) T₁ T₃.
Proof.
revert HF.
use factor_through_squash.
{
apply propproperty.
}
intro p.
revert HG.
use factor_through_squash.
{
apply propproperty.
}
intro q.
cbn.
apply hinhpr.
rewrite p, q.
apply idpath.
Qed.
2. Preservation of binary products
Section PreservesBinProduct.
Context {C₁ C₂ : category}.
Context (HC₁ : BinProducts C₁).
Context (F : C₁ ⟶ C₂).
Definition preserves_binproduct
: UU
:= ∏ (x y prod : C₁)
(π₁ : prod --> x)
(π₂ : prod --> y),
isBinProduct C₁ x y prod π₁ π₂
→
isBinProduct C₂ (F x) (F y) (F prod) (#F π₁) (#F π₂).
Definition isaprop_preserves_binproduct
: isaprop preserves_binproduct.
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_binproduct
: UU
:= ∏ (x y : C₁),
isBinProduct
C₂
(F x) (F y)
(F (BinProductObject C₁ (HC₁ x y)))
(#F (BinProductPr1 C₁ (HC₁ x y)))
(#F (BinProductPr2 C₁ (HC₁ x y))).
Definition preserves_binproduct_if_preserves_chosen
(HF : preserves_chosen_binproduct)
: preserves_binproduct.
Proof.
intros x y z π₁ π₂ Hxy.
use (isBinProduct_eq_arrow
_ _
(pr2 (iso_to_BinProduct
_
(make_BinProduct _ _ _ _ _ _ (HF x y))
(z_iso_to_iso
(functor_on_z_iso
F
(iso_between_BinProduct
(make_BinProduct _ _ _ _ _ _ Hxy)
(HC₁ x y))))))) ; cbn.
- abstract
(rewrite <- functor_comp ;
rewrite BinProductPr1Commutes ;
apply idpath).
- abstract
(rewrite <- functor_comp ;
rewrite BinProductPr2Commutes ;
apply idpath).
Defined.
Section Accessors.
Context {X X' : C₁}
(H : preserves_binproduct)
(BP : BinProduct _ X X')
(BP' : BinProduct _ (F X) (F X')).
Definition preserves_binproduct_to_binproduct
: BinProduct _ (F X) (F X')
:= make_BinProduct _ _ _ _ _ _ (H _ _ _ _ _ (pr2 BP)).
Definition preserves_binproduct_to_z_iso
: z_iso preserves_binproduct_to_binproduct BP'
:= iso_between_BinProduct _ _.
Lemma preserves_binproduct_to_preserves_pr1
: #F (BinProductPr1 _ BP) = preserves_binproduct_to_z_iso · BinProductPr1 _ BP'.
Proof.
exact (!BinProductPr1Commutes _ _ _ _ _ _ _).
Qed.
Lemma preserves_binproduct_to_preserves_pr2
: #F (BinProductPr2 _ BP) = preserves_binproduct_to_z_iso · BinProductPr2 _ BP'.
Proof.
exact (!BinProductPr2Commutes _ _ _ _ _ _ _).
Qed.
Lemma preserves_binproduct_to_preserves_arrow
{Y : C₁}
(f : C₁⟦Y, X⟧)
(f' : C₁⟦Y, X'⟧)
: #F (BinProductArrow _ BP f f')
=
BinProductArrow _ BP' (#F f) (#F f') · inv_from_z_iso preserves_binproduct_to_z_iso.
Proof.
apply z_iso_inv_on_left.
apply BinProductArrowsEq.
- refine (!_ @ maponpaths
_
(z_iso_inv_on_right
_ _ _ _ _ _
preserves_binproduct_to_preserves_pr1)).
refine (assoc _ _ _ @ _).
refine (maponpaths (λ x, x · _) (assoc' _ _ _) @ _).
refine (maponpaths (λ x, _ · x · _) (z_iso_inv_after_z_iso _) @ _).
refine (maponpaths (λ x, x · _) (id_right _) @ _).
refine (!functor_comp _ _ _ @ _).
refine (maponpaths (λ x, #F x) (BinProductPr1Commutes _ _ _ _ _ _ _) @ !_).
exact (BinProductPr1Commutes _ _ _ _ _ _ _).
- refine (!_ @ maponpaths
_
(z_iso_inv_on_right
_ _ _ _ _ _
preserves_binproduct_to_preserves_pr2)).
refine (assoc _ _ _ @ _).
refine (maponpaths (λ x, x · _) (assoc' _ _ _) @ _).
refine (maponpaths (λ x, _ · x · _) (z_iso_inv_after_z_iso _) @ _).
refine (maponpaths (λ x, x · _) (id_right _) @ _).
refine (!functor_comp _ _ _ @ _).
refine (maponpaths (λ x, #F x) (BinProductPr2Commutes _ _ _ _ _ _ _) @ !_).
exact (BinProductPr2Commutes _ _ _ _ _ _ _).
Qed.
End Accessors.
End PreservesBinProduct.
Definition preserves_binproduct_chosen_to_chosen
{C₁ C₂ : category}
(P₁ : BinProducts C₁)
(P₂ : BinProducts C₂)
(F : C₁ ⟶ C₂)
(HF : ∏ (x y : C₁),
is_z_isomorphism
(BinProductArrow
_ (P₂ (F x) (F y))
(#F (BinProductPr1 _ (P₁ x y)))
(#F (BinProductPr2 _ (P₁ x y)))))
: preserves_binproduct F.
Proof.
use (preserves_binproduct_if_preserves_chosen P₁).
intros x y.
use (isBinProduct_z_iso (isBinProduct_BinProduct _ (P₂ (F x) (F y)))).
- exact (_ ,, HF x y).
- abstract
(cbn ;
rewrite BinProductPr1Commutes ;
apply idpath).
- abstract
(cbn ;
rewrite BinProductPr2Commutes ;
apply idpath).
Defined.
Proposition preserves_binproduct_of_arrows
{C₁ C₂ : category}
{BC₁ : BinProducts C₁}
{BC₂ : BinProducts C₂}
{F : C₁ ⟶ C₂}
(HF : preserves_binproduct F)
{x₁ x₂ y₁ y₂ : C₁}
(f : x₁ --> x₂)
(g : y₁ --> y₂)
: inv_from_z_iso (preserves_binproduct_to_z_iso F HF _ _)
· #F(BinProductOfArrows _ (BC₁ _ _) (BC₁ _ _) f g)
=
BinProductOfArrows _ (BC₂ _ _) (BC₂ _ _) (#F f) (#F g)
· inv_from_z_iso (preserves_binproduct_to_z_iso F HF _ _).
Proof.
cbn.
pose (H₁ := preserves_binproduct_to_binproduct F HF (BC₁ x₁ y₁)).
pose (H₂ := preserves_binproduct_to_binproduct F HF (BC₁ x₂ y₂)).
use (BinProductArrowsEq
_ _ _
(preserves_binproduct_to_binproduct F HF (BC₁ x₂ y₂))).
- etrans.
{
unfold BinProductOfArrows.
apply maponpaths_2.
apply maponpaths.
apply (preserves_binproduct_to_preserves_arrow F HF (BC₁ _ _) (BC₂ _ _)).
}
cbn.
rewrite !assoc'.
etrans.
{
do 2 apply maponpaths.
apply (BinProductPr1Commutes _ _ _ H₂).
}
rewrite BinProductPr1Commutes.
etrans.
{
rewrite functor_comp.
rewrite !assoc.
apply maponpaths_2.
apply (BinProductPr1Commutes _ _ _ H₁).
}
refine (!_).
etrans.
{
apply maponpaths.
apply (BinProductPr1Commutes _ _ _ H₂).
}
rewrite BinProductOfArrowsPr1.
apply idpath.
- etrans.
{
unfold BinProductOfArrows.
apply maponpaths_2.
apply maponpaths.
apply (preserves_binproduct_to_preserves_arrow F HF (BC₁ _ _) (BC₂ _ _)).
}
cbn.
rewrite !assoc'.
etrans.
{
do 2 apply maponpaths.
apply (BinProductPr2Commutes _ _ _ H₂).
}
rewrite BinProductPr2Commutes.
etrans.
{
rewrite functor_comp.
rewrite !assoc.
apply maponpaths_2.
apply (BinProductPr2Commutes _ _ _ H₁).
}
refine (!_).
etrans.
{
apply maponpaths.
apply (BinProductPr2Commutes _ _ _ H₂).
}
rewrite BinProductOfArrowsPr2.
apply idpath.
Qed.
Definition identity_preserves_binproduct
(C : category)
: preserves_binproduct (functor_identity C)
:= λ _ _ _ _ _ Hx, Hx.
Definition composition_preserves_binproduct
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_binproduct F)
(HG : preserves_binproduct G)
: preserves_binproduct (F ∙ G).
Proof.
intros ? ? ? ? ? Hx.
apply HG.
apply HF.
exact Hx.
Defined.
Context {C₁ C₂ : category}.
Context (HC₁ : BinProducts C₁).
Context (F : C₁ ⟶ C₂).
Definition preserves_binproduct
: UU
:= ∏ (x y prod : C₁)
(π₁ : prod --> x)
(π₂ : prod --> y),
isBinProduct C₁ x y prod π₁ π₂
→
isBinProduct C₂ (F x) (F y) (F prod) (#F π₁) (#F π₂).
Definition isaprop_preserves_binproduct
: isaprop preserves_binproduct.
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_binproduct
: UU
:= ∏ (x y : C₁),
isBinProduct
C₂
(F x) (F y)
(F (BinProductObject C₁ (HC₁ x y)))
(#F (BinProductPr1 C₁ (HC₁ x y)))
(#F (BinProductPr2 C₁ (HC₁ x y))).
Definition preserves_binproduct_if_preserves_chosen
(HF : preserves_chosen_binproduct)
: preserves_binproduct.
Proof.
intros x y z π₁ π₂ Hxy.
use (isBinProduct_eq_arrow
_ _
(pr2 (iso_to_BinProduct
_
(make_BinProduct _ _ _ _ _ _ (HF x y))
(z_iso_to_iso
(functor_on_z_iso
F
(iso_between_BinProduct
(make_BinProduct _ _ _ _ _ _ Hxy)
(HC₁ x y))))))) ; cbn.
- abstract
(rewrite <- functor_comp ;
rewrite BinProductPr1Commutes ;
apply idpath).
- abstract
(rewrite <- functor_comp ;
rewrite BinProductPr2Commutes ;
apply idpath).
Defined.
Section Accessors.
Context {X X' : C₁}
(H : preserves_binproduct)
(BP : BinProduct _ X X')
(BP' : BinProduct _ (F X) (F X')).
Definition preserves_binproduct_to_binproduct
: BinProduct _ (F X) (F X')
:= make_BinProduct _ _ _ _ _ _ (H _ _ _ _ _ (pr2 BP)).
Definition preserves_binproduct_to_z_iso
: z_iso preserves_binproduct_to_binproduct BP'
:= iso_between_BinProduct _ _.
Lemma preserves_binproduct_to_preserves_pr1
: #F (BinProductPr1 _ BP) = preserves_binproduct_to_z_iso · BinProductPr1 _ BP'.
Proof.
exact (!BinProductPr1Commutes _ _ _ _ _ _ _).
Qed.
Lemma preserves_binproduct_to_preserves_pr2
: #F (BinProductPr2 _ BP) = preserves_binproduct_to_z_iso · BinProductPr2 _ BP'.
Proof.
exact (!BinProductPr2Commutes _ _ _ _ _ _ _).
Qed.
Lemma preserves_binproduct_to_preserves_arrow
{Y : C₁}
(f : C₁⟦Y, X⟧)
(f' : C₁⟦Y, X'⟧)
: #F (BinProductArrow _ BP f f')
=
BinProductArrow _ BP' (#F f) (#F f') · inv_from_z_iso preserves_binproduct_to_z_iso.
Proof.
apply z_iso_inv_on_left.
apply BinProductArrowsEq.
- refine (!_ @ maponpaths
_
(z_iso_inv_on_right
_ _ _ _ _ _
preserves_binproduct_to_preserves_pr1)).
refine (assoc _ _ _ @ _).
refine (maponpaths (λ x, x · _) (assoc' _ _ _) @ _).
refine (maponpaths (λ x, _ · x · _) (z_iso_inv_after_z_iso _) @ _).
refine (maponpaths (λ x, x · _) (id_right _) @ _).
refine (!functor_comp _ _ _ @ _).
refine (maponpaths (λ x, #F x) (BinProductPr1Commutes _ _ _ _ _ _ _) @ !_).
exact (BinProductPr1Commutes _ _ _ _ _ _ _).
- refine (!_ @ maponpaths
_
(z_iso_inv_on_right
_ _ _ _ _ _
preserves_binproduct_to_preserves_pr2)).
refine (assoc _ _ _ @ _).
refine (maponpaths (λ x, x · _) (assoc' _ _ _) @ _).
refine (maponpaths (λ x, _ · x · _) (z_iso_inv_after_z_iso _) @ _).
refine (maponpaths (λ x, x · _) (id_right _) @ _).
refine (!functor_comp _ _ _ @ _).
refine (maponpaths (λ x, #F x) (BinProductPr2Commutes _ _ _ _ _ _ _) @ !_).
exact (BinProductPr2Commutes _ _ _ _ _ _ _).
Qed.
End Accessors.
End PreservesBinProduct.
Definition preserves_binproduct_chosen_to_chosen
{C₁ C₂ : category}
(P₁ : BinProducts C₁)
(P₂ : BinProducts C₂)
(F : C₁ ⟶ C₂)
(HF : ∏ (x y : C₁),
is_z_isomorphism
(BinProductArrow
_ (P₂ (F x) (F y))
(#F (BinProductPr1 _ (P₁ x y)))
(#F (BinProductPr2 _ (P₁ x y)))))
: preserves_binproduct F.
Proof.
use (preserves_binproduct_if_preserves_chosen P₁).
intros x y.
use (isBinProduct_z_iso (isBinProduct_BinProduct _ (P₂ (F x) (F y)))).
- exact (_ ,, HF x y).
- abstract
(cbn ;
rewrite BinProductPr1Commutes ;
apply idpath).
- abstract
(cbn ;
rewrite BinProductPr2Commutes ;
apply idpath).
Defined.
Proposition preserves_binproduct_of_arrows
{C₁ C₂ : category}
{BC₁ : BinProducts C₁}
{BC₂ : BinProducts C₂}
{F : C₁ ⟶ C₂}
(HF : preserves_binproduct F)
{x₁ x₂ y₁ y₂ : C₁}
(f : x₁ --> x₂)
(g : y₁ --> y₂)
: inv_from_z_iso (preserves_binproduct_to_z_iso F HF _ _)
· #F(BinProductOfArrows _ (BC₁ _ _) (BC₁ _ _) f g)
=
BinProductOfArrows _ (BC₂ _ _) (BC₂ _ _) (#F f) (#F g)
· inv_from_z_iso (preserves_binproduct_to_z_iso F HF _ _).
Proof.
cbn.
pose (H₁ := preserves_binproduct_to_binproduct F HF (BC₁ x₁ y₁)).
pose (H₂ := preserves_binproduct_to_binproduct F HF (BC₁ x₂ y₂)).
use (BinProductArrowsEq
_ _ _
(preserves_binproduct_to_binproduct F HF (BC₁ x₂ y₂))).
- etrans.
{
unfold BinProductOfArrows.
apply maponpaths_2.
apply maponpaths.
apply (preserves_binproduct_to_preserves_arrow F HF (BC₁ _ _) (BC₂ _ _)).
}
cbn.
rewrite !assoc'.
etrans.
{
do 2 apply maponpaths.
apply (BinProductPr1Commutes _ _ _ H₂).
}
rewrite BinProductPr1Commutes.
etrans.
{
rewrite functor_comp.
rewrite !assoc.
apply maponpaths_2.
apply (BinProductPr1Commutes _ _ _ H₁).
}
refine (!_).
etrans.
{
apply maponpaths.
apply (BinProductPr1Commutes _ _ _ H₂).
}
rewrite BinProductOfArrowsPr1.
apply idpath.
- etrans.
{
unfold BinProductOfArrows.
apply maponpaths_2.
apply maponpaths.
apply (preserves_binproduct_to_preserves_arrow F HF (BC₁ _ _) (BC₂ _ _)).
}
cbn.
rewrite !assoc'.
etrans.
{
do 2 apply maponpaths.
apply (BinProductPr2Commutes _ _ _ H₂).
}
rewrite BinProductPr2Commutes.
etrans.
{
rewrite functor_comp.
rewrite !assoc.
apply maponpaths_2.
apply (BinProductPr2Commutes _ _ _ H₁).
}
refine (!_).
etrans.
{
apply maponpaths.
apply (BinProductPr2Commutes _ _ _ H₂).
}
rewrite BinProductOfArrowsPr2.
apply idpath.
Qed.
Definition identity_preserves_binproduct
(C : category)
: preserves_binproduct (functor_identity C)
:= λ _ _ _ _ _ Hx, Hx.
Definition composition_preserves_binproduct
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_binproduct F)
(HG : preserves_binproduct G)
: preserves_binproduct (F ∙ G).
Proof.
intros ? ? ? ? ? Hx.
apply HG.
apply HF.
exact Hx.
Defined.
3. Preservation of products
Section PreservesProduct.
Context (J : UU).
Context {C₁ C₂ : category}.
Context (HC₁ : Products J C₁).
Context (F : C₁ ⟶ C₂).
Definition preserves_product
: UU
:= ∏ (D : J → C₁)
(c : C₁)
(ι : ∏ (j : J), c --> D j),
isProduct J C₁ D c ι
→
isProduct J C₂ (λ j, F (D j)) (F c) (λ j, #F (ι j)).
Definition isaprop_preserves_product
: isaprop preserves_product.
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_product
: UU
:= ∏ (D : J → C₁),
isProduct
J
C₂
(λ j, F(D j))
(F (HC₁ D))
(λ j, #F (ProductPr _ _ (HC₁ D) j)).
Definition preserves_product_if_preserves_chosen
(HF : preserves_chosen_product)
: preserves_product.
Proof.
intros x z π Hxy.
pose (p := make_Product _ _ _ _ _ Hxy).
pose (i := z_iso_between_Product p (HC₁ x)).
pose (i' := functor_on_z_iso F i).
pose (p' := make_Product _ _ _ _ _ (HF x)).
use (isProduct_eq_arrow _ (iso_to_isProduct p' _ i')).
intro j.
abstract exact (!functor_comp _ _ _ @ maponpaths _ (ProductPrCommutes _ _ _ _ _ _ _)).
Defined.
Section Accessors.
Context {X : J → C₁}.
Context (H : preserves_product).
Context (P : Product _ _ X).
Context (P' : Product J C₂ (λ j, F (X j))).
Definition preserves_product_to_product
: Product _ _ (λ j, F (X j))
:= make_Product _ _ _ _ _ (H _ _ _ (pr2 P)).
Definition preserves_product_to_z_iso
: z_iso preserves_product_to_product P'
:= z_iso_between_Product _ _.
Lemma preserves_product_to_preserves_pr
(j : J)
: inv_from_z_iso preserves_product_to_z_iso · #F (ProductPr _ _ P j) = ProductPr _ _ P' j.
Proof.
apply z_iso_inv_on_right.
exact (!ProductPrCommutes _ _ _ P' _ _ _).
Qed.
End Accessors.
End PreservesProduct.
Definition identity_preserves_product
(C : category)
(J : UU)
: preserves_product J (functor_identity C)
:= λ _ _ _ Hx, Hx.
Definition composition_preserves_product
(J : UU)
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_product J F)
(HG : preserves_product J G)
: preserves_product J (F ∙ G).
Proof.
intros ? ? ? Hx.
apply HG.
apply HF.
exact Hx.
Defined.
Definition preserves_chosen_binproducts_eq
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
(BP₁ : BinProducts C₁)
(BP₂ : BinProducts C₂)
: UU
:= ∏ x y : C₁, ∥ F (BP₁ x y) = BP₂ (F x) (F y) ∥.
Proposition identity_preserves_chosen_binproducts_eq
{C : category}
(BP : BinProducts C)
: preserves_chosen_binproducts_eq (functor_identity C) BP BP.
Proof.
intro ; intros.
apply hinhpr.
apply idpath.
Qed.
Proposition composition_preserves_chosen_binproducts_eq
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
{BP₁ : BinProducts C₁}
{BP₂ : BinProducts C₂}
{BP₃ : BinProducts C₃}
(HF : preserves_chosen_binproducts_eq F BP₁ BP₂)
(HG : preserves_chosen_binproducts_eq G BP₂ BP₃)
: preserves_chosen_binproducts_eq (F ∙ G) BP₁ BP₃.
Proof.
intros x y.
use (factor_through_squash _ _ (HF x y)).
{ apply propproperty. }
intros HFxy.
use (factor_through_squash _ _ (HG (F x) (F y))).
{ apply propproperty. }
intros HGxy.
apply hinhpr.
cbn in *.
rewrite HFxy.
now rewrite HGxy.
Qed.
Context (J : UU).
Context {C₁ C₂ : category}.
Context (HC₁ : Products J C₁).
Context (F : C₁ ⟶ C₂).
Definition preserves_product
: UU
:= ∏ (D : J → C₁)
(c : C₁)
(ι : ∏ (j : J), c --> D j),
isProduct J C₁ D c ι
→
isProduct J C₂ (λ j, F (D j)) (F c) (λ j, #F (ι j)).
Definition isaprop_preserves_product
: isaprop preserves_product.
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_product
: UU
:= ∏ (D : J → C₁),
isProduct
J
C₂
(λ j, F(D j))
(F (HC₁ D))
(λ j, #F (ProductPr _ _ (HC₁ D) j)).
Definition preserves_product_if_preserves_chosen
(HF : preserves_chosen_product)
: preserves_product.
Proof.
intros x z π Hxy.
pose (p := make_Product _ _ _ _ _ Hxy).
pose (i := z_iso_between_Product p (HC₁ x)).
pose (i' := functor_on_z_iso F i).
pose (p' := make_Product _ _ _ _ _ (HF x)).
use (isProduct_eq_arrow _ (iso_to_isProduct p' _ i')).
intro j.
abstract exact (!functor_comp _ _ _ @ maponpaths _ (ProductPrCommutes _ _ _ _ _ _ _)).
Defined.
Section Accessors.
Context {X : J → C₁}.
Context (H : preserves_product).
Context (P : Product _ _ X).
Context (P' : Product J C₂ (λ j, F (X j))).
Definition preserves_product_to_product
: Product _ _ (λ j, F (X j))
:= make_Product _ _ _ _ _ (H _ _ _ (pr2 P)).
Definition preserves_product_to_z_iso
: z_iso preserves_product_to_product P'
:= z_iso_between_Product _ _.
Lemma preserves_product_to_preserves_pr
(j : J)
: inv_from_z_iso preserves_product_to_z_iso · #F (ProductPr _ _ P j) = ProductPr _ _ P' j.
Proof.
apply z_iso_inv_on_right.
exact (!ProductPrCommutes _ _ _ P' _ _ _).
Qed.
End Accessors.
End PreservesProduct.
Definition identity_preserves_product
(C : category)
(J : UU)
: preserves_product J (functor_identity C)
:= λ _ _ _ Hx, Hx.
Definition composition_preserves_product
(J : UU)
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_product J F)
(HG : preserves_product J G)
: preserves_product J (F ∙ G).
Proof.
intros ? ? ? Hx.
apply HG.
apply HF.
exact Hx.
Defined.
Definition preserves_chosen_binproducts_eq
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
(BP₁ : BinProducts C₁)
(BP₂ : BinProducts C₂)
: UU
:= ∏ x y : C₁, ∥ F (BP₁ x y) = BP₂ (F x) (F y) ∥.
Proposition identity_preserves_chosen_binproducts_eq
{C : category}
(BP : BinProducts C)
: preserves_chosen_binproducts_eq (functor_identity C) BP BP.
Proof.
intro ; intros.
apply hinhpr.
apply idpath.
Qed.
Proposition composition_preserves_chosen_binproducts_eq
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
{BP₁ : BinProducts C₁}
{BP₂ : BinProducts C₂}
{BP₃ : BinProducts C₃}
(HF : preserves_chosen_binproducts_eq F BP₁ BP₂)
(HG : preserves_chosen_binproducts_eq G BP₂ BP₃)
: preserves_chosen_binproducts_eq (F ∙ G) BP₁ BP₃.
Proof.
intros x y.
use (factor_through_squash _ _ (HF x y)).
{ apply propproperty. }
intros HFxy.
use (factor_through_squash _ _ (HG (F x) (F y))).
{ apply propproperty. }
intros HGxy.
apply hinhpr.
cbn in *.
rewrite HFxy.
now rewrite HGxy.
Qed.
4. Preservation of equalizers
Definition preserves_equalizer
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y e : C₁)
(f g : x --> y)
(h : e --> x)
(p : h · f = h · g)
(Fp : #F h · #F f = #F h · #F g),
isEqualizer f g h p
→
isEqualizer (#F f) (#F g) (#F h) Fp.
Definition identity_preserves_equalizer
(C : category)
: preserves_equalizer (functor_identity C)
:= λ _ _ _ _ _ _ _ _ Hx, Hx.
Definition composition_preserves_equalizer
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_equalizer F)
(HG : preserves_equalizer G)
: preserves_equalizer (F ∙ G).
Proof.
intros ? ? ? ? ? ? ? ? Hx.
use HG.
- abstract
(rewrite <- !functor_comp ;
rewrite p ;
apply idpath).
- use HF.
+ exact p.
+ exact Hx.
Defined.
Definition isaprop_preserves_equalizer
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_equalizer F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_equalizer
{C₁ C₂ : category}
(HC₁ : Equalizers C₁)
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y : C₁)
(f g : x --> y)
(p : # F (EqualizerArrow (HC₁ x y f g)) · # F f
=
# F (EqualizerArrow (HC₁ x y f g)) · # F g),
isEqualizer
(#F f)
(#F g)
(#F (EqualizerArrow (HC₁ x y f g)))
p.
Definition preserves_equalizer_if_preserves_chosen
{C₁ C₂ : category}
(HC₁ : Equalizers C₁)
(F : C₁ ⟶ C₂)
(HF : preserves_chosen_equalizer HC₁ F)
: preserves_equalizer F.
Proof.
intros x y e f g h p Fp H.
use (isEqualizer_z_iso
(HF x y f g _)
(functor_on_z_iso
F
(z_iso_from_Equalizer_to_Equalizer
(make_Equalizer _ _ _ _ H)
(HC₁ x y f g)))).
- abstract
(rewrite <- !functor_comp ;
apply maponpaths ;
apply EqualizerEqAr).
- abstract
(cbn ;
rewrite <- functor_comp ;
apply maponpaths ;
refine (!_) ;
unfold from_Equalizer_to_Equalizer ;
apply EqualizerCommutes).
Defined.
Definition preserves_equalizer_equalizer
{C₁ C₂ : category}
{F : C₁ ⟶ C₂}
(HF : preserves_equalizer F)
{x y : C₁}
{f g : x --> y}
(e : Equalizer f g)
: Equalizer (#F f) (#F g).
Proof.
use (make_Equalizer _ _ _ _ (HF _ _ _ _ _ _ _ _ (isEqualizer_Equalizer e))).
abstract
(rewrite <- !functor_comp ;
apply maponpaths ;
apply EqualizerEqAr).
Defined.
Definition preserves_chosen_equalizers_eq
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
(BE₁ : Equalizers C₁)
(BE₂ : Equalizers C₂)
: UU
:= ∏ (x y : C₁) (f g : C₁⟦x,y⟧), ∥ F (BE₁ _ _ f g) = BE₂ _ _ (#F f) (#F g) ∥.
Proposition identity_preserves_chosen_equalizers_eq
{C : category}
(BE : Equalizers C)
: preserves_chosen_equalizers_eq (functor_identity C) BE BE.
Proof.
intro ; intros.
apply hinhpr.
apply idpath.
Qed.
Proposition composition_preserves_chosen_equalizers_eq
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
{BE₁ : Equalizers C₁}
{BE₂ : Equalizers C₂}
{BE₃ : Equalizers C₃}
(HF : preserves_chosen_equalizers_eq F BE₁ BE₂)
(HG : preserves_chosen_equalizers_eq G BE₂ BE₃)
: preserves_chosen_equalizers_eq (F ∙ G) BE₁ BE₃.
Proof.
intros x y f g.
use (factor_through_squash _ _ (HF _ _ f g)).
{ apply propproperty. }
intros HFxy.
use (factor_through_squash _ _ (HG _ _ (#F f) (#F g))).
{ apply propproperty. }
intros HGxy.
apply hinhpr.
cbn in *.
rewrite HFxy.
now rewrite HGxy.
Qed.
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y e : C₁)
(f g : x --> y)
(h : e --> x)
(p : h · f = h · g)
(Fp : #F h · #F f = #F h · #F g),
isEqualizer f g h p
→
isEqualizer (#F f) (#F g) (#F h) Fp.
Definition identity_preserves_equalizer
(C : category)
: preserves_equalizer (functor_identity C)
:= λ _ _ _ _ _ _ _ _ Hx, Hx.
Definition composition_preserves_equalizer
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_equalizer F)
(HG : preserves_equalizer G)
: preserves_equalizer (F ∙ G).
Proof.
intros ? ? ? ? ? ? ? ? Hx.
use HG.
- abstract
(rewrite <- !functor_comp ;
rewrite p ;
apply idpath).
- use HF.
+ exact p.
+ exact Hx.
Defined.
Definition isaprop_preserves_equalizer
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_equalizer F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_equalizer
{C₁ C₂ : category}
(HC₁ : Equalizers C₁)
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y : C₁)
(f g : x --> y)
(p : # F (EqualizerArrow (HC₁ x y f g)) · # F f
=
# F (EqualizerArrow (HC₁ x y f g)) · # F g),
isEqualizer
(#F f)
(#F g)
(#F (EqualizerArrow (HC₁ x y f g)))
p.
Definition preserves_equalizer_if_preserves_chosen
{C₁ C₂ : category}
(HC₁ : Equalizers C₁)
(F : C₁ ⟶ C₂)
(HF : preserves_chosen_equalizer HC₁ F)
: preserves_equalizer F.
Proof.
intros x y e f g h p Fp H.
use (isEqualizer_z_iso
(HF x y f g _)
(functor_on_z_iso
F
(z_iso_from_Equalizer_to_Equalizer
(make_Equalizer _ _ _ _ H)
(HC₁ x y f g)))).
- abstract
(rewrite <- !functor_comp ;
apply maponpaths ;
apply EqualizerEqAr).
- abstract
(cbn ;
rewrite <- functor_comp ;
apply maponpaths ;
refine (!_) ;
unfold from_Equalizer_to_Equalizer ;
apply EqualizerCommutes).
Defined.
Definition preserves_equalizer_equalizer
{C₁ C₂ : category}
{F : C₁ ⟶ C₂}
(HF : preserves_equalizer F)
{x y : C₁}
{f g : x --> y}
(e : Equalizer f g)
: Equalizer (#F f) (#F g).
Proof.
use (make_Equalizer _ _ _ _ (HF _ _ _ _ _ _ _ _ (isEqualizer_Equalizer e))).
abstract
(rewrite <- !functor_comp ;
apply maponpaths ;
apply EqualizerEqAr).
Defined.
Definition preserves_chosen_equalizers_eq
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
(BE₁ : Equalizers C₁)
(BE₂ : Equalizers C₂)
: UU
:= ∏ (x y : C₁) (f g : C₁⟦x,y⟧), ∥ F (BE₁ _ _ f g) = BE₂ _ _ (#F f) (#F g) ∥.
Proposition identity_preserves_chosen_equalizers_eq
{C : category}
(BE : Equalizers C)
: preserves_chosen_equalizers_eq (functor_identity C) BE BE.
Proof.
intro ; intros.
apply hinhpr.
apply idpath.
Qed.
Proposition composition_preserves_chosen_equalizers_eq
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
{BE₁ : Equalizers C₁}
{BE₂ : Equalizers C₂}
{BE₃ : Equalizers C₃}
(HF : preserves_chosen_equalizers_eq F BE₁ BE₂)
(HG : preserves_chosen_equalizers_eq G BE₂ BE₃)
: preserves_chosen_equalizers_eq (F ∙ G) BE₁ BE₃.
Proof.
intros x y f g.
use (factor_through_squash _ _ (HF _ _ f g)).
{ apply propproperty. }
intros HFxy.
use (factor_through_squash _ _ (HG _ _ (#F f) (#F g))).
{ apply propproperty. }
intros HGxy.
apply hinhpr.
cbn in *.
rewrite HFxy.
now rewrite HGxy.
Qed.
5. Preservation of pullbacks
Definition preserves_pullback
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y z pb : C₁)
(f : x --> z)
(g : y --> z)
(π₁ : pb --> x)
(π₂ : pb --> y)
(q : π₁ · f = π₂ · g)
(Fq : # F π₁ · # F f = # F π₂ · # F g),
isPullback q
→
@isPullback C₂ _ _ _ _ (#F f) (#F g) (#F π₁) (#F π₂) Fq.
Definition identity_preserves_pullback
(C : category)
: preserves_pullback (functor_identity C).
Proof.
intros ? ? ? ? ? ? ? ? ? ? H.
exact H.
Defined.
Definition composition_preserves_pullback
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_pullback F)
(HG : preserves_pullback G)
: preserves_pullback (F ∙ G).
Proof.
intros ? ? ? ? ? ? ? ? ? ? H.
use HG.
- abstract
(rewrite <- !functor_comp ;
apply maponpaths ;
exact q).
- use HF.
+ exact q.
+ exact H.
Defined.
Definition isaprop_preserves_pullback
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_pullback F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_pullback
{C₁ C₂ : category}
(HC₁ : Pullbacks C₁)
(F : C₁ ⟶ C₂)
: UU.
Proof.
refine (∏ (x y z : C₁)
(f : x --> z)
(g : y --> z),
@isPullback
C₂
(F z) (F x) (F y)
(F (PullbackObject (HC₁ _ _ _ f g)))
(#F f)
(#F g)
(#F (PullbackPr1 (HC₁ _ _ _ f g)))
(#F (PullbackPr2 (HC₁ _ _ _ f g)))
_).
abstract
(rewrite <- !functor_comp ;
apply maponpaths ;
apply PullbackSqrCommutes).
Defined.
Definition preserves_pullback_if_preserves_chosen
{C₁ C₂ : category}
(HC₁ : Pullbacks C₁)
(F : C₁ ⟶ C₂)
(HF : preserves_chosen_pullback HC₁ F)
: preserves_pullback F.
Proof.
intros x y z pb f g π₁ π₂ p Hxy Hpb.
apply (isPullback_z_iso
_
_
(HF x y z f g)
(functor_on_z_iso
F
(z_iso_from_Pullback_to_Pullback
(HC₁ _ _ _ f g)
(make_Pullback _ Hpb)))).
- abstract
(cbn ;
rewrite <- !functor_comp ;
apply maponpaths ;
apply (PullbackArrow_PullbackPr1 (make_Pullback p Hpb))).
- abstract
(cbn ;
rewrite <- !functor_comp ;
apply maponpaths ;
apply (PullbackArrow_PullbackPr2 (make_Pullback p Hpb))).
Defined.
Definition preserves_chosen_pullbacks_eq
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
(P₁ : Pullbacks C₁)
(P₂ : Pullbacks C₂)
: UU
:= ∏ (x y z : C₁) (f : C₁⟦x,z⟧) (g : C₁⟦y, z⟧), ∥ F (P₁ _ _ _ f g) = P₂ _ _ _ (#F f) (#F g) ∥.
Proposition identity_preserves_chosen_pullbacks_eq
{C : category}
(P : Pullbacks C)
: preserves_chosen_pullbacks_eq (functor_identity C) P P.
Proof.
intro ; intros.
apply hinhpr.
apply idpath.
Qed.
Proposition composition_preserves_chosen_pullbacks_eq
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
{P₁ : Pullbacks C₁}
{P₂ : Pullbacks C₂}
{P₃ : Pullbacks C₃}
(HF : preserves_chosen_pullbacks_eq F P₁ P₂)
(HG : preserves_chosen_pullbacks_eq G P₂ P₃)
: preserves_chosen_pullbacks_eq (F ∙ G) P₁ P₃.
Proof.
intros x y z f g.
use (factor_through_squash _ _ (HF _ _ _ f g)).
{ apply propproperty. }
intros HFxy.
use (factor_through_squash _ _ (HG _ _ _ (#F f) (#F g))).
{ apply propproperty. }
intros HGxy.
apply hinhpr.
cbn in *.
rewrite HFxy.
now rewrite HGxy.
Qed.
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y z pb : C₁)
(f : x --> z)
(g : y --> z)
(π₁ : pb --> x)
(π₂ : pb --> y)
(q : π₁ · f = π₂ · g)
(Fq : # F π₁ · # F f = # F π₂ · # F g),
isPullback q
→
@isPullback C₂ _ _ _ _ (#F f) (#F g) (#F π₁) (#F π₂) Fq.
Definition identity_preserves_pullback
(C : category)
: preserves_pullback (functor_identity C).
Proof.
intros ? ? ? ? ? ? ? ? ? ? H.
exact H.
Defined.
Definition composition_preserves_pullback
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_pullback F)
(HG : preserves_pullback G)
: preserves_pullback (F ∙ G).
Proof.
intros ? ? ? ? ? ? ? ? ? ? H.
use HG.
- abstract
(rewrite <- !functor_comp ;
apply maponpaths ;
exact q).
- use HF.
+ exact q.
+ exact H.
Defined.
Definition isaprop_preserves_pullback
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_pullback F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_pullback
{C₁ C₂ : category}
(HC₁ : Pullbacks C₁)
(F : C₁ ⟶ C₂)
: UU.
Proof.
refine (∏ (x y z : C₁)
(f : x --> z)
(g : y --> z),
@isPullback
C₂
(F z) (F x) (F y)
(F (PullbackObject (HC₁ _ _ _ f g)))
(#F f)
(#F g)
(#F (PullbackPr1 (HC₁ _ _ _ f g)))
(#F (PullbackPr2 (HC₁ _ _ _ f g)))
_).
abstract
(rewrite <- !functor_comp ;
apply maponpaths ;
apply PullbackSqrCommutes).
Defined.
Definition preserves_pullback_if_preserves_chosen
{C₁ C₂ : category}
(HC₁ : Pullbacks C₁)
(F : C₁ ⟶ C₂)
(HF : preserves_chosen_pullback HC₁ F)
: preserves_pullback F.
Proof.
intros x y z pb f g π₁ π₂ p Hxy Hpb.
apply (isPullback_z_iso
_
_
(HF x y z f g)
(functor_on_z_iso
F
(z_iso_from_Pullback_to_Pullback
(HC₁ _ _ _ f g)
(make_Pullback _ Hpb)))).
- abstract
(cbn ;
rewrite <- !functor_comp ;
apply maponpaths ;
apply (PullbackArrow_PullbackPr1 (make_Pullback p Hpb))).
- abstract
(cbn ;
rewrite <- !functor_comp ;
apply maponpaths ;
apply (PullbackArrow_PullbackPr2 (make_Pullback p Hpb))).
Defined.
Definition preserves_chosen_pullbacks_eq
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
(P₁ : Pullbacks C₁)
(P₂ : Pullbacks C₂)
: UU
:= ∏ (x y z : C₁) (f : C₁⟦x,z⟧) (g : C₁⟦y, z⟧), ∥ F (P₁ _ _ _ f g) = P₂ _ _ _ (#F f) (#F g) ∥.
Proposition identity_preserves_chosen_pullbacks_eq
{C : category}
(P : Pullbacks C)
: preserves_chosen_pullbacks_eq (functor_identity C) P P.
Proof.
intro ; intros.
apply hinhpr.
apply idpath.
Qed.
Proposition composition_preserves_chosen_pullbacks_eq
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
{P₁ : Pullbacks C₁}
{P₂ : Pullbacks C₂}
{P₃ : Pullbacks C₃}
(HF : preserves_chosen_pullbacks_eq F P₁ P₂)
(HG : preserves_chosen_pullbacks_eq G P₂ P₃)
: preserves_chosen_pullbacks_eq (F ∙ G) P₁ P₃.
Proof.
intros x y z f g.
use (factor_through_squash _ _ (HF _ _ _ f g)).
{ apply propproperty. }
intros HFxy.
use (factor_through_squash _ _ (HG _ _ _ (#F f) (#F g))).
{ apply propproperty. }
intros HGxy.
apply hinhpr.
cbn in *.
rewrite HFxy.
now rewrite HGxy.
Qed.
6. Preservation of initial objects
Definition preserves_initial
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x : C₁), isInitial C₁ x → isInitial C₂ (F x).
Definition identity_preserves_initial
(C : category)
: preserves_initial (functor_identity C)
:= λ x Hx, Hx.
Definition composition_preserves_initial
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_initial F)
(HG : preserves_initial G)
: preserves_initial (F ∙ G)
:= λ x Hx, HG _ (HF _ Hx).
Definition isaprop_preserves_initial
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_initial F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_initial_to_initial
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
(HF : preserves_initial F)
(I : Initial C₁)
: Initial C₂
:= make_Initial _ (HF _ (pr2 I)).
Definition preserves_initial_to_z_iso
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
(HF : preserves_initial F)
(I₁ : Initial C₁)
(I₂ : Initial C₂)
: z_iso (preserves_initial_to_initial F HF I₁) I₂.
Proof.
use ziso_Initials.
Defined.
Definition preserves_chosen_initial
{C₁ C₂ : category}
(HC₁ : Initial C₁)
(F : C₁ ⟶ C₂)
: UU
:= isInitial C₂ (F (InitialObject HC₁)).
Definition preserves_initial_if_preserves_chosen
{C₁ C₂ : category}
(HC₁ : Initial C₁)
(F : C₁ ⟶ C₂)
(HF : preserves_chosen_initial HC₁ F)
: preserves_initial F.
Proof.
intros x Hx.
exact (iso_to_Initial
(make_Initial _ HF)
_
(functor_on_z_iso
F
(ziso_Initials HC₁ (make_Initial _ Hx)))).
Defined.
Definition preserves_chosen_initial_eq
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
(T₁ : Initial C₁)
(T₂ : Initial C₂)
: UU
:= ∥ F T₁ = T₂ ∥.
Proposition identity_preserves_chosen_initial_eq
{C : category}
(T : Initial C)
: preserves_chosen_initial_eq (functor_identity C) T T.
Proof.
apply hinhpr.
apply idpath.
Qed.
Proposition composition_preserves_chosen_initial_eq
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
{T₁ : Initial C₁}
{T₂ : Initial C₂}
{T₃ : Initial C₃}
(HF : preserves_chosen_initial_eq F T₁ T₂)
(HG : preserves_chosen_initial_eq G T₂ T₃)
: preserves_chosen_initial_eq (F ∙ G) T₁ T₃.
Proof.
revert HF.
use factor_through_squash.
{
apply propproperty.
}
intro p.
revert HG.
use factor_through_squash.
{
apply propproperty.
}
intro q.
cbn.
apply hinhpr.
rewrite p, q.
apply idpath.
Qed.
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x : C₁), isInitial C₁ x → isInitial C₂ (F x).
Definition identity_preserves_initial
(C : category)
: preserves_initial (functor_identity C)
:= λ x Hx, Hx.
Definition composition_preserves_initial
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_initial F)
(HG : preserves_initial G)
: preserves_initial (F ∙ G)
:= λ x Hx, HG _ (HF _ Hx).
Definition isaprop_preserves_initial
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_initial F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_initial_to_initial
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
(HF : preserves_initial F)
(I : Initial C₁)
: Initial C₂
:= make_Initial _ (HF _ (pr2 I)).
Definition preserves_initial_to_z_iso
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
(HF : preserves_initial F)
(I₁ : Initial C₁)
(I₂ : Initial C₂)
: z_iso (preserves_initial_to_initial F HF I₁) I₂.
Proof.
use ziso_Initials.
Defined.
Definition preserves_chosen_initial
{C₁ C₂ : category}
(HC₁ : Initial C₁)
(F : C₁ ⟶ C₂)
: UU
:= isInitial C₂ (F (InitialObject HC₁)).
Definition preserves_initial_if_preserves_chosen
{C₁ C₂ : category}
(HC₁ : Initial C₁)
(F : C₁ ⟶ C₂)
(HF : preserves_chosen_initial HC₁ F)
: preserves_initial F.
Proof.
intros x Hx.
exact (iso_to_Initial
(make_Initial _ HF)
_
(functor_on_z_iso
F
(ziso_Initials HC₁ (make_Initial _ Hx)))).
Defined.
Definition preserves_chosen_initial_eq
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
(T₁ : Initial C₁)
(T₂ : Initial C₂)
: UU
:= ∥ F T₁ = T₂ ∥.
Proposition identity_preserves_chosen_initial_eq
{C : category}
(T : Initial C)
: preserves_chosen_initial_eq (functor_identity C) T T.
Proof.
apply hinhpr.
apply idpath.
Qed.
Proposition composition_preserves_chosen_initial_eq
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
{T₁ : Initial C₁}
{T₂ : Initial C₂}
{T₃ : Initial C₃}
(HF : preserves_chosen_initial_eq F T₁ T₂)
(HG : preserves_chosen_initial_eq G T₂ T₃)
: preserves_chosen_initial_eq (F ∙ G) T₁ T₃.
Proof.
revert HF.
use factor_through_squash.
{
apply propproperty.
}
intro p.
revert HG.
use factor_through_squash.
{
apply propproperty.
}
intro q.
cbn.
apply hinhpr.
rewrite p, q.
apply idpath.
Qed.
7. Preservation of binary coproducts
Definition preserves_bincoproduct
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y sum : C₁)
(ι₁ : x --> sum)
(ι₂ : y --> sum),
isBinCoproduct C₁ x y sum ι₁ ι₂
→
isBinCoproduct C₂ (F x) (F y) (F sum) (#F ι₁) (#F ι₂).
Definition identity_preserves_bincoproduct
(C : category)
: preserves_bincoproduct (functor_identity C)
:= λ _ _ _ _ _ Hx, Hx.
Definition composition_preserves_bincoproduct
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_bincoproduct F)
(HG : preserves_bincoproduct G)
: preserves_bincoproduct (F ∙ G).
Proof.
intros ? ? ? ? ? Hx.
apply HG.
apply HF.
exact Hx.
Defined.
Definition isaprop_preserves_bincoproduct
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_bincoproduct F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_bincoproduct
{C₁ C₂ : category}
(HC₁ : BinCoproducts C₁)
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y : C₁),
isBinCoproduct
C₂
(F x) (F y)
(F (BinCoproductObject (HC₁ x y)))
(#F (BinCoproductIn1 (HC₁ x y)))
(#F (BinCoproductIn2 (HC₁ x y))).
Definition preserves_bincoproduct_if_preserves_chosen
{C₁ C₂ : category}
(HC₁ : BinCoproducts C₁)
(F : C₁ ⟶ C₂)
(HF : preserves_chosen_bincoproduct HC₁ F)
: preserves_bincoproduct F.
Proof.
intros x y z ι₁ ι₂ Hxy.
use (isBinCoproduct_eq_arrow
_ _
(z_iso_to_isBinCoproduct
_
(make_BinCoproduct _ _ _ _ _ _ (HF x y))
(functor_on_z_iso
F
(z_iso_from_BinCoproduct_to_BinCoproduct
_
(make_BinCoproduct _ _ _ _ _ _ Hxy)
(HC₁ x y))))) ; cbn.
- abstract
(rewrite <- functor_comp ;
apply maponpaths ;
apply BinCoproductIn1Commutes).
- abstract
(rewrite <- functor_comp ;
apply maponpaths ;
apply BinCoproductIn2Commutes).
Defined.
Section Accessors.
Context {C₁ C₂ : category}
(F : C₁ ⟶ C₂)
{X X' : C₁}
(HF : preserves_bincoproduct F)
(BP : BinCoproduct X X')
(BP' : BinCoproduct (F X) (F X')).
Definition preserves_bincoproduct_to_bincoproduct
: BinCoproduct (F X) (F X')
:= make_BinCoproduct _ _ _ _ _ _ (HF _ _ _ _ _ (pr2 BP)).
Definition preserves_bincoproduct_to_z_iso
: z_iso preserves_bincoproduct_to_bincoproduct BP'
:= z_iso_from_BinCoproduct_to_BinCoproduct _ _ _.
Lemma preserves_bincoproduct_to_preserves_in1
: #F (BinCoproductIn1 BP)
=
BinCoproductIn1 BP' · inv_from_z_iso preserves_bincoproduct_to_z_iso.
Proof.
refine (!_).
exact (BinCoproductIn1Commutes _ _ _ _ _ _ _).
Qed.
Lemma preserves_bincoproduct_to_preserves_in2
: #F (BinCoproductIn2 BP)
=
BinCoproductIn2 BP' · inv_from_z_iso preserves_bincoproduct_to_z_iso.
Proof.
refine (!_).
exact (BinCoproductIn2Commutes _ _ _ _ _ _ _).
Qed.
Lemma preserves_bincoproduct_to_preserves_arrow
{Y : C₁}
(f : X --> Y)
(f' : X' --> Y)
: inv_from_z_iso preserves_bincoproduct_to_z_iso · #F (BinCoproductArrow BP f f')
=
BinCoproductArrow BP' (#F f) (#F f').
Proof.
apply BinCoproductArrowsEq.
- cbn.
unfold from_BinCoproduct_to_BinCoproduct.
rewrite !assoc.
rewrite !BinCoproductIn1Commutes.
cbn.
rewrite <- functor_comp.
apply maponpaths.
apply BinCoproductIn1Commutes.
- cbn.
unfold from_BinCoproduct_to_BinCoproduct.
rewrite !assoc.
rewrite !BinCoproductIn2Commutes.
cbn.
rewrite <- functor_comp.
apply maponpaths.
apply BinCoproductIn2Commutes.
Qed.
End Accessors.
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y sum : C₁)
(ι₁ : x --> sum)
(ι₂ : y --> sum),
isBinCoproduct C₁ x y sum ι₁ ι₂
→
isBinCoproduct C₂ (F x) (F y) (F sum) (#F ι₁) (#F ι₂).
Definition identity_preserves_bincoproduct
(C : category)
: preserves_bincoproduct (functor_identity C)
:= λ _ _ _ _ _ Hx, Hx.
Definition composition_preserves_bincoproduct
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_bincoproduct F)
(HG : preserves_bincoproduct G)
: preserves_bincoproduct (F ∙ G).
Proof.
intros ? ? ? ? ? Hx.
apply HG.
apply HF.
exact Hx.
Defined.
Definition isaprop_preserves_bincoproduct
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_bincoproduct F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_bincoproduct
{C₁ C₂ : category}
(HC₁ : BinCoproducts C₁)
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y : C₁),
isBinCoproduct
C₂
(F x) (F y)
(F (BinCoproductObject (HC₁ x y)))
(#F (BinCoproductIn1 (HC₁ x y)))
(#F (BinCoproductIn2 (HC₁ x y))).
Definition preserves_bincoproduct_if_preserves_chosen
{C₁ C₂ : category}
(HC₁ : BinCoproducts C₁)
(F : C₁ ⟶ C₂)
(HF : preserves_chosen_bincoproduct HC₁ F)
: preserves_bincoproduct F.
Proof.
intros x y z ι₁ ι₂ Hxy.
use (isBinCoproduct_eq_arrow
_ _
(z_iso_to_isBinCoproduct
_
(make_BinCoproduct _ _ _ _ _ _ (HF x y))
(functor_on_z_iso
F
(z_iso_from_BinCoproduct_to_BinCoproduct
_
(make_BinCoproduct _ _ _ _ _ _ Hxy)
(HC₁ x y))))) ; cbn.
- abstract
(rewrite <- functor_comp ;
apply maponpaths ;
apply BinCoproductIn1Commutes).
- abstract
(rewrite <- functor_comp ;
apply maponpaths ;
apply BinCoproductIn2Commutes).
Defined.
Section Accessors.
Context {C₁ C₂ : category}
(F : C₁ ⟶ C₂)
{X X' : C₁}
(HF : preserves_bincoproduct F)
(BP : BinCoproduct X X')
(BP' : BinCoproduct (F X) (F X')).
Definition preserves_bincoproduct_to_bincoproduct
: BinCoproduct (F X) (F X')
:= make_BinCoproduct _ _ _ _ _ _ (HF _ _ _ _ _ (pr2 BP)).
Definition preserves_bincoproduct_to_z_iso
: z_iso preserves_bincoproduct_to_bincoproduct BP'
:= z_iso_from_BinCoproduct_to_BinCoproduct _ _ _.
Lemma preserves_bincoproduct_to_preserves_in1
: #F (BinCoproductIn1 BP)
=
BinCoproductIn1 BP' · inv_from_z_iso preserves_bincoproduct_to_z_iso.
Proof.
refine (!_).
exact (BinCoproductIn1Commutes _ _ _ _ _ _ _).
Qed.
Lemma preserves_bincoproduct_to_preserves_in2
: #F (BinCoproductIn2 BP)
=
BinCoproductIn2 BP' · inv_from_z_iso preserves_bincoproduct_to_z_iso.
Proof.
refine (!_).
exact (BinCoproductIn2Commutes _ _ _ _ _ _ _).
Qed.
Lemma preserves_bincoproduct_to_preserves_arrow
{Y : C₁}
(f : X --> Y)
(f' : X' --> Y)
: inv_from_z_iso preserves_bincoproduct_to_z_iso · #F (BinCoproductArrow BP f f')
=
BinCoproductArrow BP' (#F f) (#F f').
Proof.
apply BinCoproductArrowsEq.
- cbn.
unfold from_BinCoproduct_to_BinCoproduct.
rewrite !assoc.
rewrite !BinCoproductIn1Commutes.
cbn.
rewrite <- functor_comp.
apply maponpaths.
apply BinCoproductIn1Commutes.
- cbn.
unfold from_BinCoproduct_to_BinCoproduct.
rewrite !assoc.
rewrite !BinCoproductIn2Commutes.
cbn.
rewrite <- functor_comp.
apply maponpaths.
apply BinCoproductIn2Commutes.
Qed.
End Accessors.
8. Preservation of (reflexive) coequalizers
Definition preserves_coequalizer
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y c : C₁)
(f g : x --> y)
(h : y --> c)
(p : f · h = g · h)
(Fp : #F f · #F h = #F g · #F h),
isCoequalizer f g h p
→
isCoequalizer (#F f) (#F g) (#F h) Fp.
Definition identity_preserves_coequalizer
(C : category)
: preserves_coequalizer (functor_identity C)
:= λ _ _ _ _ _ _ _ _ Hx, Hx.
Definition composition_preserves_coequalizer
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_coequalizer F)
(HG : preserves_coequalizer G)
: preserves_coequalizer (F ∙ G).
Proof.
intros ? ? ? ? ? ? ? ? Hx.
use HG.
- abstract
(rewrite <- !functor_comp ;
rewrite p ;
apply idpath).
- use HF.
+ exact p.
+ exact Hx.
Defined.
Definition isaprop_preserves_coequalizer
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_coequalizer F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_coequalizer
{C₁ C₂ : category}
(HC₁ : Coequalizers C₁)
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y : C₁)
(f g : x --> y)
(p : # F f · # F (CoequalizerArrow (HC₁ x y f g))
=
# F g · # F (CoequalizerArrow (HC₁ x y f g))),
isCoequalizer
(#F f)
(#F g)
(#F (CoequalizerArrow (HC₁ x y f g)))
p.
Definition preserves_coequalizer_if_preserves_chosen
{C₁ C₂ : category}
(HC₁ : Coequalizers C₁)
(F : C₁ ⟶ C₂)
(HF : preserves_chosen_coequalizer HC₁ F)
: preserves_coequalizer F.
Proof.
intros x y c f g h p Fp Hz.
use (Coequalizer_eq_ar
_
_
_
(pr22 (z_iso_to_Coequalizer
(make_Coequalizer _ _ _ _ (HF x y f g _))
(z_iso_inv
(functor_on_z_iso
F
(z_iso_between_Coequalizer
(make_Coequalizer _ _ _ _ Hz)
(HC₁ x y f g))))))) ; cbn.
- abstract
(rewrite <- !functor_comp ;
rewrite CoequalizerCommutes ;
apply idpath).
- abstract
(rewrite <- !functor_comp ;
rewrite CoequalizerEqAr ;
apply idpath).
Defined.
Definition preserves_reflexive_coequalizer
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y c : C₁)
(f g : x --> y)
(s : y --> x)
(pf : s · f = identity _)
(pg : s · g = identity _)
(h : y --> c)
(p : f · h = g · h)
(Fp : #F f · #F h = #F g · #F h),
isCoequalizer f g h p
→
isCoequalizer (#F f) (#F g) (#F h) Fp.
Definition identity_preserves_reflexive_coequalizer
(C : category)
: preserves_coequalizer (functor_identity C)
:= λ _ _ _ _ _ _ _ _ Hx, Hx.
Definition composition_preserves_reflexive_coequalizer
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_reflexive_coequalizer F)
(HG : preserves_reflexive_coequalizer G)
: preserves_reflexive_coequalizer (F ∙ G).
Proof.
intros x y c f g s pf pg h p Fp Hx.
use (HG (F x) (F y) (F c) (#F f) (#F g) (#F s) _ _ (#F h)).
- abstract
(rewrite <- functor_comp ;
rewrite pf ;
apply functor_id).
- abstract
(rewrite <- functor_comp ;
rewrite pg ;
apply functor_id).
- abstract
(rewrite <- !functor_comp ;
rewrite p ;
apply idpath).
- use (HF x y c f g s _ _ h).
+ exact pf.
+ exact pg.
+ exact p.
+ exact Hx.
Defined.
Definition isaprop_preserves_reflexive_coequalizer
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_reflexive_coequalizer F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_reflexive_coequalizer
{C₁ C₂ : category}
(HC₁ : reflexive_coequalizers C₁)
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y : C₁)
(f g : x --> y)
(s : y --> x)
(pf : s · f = identity _)
(pg : s · g = identity _)
(p : # F f · # F (CoequalizerArrow (HC₁ x y f g s pf pg))
=
# F g · # F (CoequalizerArrow (HC₁ x y f g s pf pg))),
isCoequalizer
(#F f)
(#F g)
(#F (CoequalizerArrow (HC₁ x y f g s pf pg)))
p.
Definition preserves_reflexive_coequalizers_if_chosen
{C₁ C₂ : category}
(HC₁ : reflexive_coequalizers C₁)
(F : C₁ ⟶ C₂)
(HF : preserves_chosen_reflexive_coequalizer HC₁ F)
: preserves_reflexive_coequalizer F.
Proof.
intros x y c f g s pf pg h p Fp Hz.
use (Coequalizer_eq_ar
_
_
_
(pr22 (z_iso_to_Coequalizer
(make_Coequalizer _ _ _ _ (HF x y f g s pf pg _))
(z_iso_inv
(functor_on_z_iso
F
(z_iso_between_Coequalizer
(make_Coequalizer _ _ _ _ Hz)
(HC₁ x y f g s pf pg))))))) ; cbn.
- abstract
(rewrite <- !functor_comp ;
rewrite CoequalizerCommutes ;
apply idpath).
- abstract
(rewrite <- !functor_comp ;
rewrite CoequalizerEqAr ;
apply idpath).
Defined.
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y c : C₁)
(f g : x --> y)
(h : y --> c)
(p : f · h = g · h)
(Fp : #F f · #F h = #F g · #F h),
isCoequalizer f g h p
→
isCoequalizer (#F f) (#F g) (#F h) Fp.
Definition identity_preserves_coequalizer
(C : category)
: preserves_coequalizer (functor_identity C)
:= λ _ _ _ _ _ _ _ _ Hx, Hx.
Definition composition_preserves_coequalizer
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_coequalizer F)
(HG : preserves_coequalizer G)
: preserves_coequalizer (F ∙ G).
Proof.
intros ? ? ? ? ? ? ? ? Hx.
use HG.
- abstract
(rewrite <- !functor_comp ;
rewrite p ;
apply idpath).
- use HF.
+ exact p.
+ exact Hx.
Defined.
Definition isaprop_preserves_coequalizer
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_coequalizer F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_coequalizer
{C₁ C₂ : category}
(HC₁ : Coequalizers C₁)
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y : C₁)
(f g : x --> y)
(p : # F f · # F (CoequalizerArrow (HC₁ x y f g))
=
# F g · # F (CoequalizerArrow (HC₁ x y f g))),
isCoequalizer
(#F f)
(#F g)
(#F (CoequalizerArrow (HC₁ x y f g)))
p.
Definition preserves_coequalizer_if_preserves_chosen
{C₁ C₂ : category}
(HC₁ : Coequalizers C₁)
(F : C₁ ⟶ C₂)
(HF : preserves_chosen_coequalizer HC₁ F)
: preserves_coequalizer F.
Proof.
intros x y c f g h p Fp Hz.
use (Coequalizer_eq_ar
_
_
_
(pr22 (z_iso_to_Coequalizer
(make_Coequalizer _ _ _ _ (HF x y f g _))
(z_iso_inv
(functor_on_z_iso
F
(z_iso_between_Coequalizer
(make_Coequalizer _ _ _ _ Hz)
(HC₁ x y f g))))))) ; cbn.
- abstract
(rewrite <- !functor_comp ;
rewrite CoequalizerCommutes ;
apply idpath).
- abstract
(rewrite <- !functor_comp ;
rewrite CoequalizerEqAr ;
apply idpath).
Defined.
Definition preserves_reflexive_coequalizer
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y c : C₁)
(f g : x --> y)
(s : y --> x)
(pf : s · f = identity _)
(pg : s · g = identity _)
(h : y --> c)
(p : f · h = g · h)
(Fp : #F f · #F h = #F g · #F h),
isCoequalizer f g h p
→
isCoequalizer (#F f) (#F g) (#F h) Fp.
Definition identity_preserves_reflexive_coequalizer
(C : category)
: preserves_coequalizer (functor_identity C)
:= λ _ _ _ _ _ _ _ _ Hx, Hx.
Definition composition_preserves_reflexive_coequalizer
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_reflexive_coequalizer F)
(HG : preserves_reflexive_coequalizer G)
: preserves_reflexive_coequalizer (F ∙ G).
Proof.
intros x y c f g s pf pg h p Fp Hx.
use (HG (F x) (F y) (F c) (#F f) (#F g) (#F s) _ _ (#F h)).
- abstract
(rewrite <- functor_comp ;
rewrite pf ;
apply functor_id).
- abstract
(rewrite <- functor_comp ;
rewrite pg ;
apply functor_id).
- abstract
(rewrite <- !functor_comp ;
rewrite p ;
apply idpath).
- use (HF x y c f g s _ _ h).
+ exact pf.
+ exact pg.
+ exact p.
+ exact Hx.
Defined.
Definition isaprop_preserves_reflexive_coequalizer
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_reflexive_coequalizer F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_reflexive_coequalizer
{C₁ C₂ : category}
(HC₁ : reflexive_coequalizers C₁)
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y : C₁)
(f g : x --> y)
(s : y --> x)
(pf : s · f = identity _)
(pg : s · g = identity _)
(p : # F f · # F (CoequalizerArrow (HC₁ x y f g s pf pg))
=
# F g · # F (CoequalizerArrow (HC₁ x y f g s pf pg))),
isCoequalizer
(#F f)
(#F g)
(#F (CoequalizerArrow (HC₁ x y f g s pf pg)))
p.
Definition preserves_reflexive_coequalizers_if_chosen
{C₁ C₂ : category}
(HC₁ : reflexive_coequalizers C₁)
(F : C₁ ⟶ C₂)
(HF : preserves_chosen_reflexive_coequalizer HC₁ F)
: preserves_reflexive_coequalizer F.
Proof.
intros x y c f g s pf pg h p Fp Hz.
use (Coequalizer_eq_ar
_
_
_
(pr22 (z_iso_to_Coequalizer
(make_Coequalizer _ _ _ _ (HF x y f g s pf pg _))
(z_iso_inv
(functor_on_z_iso
F
(z_iso_between_Coequalizer
(make_Coequalizer _ _ _ _ Hz)
(HC₁ x y f g s pf pg))))))) ; cbn.
- abstract
(rewrite <- !functor_comp ;
rewrite CoequalizerCommutes ;
apply idpath).
- abstract
(rewrite <- !functor_comp ;
rewrite CoequalizerEqAr ;
apply idpath).
Defined.
9. Preservation of coproducts
Definition preserves_coproduct
(J : UU)
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (D : J → C₁)
(c : C₁)
(ι : ∏ (j : J), D j --> c),
isCoproduct J C₁ D c ι
→
isCoproduct J C₂ (λ j, F (D j)) (F c) (λ j, #F (ι j)).
Definition identity_preserves_coproduct
(C : category)
(J : UU)
: preserves_coproduct J (functor_identity C)
:= λ _ _ _ Hx, Hx.
Definition composition_preserves_coproduct
(J : UU)
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_coproduct J F)
(HG : preserves_coproduct J G)
: preserves_coproduct J (F ∙ G).
Proof.
intros ? ? ? Hx.
apply HG.
apply HF.
exact Hx.
Defined.
Definition isaprop_preserves_coproduct
(J : UU)
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_coproduct J F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_coproduct
(J : UU)
{C₁ C₂ : category}
(HC₁ : Coproducts J C₁)
(F : C₁ ⟶ C₂)
: UU
:= ∏ (D : J → C₁),
isCoproduct
J
C₂
(λ j, F(D j))
(F (HC₁ D))
(λ j, #F (CoproductIn _ _ (HC₁ D) j)).
(J : UU)
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (D : J → C₁)
(c : C₁)
(ι : ∏ (j : J), D j --> c),
isCoproduct J C₁ D c ι
→
isCoproduct J C₂ (λ j, F (D j)) (F c) (λ j, #F (ι j)).
Definition identity_preserves_coproduct
(C : category)
(J : UU)
: preserves_coproduct J (functor_identity C)
:= λ _ _ _ Hx, Hx.
Definition composition_preserves_coproduct
(J : UU)
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_coproduct J F)
(HG : preserves_coproduct J G)
: preserves_coproduct J (F ∙ G).
Proof.
intros ? ? ? Hx.
apply HG.
apply HF.
exact Hx.
Defined.
Definition isaprop_preserves_coproduct
(J : UU)
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_coproduct J F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
Definition preserves_chosen_coproduct
(J : UU)
{C₁ C₂ : category}
(HC₁ : Coproducts J C₁)
(F : C₁ ⟶ C₂)
: UU
:= ∏ (D : J → C₁),
isCoproduct
J
C₂
(λ j, F(D j))
(F (HC₁ D))
(λ j, #F (CoproductIn _ _ (HC₁ D) j)).
10. Preservation of pushouts
Definition preserves_pushout
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y z po : C₁)
(f : x --> y)
(g : x --> z)
(i₁ : y --> po)
(i₂ : z --> po)
(q : f · i₁ = g · i₂)
(Fq : # F f · #F i₁ = #F g · #F i₂),
isPushout f g i₁ i₂ q
→
isPushout (#F f) (#F g) (#F i₁) (#F i₂) Fq.
Definition identity_preserves_pushout
(C : category)
: preserves_pushout (functor_identity C).
Proof.
intros ? ? ? ? ? ? ? ? ? ? H.
exact H.
Defined.
Definition composition_preserves_pushout
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_pushout F)
(HG : preserves_pushout G)
: preserves_pushout (F ∙ G).
Proof.
intros ? ? ? ? ? ? ? ? ? ? H.
use HG.
- abstract
(rewrite <- !functor_comp ;
apply maponpaths ;
exact q).
- use HF.
+ exact q.
+ exact H.
Defined.
Definition isaprop_preserves_pushout
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_pushout F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: UU
:= ∏ (x y z po : C₁)
(f : x --> y)
(g : x --> z)
(i₁ : y --> po)
(i₂ : z --> po)
(q : f · i₁ = g · i₂)
(Fq : # F f · #F i₁ = #F g · #F i₂),
isPushout f g i₁ i₂ q
→
isPushout (#F f) (#F g) (#F i₁) (#F i₂) Fq.
Definition identity_preserves_pushout
(C : category)
: preserves_pushout (functor_identity C).
Proof.
intros ? ? ? ? ? ? ? ? ? ? H.
exact H.
Defined.
Definition composition_preserves_pushout
{C₁ C₂ C₃ : category}
{F : C₁ ⟶ C₂}
{G : C₂ ⟶ C₃}
(HF : preserves_pushout F)
(HG : preserves_pushout G)
: preserves_pushout (F ∙ G).
Proof.
intros ? ? ? ? ? ? ? ? ? ? H.
use HG.
- abstract
(rewrite <- !functor_comp ;
apply maponpaths ;
exact q).
- use HF.
+ exact q.
+ exact H.
Defined.
Definition isaprop_preserves_pushout
{C₁ C₂ : category}
(F : C₁ ⟶ C₂)
: isaprop (preserves_pushout F).
Proof.
repeat (use impred ; intro).
use isapropiscontr.
Qed.
11. Adjunctions and preservation
Section AdjunctionPreservation.
Context {C₁ C₂ : category}
(L : C₁ ⟶ C₂)
(HL : is_left_adjoint L).
Let R : C₂ ⟶ C₁ := right_adjoint HL.
Let η : functor_identity _ ⟹ L ∙ R := unit_from_left_adjoint HL.
Let ε : R ∙ L ⟹ functor_identity _ := counit_from_left_adjoint HL.
Local Lemma triangle_1_help
(x : C₁)
: #L (η x) · ε (L x) = identity (L x).
Proof.
exact (pr122 HL x).
Qed.
Local Lemma triangle_2_help
(x : C₂)
: η (R x) · #R (ε x) = identity (R x).
Proof.
exact (pr222 HL x).
Qed.
Context {C₁ C₂ : category}
(L : C₁ ⟶ C₂)
(HL : is_left_adjoint L).
Let R : C₂ ⟶ C₁ := right_adjoint HL.
Let η : functor_identity _ ⟹ L ∙ R := unit_from_left_adjoint HL.
Let ε : R ∙ L ⟹ functor_identity _ := counit_from_left_adjoint HL.
Local Lemma triangle_1_help
(x : C₁)
: #L (η x) · ε (L x) = identity (L x).
Proof.
exact (pr122 HL x).
Qed.
Local Lemma triangle_2_help
(x : C₂)
: η (R x) · #R (ε x) = identity (R x).
Proof.
exact (pr222 HL x).
Qed.
11.1 Right adjoints preserve limits
Definition right_adjoint_preserves_terminal
: preserves_terminal R.
Proof.
intros T HT x.
use iscontraprop1.
- use invproofirrelevance.
intros g₁ g₂.
refine (!(id_right _) @ _ @ id_right _).
rewrite <- !triangle_2_help.
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply (nat_trans_ax η _ _ g₁).
}
refine (!_).
etrans.
{
apply maponpaths_2.
apply (nat_trans_ax η _ _ g₂).
}
rewrite !assoc' ; cbn -[η].
rewrite <- !functor_comp.
do 2 apply maponpaths.
apply (@TerminalArrowEq _ (T ,, HT)).
- exact (η x · #R (TerminalArrow (_ ,, HT) _)).
Qed.
Definition right_adjoint_preserves_binproduct
: preserves_binproduct R.
Proof.
intros x y p π₁ π₂ Hp c f g.
pose (P := make_BinProduct _ _ _ _ _ _ Hp : BinProduct _ _ _).
use iscontraprop1.
- use invproofirrelevance.
intros g₁ g₂.
use subtypePath.
{
intro ; apply isapropdirprod ; apply homset_property.
}
refine (!(id_right _) @ _ @ id_right _).
rewrite <- !triangle_2_help.
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply (nat_trans_ax η _ _ (pr1 g₁)).
}
refine (!_).
etrans.
{
apply maponpaths_2.
apply (nat_trans_ax η _ _ (pr1 g₂)).
}
rewrite !assoc' ; cbn -[η].
rewrite <- !functor_comp.
do 2 apply maponpaths.
use (BinProductArrowsEq _ _ _ P).
+ cbn.
rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
refine (!_).
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
exact (pr12 g₁ @ !(pr12 g₂)).
+ cbn.
rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
refine (!_).
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
exact (pr22 g₁ @ !(pr22 g₂)).
- simple refine (_ ,, _ ,, _).
+ exact (η c · #R (BinProductArrow _ P (#L f · ε x) (#L g · ε y))).
+ rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!(functor_comp R _ _) @ _).
apply maponpaths.
apply BinProductPr1Commutes.
}
rewrite functor_comp.
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply (!(nat_trans_ax η _ _ f)).
}
rewrite !assoc'.
rewrite triangle_2_help.
apply id_right.
+ cbn.
rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!(functor_comp R _ _) @ _).
apply maponpaths.
apply (BinProductPr2Commutes _ _ _ P).
}
rewrite functor_comp.
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply (!(nat_trans_ax η _ _ g)).
}
rewrite !assoc'.
rewrite triangle_2_help.
apply id_right.
Qed.
Definition right_adjoint_preserves_pullback
: preserves_pullback R.
Proof.
intros x y z p f g π₁ π₂ q Fq Hp w h₁ h₂ r.
pose (P := make_Pullback _ Hp).
use iscontraprop1.
- use invproofirrelevance.
intros g₁ g₂.
use subtypePath.
{
intro ; apply isapropdirprod ; apply homset_property.
}
refine (!(id_right _) @ _ @ id_right _).
rewrite <- !triangle_2_help.
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply (nat_trans_ax η _ _ (pr1 g₁)).
}
refine (!_).
etrans.
{
apply maponpaths_2.
apply (nat_trans_ax η _ _ (pr1 g₂)).
}
rewrite !assoc' ; cbn -[η].
rewrite <- !functor_comp.
do 2 apply maponpaths.
use (MorphismsIntoPullbackEqual Hp).
+ cbn.
rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
refine (!_).
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
exact (pr12 g₁ @ !(pr12 g₂)).
+ cbn.
rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
refine (!_).
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
exact (pr22 g₁ @ !(pr22 g₂)).
- simple refine (_ ,, _ ,, _).
+ refine (η w · #R (PullbackArrow P _ (#L h₁ · ε x) (#L h₂ · ε y) _)).
abstract
(rewrite !assoc' ;
refine (maponpaths (λ z, _ · z) (!(nat_trans_ax ε _ _ f)) @ _) ;
refine (_ @ maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ g)) ;
rewrite !assoc ;
apply maponpaths_2 ;
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _) ;
apply maponpaths ;
exact r).
+ rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!(functor_comp R _ _) @ _).
apply maponpaths.
apply PullbackArrow_PullbackPr1.
}
rewrite (functor_comp R).
rewrite !assoc.
refine (maponpaths (λ z, z · _) (!(nat_trans_ax η _ _ h₁)) @ _).
refine (_ @ id_right _).
rewrite !assoc'.
apply maponpaths.
apply triangle_2_help.
+ cbn -[η].
rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!(functor_comp R _ _) @ _).
apply maponpaths.
apply (PullbackArrow_PullbackPr2 P).
}
rewrite (functor_comp R).
rewrite !assoc.
refine (maponpaths (λ z, z · _) (!(nat_trans_ax η _ _ h₂)) @ _).
refine (_ @ id_right _).
rewrite !assoc'.
apply maponpaths.
apply triangle_2_help.
Qed.
Definition right_adjoint_preserves_equalizer
: preserves_equalizer R.
Proof.
intros x y c f g h p Fp Hc z k q.
pose (Eq := make_Equalizer _ _ _ _ Hc).
use iscontraprop1.
- use invproofirrelevance.
intros φ₁ φ₂.
use subtypePath.
{
intro ; apply homset_property.
}
refine (!(id_right _) @ _ @ id_right _).
rewrite <- !triangle_2_help.
rewrite !assoc.
refine (maponpaths (λ z, z · _) (nat_trans_ax η _ _ (pr1 φ₁)) @ _).
refine (_ @ maponpaths (λ z, z · _) (!(nat_trans_ax η _ _ (pr1 φ₂)))).
rewrite !assoc'.
apply maponpaths.
refine (!(functor_comp R _ _) @ _ @ functor_comp R _ _).
apply maponpaths.
use (isEqualizerInsEq (pr22 Eq)).
rewrite !assoc'.
refine (maponpaths (λ z, _ · z) (!(nat_trans_ax ε _ _ _)) @ _).
refine (_ @ maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ _)).
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
exact (pr2 φ₁ @ !(pr2 φ₂)).
- simple refine (_ ,, _).
+ refine (η z · #R _).
refine (EqualizerIn Eq _ (#L k · ε _) _).
abstract
(rewrite !assoc' ;
etrans ;
[ apply maponpaths ;
exact (!(nat_trans_ax ε _ _ f))
| ] ;
refine (!_) ;
etrans ;
[ apply maponpaths ;
exact (!(nat_trans_ax ε _ _ g))
| ] ;
cbn -[ε] ;
rewrite !assoc ;
rewrite <- !functor_comp ;
rewrite <- q ;
apply idpath).
+ cbn -[ε].
rewrite !assoc'.
rewrite <- functor_comp.
rewrite (EqualizerCommutes Eq).
rewrite functor_comp.
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply (!(nat_trans_ax η _ _ k)).
}
cbn -[ε].
rewrite !assoc'.
refine (_ @ id_right _).
apply maponpaths.
exact (triangle_2_help x).
Qed.
: preserves_terminal R.
Proof.
intros T HT x.
use iscontraprop1.
- use invproofirrelevance.
intros g₁ g₂.
refine (!(id_right _) @ _ @ id_right _).
rewrite <- !triangle_2_help.
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply (nat_trans_ax η _ _ g₁).
}
refine (!_).
etrans.
{
apply maponpaths_2.
apply (nat_trans_ax η _ _ g₂).
}
rewrite !assoc' ; cbn -[η].
rewrite <- !functor_comp.
do 2 apply maponpaths.
apply (@TerminalArrowEq _ (T ,, HT)).
- exact (η x · #R (TerminalArrow (_ ,, HT) _)).
Qed.
Definition right_adjoint_preserves_binproduct
: preserves_binproduct R.
Proof.
intros x y p π₁ π₂ Hp c f g.
pose (P := make_BinProduct _ _ _ _ _ _ Hp : BinProduct _ _ _).
use iscontraprop1.
- use invproofirrelevance.
intros g₁ g₂.
use subtypePath.
{
intro ; apply isapropdirprod ; apply homset_property.
}
refine (!(id_right _) @ _ @ id_right _).
rewrite <- !triangle_2_help.
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply (nat_trans_ax η _ _ (pr1 g₁)).
}
refine (!_).
etrans.
{
apply maponpaths_2.
apply (nat_trans_ax η _ _ (pr1 g₂)).
}
rewrite !assoc' ; cbn -[η].
rewrite <- !functor_comp.
do 2 apply maponpaths.
use (BinProductArrowsEq _ _ _ P).
+ cbn.
rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
refine (!_).
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
exact (pr12 g₁ @ !(pr12 g₂)).
+ cbn.
rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
refine (!_).
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
exact (pr22 g₁ @ !(pr22 g₂)).
- simple refine (_ ,, _ ,, _).
+ exact (η c · #R (BinProductArrow _ P (#L f · ε x) (#L g · ε y))).
+ rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!(functor_comp R _ _) @ _).
apply maponpaths.
apply BinProductPr1Commutes.
}
rewrite functor_comp.
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply (!(nat_trans_ax η _ _ f)).
}
rewrite !assoc'.
rewrite triangle_2_help.
apply id_right.
+ cbn.
rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!(functor_comp R _ _) @ _).
apply maponpaths.
apply (BinProductPr2Commutes _ _ _ P).
}
rewrite functor_comp.
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply (!(nat_trans_ax η _ _ g)).
}
rewrite !assoc'.
rewrite triangle_2_help.
apply id_right.
Qed.
Definition right_adjoint_preserves_pullback
: preserves_pullback R.
Proof.
intros x y z p f g π₁ π₂ q Fq Hp w h₁ h₂ r.
pose (P := make_Pullback _ Hp).
use iscontraprop1.
- use invproofirrelevance.
intros g₁ g₂.
use subtypePath.
{
intro ; apply isapropdirprod ; apply homset_property.
}
refine (!(id_right _) @ _ @ id_right _).
rewrite <- !triangle_2_help.
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply (nat_trans_ax η _ _ (pr1 g₁)).
}
refine (!_).
etrans.
{
apply maponpaths_2.
apply (nat_trans_ax η _ _ (pr1 g₂)).
}
rewrite !assoc' ; cbn -[η].
rewrite <- !functor_comp.
do 2 apply maponpaths.
use (MorphismsIntoPullbackEqual Hp).
+ cbn.
rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
refine (!_).
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
exact (pr12 g₁ @ !(pr12 g₂)).
+ cbn.
rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
refine (!_).
etrans.
{
apply maponpaths.
refine (!_).
apply (nat_trans_ax ε).
}
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
exact (pr22 g₁ @ !(pr22 g₂)).
- simple refine (_ ,, _ ,, _).
+ refine (η w · #R (PullbackArrow P _ (#L h₁ · ε x) (#L h₂ · ε y) _)).
abstract
(rewrite !assoc' ;
refine (maponpaths (λ z, _ · z) (!(nat_trans_ax ε _ _ f)) @ _) ;
refine (_ @ maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ g)) ;
rewrite !assoc ;
apply maponpaths_2 ;
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _) ;
apply maponpaths ;
exact r).
+ rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!(functor_comp R _ _) @ _).
apply maponpaths.
apply PullbackArrow_PullbackPr1.
}
rewrite (functor_comp R).
rewrite !assoc.
refine (maponpaths (λ z, z · _) (!(nat_trans_ax η _ _ h₁)) @ _).
refine (_ @ id_right _).
rewrite !assoc'.
apply maponpaths.
apply triangle_2_help.
+ cbn -[η].
rewrite !assoc'.
etrans.
{
apply maponpaths.
refine (!(functor_comp R _ _) @ _).
apply maponpaths.
apply (PullbackArrow_PullbackPr2 P).
}
rewrite (functor_comp R).
rewrite !assoc.
refine (maponpaths (λ z, z · _) (!(nat_trans_ax η _ _ h₂)) @ _).
refine (_ @ id_right _).
rewrite !assoc'.
apply maponpaths.
apply triangle_2_help.
Qed.
Definition right_adjoint_preserves_equalizer
: preserves_equalizer R.
Proof.
intros x y c f g h p Fp Hc z k q.
pose (Eq := make_Equalizer _ _ _ _ Hc).
use iscontraprop1.
- use invproofirrelevance.
intros φ₁ φ₂.
use subtypePath.
{
intro ; apply homset_property.
}
refine (!(id_right _) @ _ @ id_right _).
rewrite <- !triangle_2_help.
rewrite !assoc.
refine (maponpaths (λ z, z · _) (nat_trans_ax η _ _ (pr1 φ₁)) @ _).
refine (_ @ maponpaths (λ z, z · _) (!(nat_trans_ax η _ _ (pr1 φ₂)))).
rewrite !assoc'.
apply maponpaths.
refine (!(functor_comp R _ _) @ _ @ functor_comp R _ _).
apply maponpaths.
use (isEqualizerInsEq (pr22 Eq)).
rewrite !assoc'.
refine (maponpaths (λ z, _ · z) (!(nat_trans_ax ε _ _ _)) @ _).
refine (_ @ maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ _)).
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
exact (pr2 φ₁ @ !(pr2 φ₂)).
- simple refine (_ ,, _).
+ refine (η z · #R _).
refine (EqualizerIn Eq _ (#L k · ε _) _).
abstract
(rewrite !assoc' ;
etrans ;
[ apply maponpaths ;
exact (!(nat_trans_ax ε _ _ f))
| ] ;
refine (!_) ;
etrans ;
[ apply maponpaths ;
exact (!(nat_trans_ax ε _ _ g))
| ] ;
cbn -[ε] ;
rewrite !assoc ;
rewrite <- !functor_comp ;
rewrite <- q ;
apply idpath).
+ cbn -[ε].
rewrite !assoc'.
rewrite <- functor_comp.
rewrite (EqualizerCommutes Eq).
rewrite functor_comp.
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply (!(nat_trans_ax η _ _ k)).
}
cbn -[ε].
rewrite !assoc'.
refine (_ @ id_right _).
apply maponpaths.
exact (triangle_2_help x).
Qed.
11.2 Left adjoints preserve colimits
Definition left_adjoint_preserves_initial
: preserves_initial L.
Proof.
intros x Hx y.
pose (I := make_Initial x Hx).
use iscontraprop1.
- use invproofirrelevance.
intros g₁ g₂.
refine (!(id_left _) @ _ @ id_left _).
rewrite <- !triangle_1_help.
rewrite !assoc'.
etrans.
{
apply maponpaths.
exact (!(nat_trans_ax ε _ _ g₁)).
}
refine (!_).
etrans.
{
apply maponpaths.
exact (!(nat_trans_ax ε _ _ g₂)).
}
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp _ _ _) @ _ @ functor_comp _ _ _).
apply maponpaths.
apply (@InitialArrowEq _ I).
- exact (#L (InitialArrow I _) · ε y).
Qed.
Definition left_adjoint_preserves_bincoproduct
: preserves_bincoproduct L.
Proof.
intros x y s ι₁ ι₂ Hs z f g.
pose (S := make_BinCoproduct _ _ _ _ _ _ Hs).
use iscontraprop1.
- use invproofirrelevance.
intros g₁ g₂.
use subtypePath.
{
intro ; apply isapropdirprod ; apply homset_property.
}
refine (!(id_left _) @ _ @ id_left _).
rewrite <- !triangle_1_help.
rewrite !assoc'.
refine (maponpaths (λ z, _ · z) (!(nat_trans_ax ε _ _ (pr1 g₁))) @ _).
refine (_ @ maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ (pr1 g₂))).
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
use (BinCoproductArrowsEq _ _ _ S).
+ rewrite !assoc.
refine (maponpaths (λ z, z · _) (nat_trans_ax η _ _ _) @ _).
refine (_ @ maponpaths (λ z, z · _) (!(nat_trans_ax η _ _ _))).
rewrite !assoc'.
apply maponpaths.
refine (!(functor_comp R _ _) @ _ @ functor_comp R _ _).
apply maponpaths.
exact (pr12 g₁ @ !(pr12 g₂)).
+ rewrite !assoc.
refine (maponpaths (λ z, z · _) (nat_trans_ax η _ _ _) @ _).
refine (_ @ maponpaths (λ z, z · _) (!(nat_trans_ax η _ _ _))).
rewrite !assoc'.
apply maponpaths.
refine (!(functor_comp R _ _) @ _ @ functor_comp R _ _).
apply maponpaths.
exact (pr22 g₁ @ !(pr22 g₂)).
- simple refine (_ ,, _ ,, _).
+ exact (#L (BinCoproductArrow S (η x · #R f) (η y · #R g)) · ε z).
+ rewrite !assoc.
rewrite <- (functor_comp L).
rewrite (BinCoproductIn1Commutes _ _ _ S).
rewrite functor_comp.
rewrite !assoc'.
refine (maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ f) @ _).
rewrite !assoc.
refine (_ @ id_left _).
apply maponpaths_2.
apply triangle_1_help.
+ cbn.
rewrite !assoc.
rewrite <- (functor_comp L).
rewrite (BinCoproductIn2Commutes _ _ _ S).
rewrite functor_comp.
rewrite !assoc'.
refine (maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ g) @ _).
rewrite !assoc.
refine (_ @ id_left _).
apply maponpaths_2.
apply triangle_1_help.
Qed.
Definition left_adjoint_preserves_coproduct
(J : UU)
: preserves_coproduct J L.
Proof.
intros D c ι Hc x f.
pose (S := make_Coproduct _ _ _ _ _ Hc).
use iscontraprop1.
- use invproofirrelevance.
intros g₁ g₂.
use subtypePath.
{
intro ; use impred ; intro ; apply homset_property.
}
refine (!(id_left _) @ _ @ id_left _).
rewrite <- !triangle_1_help.
rewrite !assoc'.
refine (maponpaths (λ z, _ · z) (!(nat_trans_ax ε _ _ (pr1 g₁))) @ _).
refine (_ @ maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ (pr1 g₂))).
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
use (CoproductArrow_eq _ _ _ S).
intro j.
rewrite !assoc.
refine (maponpaths (λ z, z · _) (nat_trans_ax η _ _ _) @ _).
refine (_ @ maponpaths (λ z, z · _) (!(nat_trans_ax η _ _ _))).
rewrite !assoc'.
apply maponpaths.
refine (!(functor_comp R _ _) @ _ @ functor_comp R _ _).
apply maponpaths.
exact (pr2 g₁ j @ !(pr2 g₂ j)).
- simple refine (_ ,, _).
+ exact (#L (CoproductArrow _ _ S (λ j, η (D j) · #R (f j))) · ε x).
+ intro j ; cbn -[η].
rewrite !assoc.
rewrite <- (functor_comp L).
rewrite (CoproductInCommutes _ _ _ S).
rewrite functor_comp.
rewrite !assoc'.
refine (maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ (f j)) @ _).
rewrite !assoc.
refine (_ @ id_left _).
apply maponpaths_2.
apply triangle_1_help.
Qed.
Definition left_adjoint_preserves_coequalizer
: preserves_coequalizer L.
Proof.
intros x y c f g h p Fp Hc z k q.
pose (Coeq := make_Coequalizer _ _ _ _ Hc).
use iscontraprop1.
- use invproofirrelevance.
intros φ₁ φ₂.
use subtypePath.
{
intro ; apply homset_property.
}
refine (!(id_left _) @ _ @ id_left _).
rewrite <- !triangle_1_help.
rewrite !assoc'.
refine (maponpaths (λ z, _ · z) (!(nat_trans_ax ε _ _ (pr1 φ₁))) @ _).
refine (_ @ maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ (pr1 φ₂))).
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
use (isCoequalizerOutsEq (pr22 Coeq)).
rewrite !assoc.
refine (maponpaths (λ z, z · _) (nat_trans_ax η _ _ _) @ _).
refine (_ @ maponpaths (λ z, z · _) (!(nat_trans_ax η _ _ _))).
rewrite !assoc'.
apply maponpaths.
refine (!(functor_comp R _ _) @ _ @ functor_comp R _ _).
apply maponpaths.
exact (pr2 φ₁ @ !(pr2 φ₂)).
- simple refine (_ ,, _).
+ refine (#L _ · ε z).
refine (CoequalizerOut Coeq _ (η y · #R k) _).
abstract
(rewrite !assoc ;
etrans ;
[ apply maponpaths_2 ;
exact (nat_trans_ax η _ _ f)
| ] ;
refine (!_) ;
etrans ;
[ apply maponpaths_2 ;
exact (nat_trans_ax η _ _ g)
| ] ;
cbn -[η] ;
rewrite !assoc' ;
rewrite <- !functor_comp ;
rewrite <- q ;
apply idpath).
+ cbn -[η].
rewrite !assoc.
rewrite <- functor_comp.
rewrite (CoequalizerCommutes Coeq).
rewrite functor_comp.
rewrite !assoc'.
etrans.
{
apply maponpaths.
apply (nat_trans_ax ε _ _ k).
}
cbn -[η].
rewrite !assoc.
refine (_ @ id_left _).
apply maponpaths_2.
exact (triangle_1_help y).
Qed.
End AdjunctionPreservation.
: preserves_initial L.
Proof.
intros x Hx y.
pose (I := make_Initial x Hx).
use iscontraprop1.
- use invproofirrelevance.
intros g₁ g₂.
refine (!(id_left _) @ _ @ id_left _).
rewrite <- !triangle_1_help.
rewrite !assoc'.
etrans.
{
apply maponpaths.
exact (!(nat_trans_ax ε _ _ g₁)).
}
refine (!_).
etrans.
{
apply maponpaths.
exact (!(nat_trans_ax ε _ _ g₂)).
}
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp _ _ _) @ _ @ functor_comp _ _ _).
apply maponpaths.
apply (@InitialArrowEq _ I).
- exact (#L (InitialArrow I _) · ε y).
Qed.
Definition left_adjoint_preserves_bincoproduct
: preserves_bincoproduct L.
Proof.
intros x y s ι₁ ι₂ Hs z f g.
pose (S := make_BinCoproduct _ _ _ _ _ _ Hs).
use iscontraprop1.
- use invproofirrelevance.
intros g₁ g₂.
use subtypePath.
{
intro ; apply isapropdirprod ; apply homset_property.
}
refine (!(id_left _) @ _ @ id_left _).
rewrite <- !triangle_1_help.
rewrite !assoc'.
refine (maponpaths (λ z, _ · z) (!(nat_trans_ax ε _ _ (pr1 g₁))) @ _).
refine (_ @ maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ (pr1 g₂))).
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
use (BinCoproductArrowsEq _ _ _ S).
+ rewrite !assoc.
refine (maponpaths (λ z, z · _) (nat_trans_ax η _ _ _) @ _).
refine (_ @ maponpaths (λ z, z · _) (!(nat_trans_ax η _ _ _))).
rewrite !assoc'.
apply maponpaths.
refine (!(functor_comp R _ _) @ _ @ functor_comp R _ _).
apply maponpaths.
exact (pr12 g₁ @ !(pr12 g₂)).
+ rewrite !assoc.
refine (maponpaths (λ z, z · _) (nat_trans_ax η _ _ _) @ _).
refine (_ @ maponpaths (λ z, z · _) (!(nat_trans_ax η _ _ _))).
rewrite !assoc'.
apply maponpaths.
refine (!(functor_comp R _ _) @ _ @ functor_comp R _ _).
apply maponpaths.
exact (pr22 g₁ @ !(pr22 g₂)).
- simple refine (_ ,, _ ,, _).
+ exact (#L (BinCoproductArrow S (η x · #R f) (η y · #R g)) · ε z).
+ rewrite !assoc.
rewrite <- (functor_comp L).
rewrite (BinCoproductIn1Commutes _ _ _ S).
rewrite functor_comp.
rewrite !assoc'.
refine (maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ f) @ _).
rewrite !assoc.
refine (_ @ id_left _).
apply maponpaths_2.
apply triangle_1_help.
+ cbn.
rewrite !assoc.
rewrite <- (functor_comp L).
rewrite (BinCoproductIn2Commutes _ _ _ S).
rewrite functor_comp.
rewrite !assoc'.
refine (maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ g) @ _).
rewrite !assoc.
refine (_ @ id_left _).
apply maponpaths_2.
apply triangle_1_help.
Qed.
Definition left_adjoint_preserves_coproduct
(J : UU)
: preserves_coproduct J L.
Proof.
intros D c ι Hc x f.
pose (S := make_Coproduct _ _ _ _ _ Hc).
use iscontraprop1.
- use invproofirrelevance.
intros g₁ g₂.
use subtypePath.
{
intro ; use impred ; intro ; apply homset_property.
}
refine (!(id_left _) @ _ @ id_left _).
rewrite <- !triangle_1_help.
rewrite !assoc'.
refine (maponpaths (λ z, _ · z) (!(nat_trans_ax ε _ _ (pr1 g₁))) @ _).
refine (_ @ maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ (pr1 g₂))).
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
use (CoproductArrow_eq _ _ _ S).
intro j.
rewrite !assoc.
refine (maponpaths (λ z, z · _) (nat_trans_ax η _ _ _) @ _).
refine (_ @ maponpaths (λ z, z · _) (!(nat_trans_ax η _ _ _))).
rewrite !assoc'.
apply maponpaths.
refine (!(functor_comp R _ _) @ _ @ functor_comp R _ _).
apply maponpaths.
exact (pr2 g₁ j @ !(pr2 g₂ j)).
- simple refine (_ ,, _).
+ exact (#L (CoproductArrow _ _ S (λ j, η (D j) · #R (f j))) · ε x).
+ intro j ; cbn -[η].
rewrite !assoc.
rewrite <- (functor_comp L).
rewrite (CoproductInCommutes _ _ _ S).
rewrite functor_comp.
rewrite !assoc'.
refine (maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ (f j)) @ _).
rewrite !assoc.
refine (_ @ id_left _).
apply maponpaths_2.
apply triangle_1_help.
Qed.
Definition left_adjoint_preserves_coequalizer
: preserves_coequalizer L.
Proof.
intros x y c f g h p Fp Hc z k q.
pose (Coeq := make_Coequalizer _ _ _ _ Hc).
use iscontraprop1.
- use invproofirrelevance.
intros φ₁ φ₂.
use subtypePath.
{
intro ; apply homset_property.
}
refine (!(id_left _) @ _ @ id_left _).
rewrite <- !triangle_1_help.
rewrite !assoc'.
refine (maponpaths (λ z, _ · z) (!(nat_trans_ax ε _ _ (pr1 φ₁))) @ _).
refine (_ @ maponpaths (λ z, _ · z) (nat_trans_ax ε _ _ (pr1 φ₂))).
rewrite !assoc.
apply maponpaths_2.
refine (!(functor_comp L _ _) @ _ @ functor_comp L _ _).
apply maponpaths.
use (isCoequalizerOutsEq (pr22 Coeq)).
rewrite !assoc.
refine (maponpaths (λ z, z · _) (nat_trans_ax η _ _ _) @ _).
refine (_ @ maponpaths (λ z, z · _) (!(nat_trans_ax η _ _ _))).
rewrite !assoc'.
apply maponpaths.
refine (!(functor_comp R _ _) @ _ @ functor_comp R _ _).
apply maponpaths.
exact (pr2 φ₁ @ !(pr2 φ₂)).
- simple refine (_ ,, _).
+ refine (#L _ · ε z).
refine (CoequalizerOut Coeq _ (η y · #R k) _).
abstract
(rewrite !assoc ;
etrans ;
[ apply maponpaths_2 ;
exact (nat_trans_ax η _ _ f)
| ] ;
refine (!_) ;
etrans ;
[ apply maponpaths_2 ;
exact (nat_trans_ax η _ _ g)
| ] ;
cbn -[η] ;
rewrite !assoc' ;
rewrite <- !functor_comp ;
rewrite <- q ;
apply idpath).
+ cbn -[η].
rewrite !assoc.
rewrite <- functor_comp.
rewrite (CoequalizerCommutes Coeq).
rewrite functor_comp.
rewrite !assoc'.
etrans.
{
apply maponpaths.
apply (nat_trans_ax ε _ _ k).
}
cbn -[η].
rewrite !assoc.
refine (_ @ id_left _).
apply maponpaths_2.
exact (triangle_1_help y).
Qed.
End AdjunctionPreservation.