Library UniMath.Combinatorics.Tuples

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.Combinatorics.Vectors.

Local Open Scope stn.

Definition stnweq {n : nat}
  : stn n ⨿ unit stn (1 + n)
  := weqdnicoprod _ lastelement.

Lemma iscontr_empty_tuple
  (A : UU)
  : iscontr (stn 0 A).
Proof.
  exists (weqvecfun 0 vnil).
  abstract (
    intro v;
    apply funextfun;
    intro i;
    apply fromstn0;
    exact i
  ).
Defined.

1. A way to append one element to a tuple


Definition extend_tuple
  {T : UU}
  {n : nat}
  (f : stn n T)
  (last : T)
  : stn (S n) T.
Proof.
  intro i.
  induction (invmap stnweq i) as [i' | ].
  - exact (f i').
  - exact last.
Defined.

Definition extend_tuple_dep
  {n : nat}
  {T : UU}
  {A : T UU}
  {f : stn n T}
  {last : T}
  (af : i, A (f i))
  (alast : A last)
  : (i : stn (S n)), A (extend_tuple f last i).
Proof.
  intro i.
  unfold extend_tuple.
  induction (invmap stnweq i) as [i' | ].
  - exact (af i').
  - exact alast.
Defined.

Lemma extend_tuple_dep_const
  {T A : UU}
  {n : nat}
  {f : stn n T}
  {last : T}
  (af : stn n A)
  (al : A)
  : extend_tuple_dep (T := T) (A := λ _, A) (f := f) (last := last) af al = extend_tuple af al.
Proof.
  apply funextsec.
  intro i.
  unfold extend_tuple, extend_tuple_dep.
  now induction (invweq (weqdnicoprod _ lastelement) i).
Qed.

2. A couple of lemmas about the elements of an extended tuple


Lemma extend_tuple_i
  {T : UU}
  {n : nat}
  (f : stn n T)
  (last : T)
  (i : nat)
  (Hi1 : i < S n)
  (Hi2 : i < n)
  : extend_tuple f last (i ,, Hi1) = f (make_stn _ i Hi2).
Proof.
  unfold extend_tuple.
  refine (maponpaths _ (_ : invmap stnweq (i ,, Hi1) = inl (make_stn _ i Hi2))).
  apply (invmaponpathsweq (weqdnicoprod n lastelement)).
  refine (homotweqinvweq _ _ @ _).
  apply stn_eq.
  refine (!di_eq1 _).
  apply Hi2.
Qed.

Lemma extend_tuple_last
  {T : UU}
  {n : nat}
  (f : stn n T)
  (last : T)
  (i : stn (S n))
  (Hi : stntonat _ i = n)
  : extend_tuple f last i = last.
Proof.
  unfold extend_tuple.
  refine (maponpaths _ (_ : invmap stnweq i = inr tt)).
  apply (invmaponpathsweq (weqdnicoprod n lastelement)).
  refine (homotweqinvweq _ _ @ _).
  apply stn_eq.
  apply Hi.
Qed.

Lemma extend_tuple_inl
  {T : UU}
  {n : nat}
  (f : stn n T)
  (last : T)
  (i : stn n)
  : extend_tuple f last (stnweq (inl i)) = f i.
Proof.
  exact (maponpaths _ (homotinvweqweq _ (inl i))).
Qed.

Lemma extend_tuple_inr
  {T : UU}
  {n : nat}
  (f : stn n T)
  (last : T)
  (t : unit)
  : extend_tuple f last (stnweq (inr t)) = last.
Proof.
  rewrite (pr2 iscontrunit t).
  exact (maponpaths _ (homotinvweqweq _ _)).
Qed.

3. A lemma specifying when extend_tuple is equal to another tuple


Lemma extend_tuple_eq
  {T : UU}
  {n : nat}
  {last : T}
  {f : stn n T}
  {g : stn (S n) T}
  (Hf : i, f i = g (stnweq (inl i)))
  (Hlast : last = g (stnweq (inr tt)))
  : extend_tuple f last = g.
Proof.
  apply funextfun.
  intro i.
  unfold extend_tuple.
  refine (_ @ maponpaths g (homotweqinvweq stnweq i)).
  induction (invmap stnweq i) as [i' | i'].
  - exact (Hf i').
  - exact Hlast.
Qed.

4. The tactics


Ltac extend_tuple_1 := (
  rewrite (extend_tuple_last _ _ _ (idpath 0 : stntonat _ ( 0 : stn 1) = 0))
).

Ltac extend_tuple_2_0 := rewrite (extend_tuple_i _ _ _ _ (idpath true : ( 0 : stn 2) < 1)).
Ltac extend_tuple_2_1 := rewrite (extend_tuple_last _ _ _ (idpath 1 : stntonat _ ( 1 : stn 2) = 1)).

Ltac extend_tuple_2 :=
  extend_tuple_2_0;
  extend_tuple_2_1.

Ltac extend_tuple_3_0 := rewrite (extend_tuple_i _ _ _ _ (idpath true : ( 0 : stn 3) < 2)).
Ltac extend_tuple_3_1 := rewrite (extend_tuple_i _ _ _ _ (idpath true : ( 1 : stn 3) < 2)).
Ltac extend_tuple_3_2 := rewrite (extend_tuple_last _ _ _ (idpath 2 : stntonat _ ( 2 : stn 3) = 2)).

Ltac extend_tuple_3 :=
  extend_tuple_3_0;
  extend_tuple_3_1;
  extend_tuple_3_2.

Ltac extend_tuple_4_0 := rewrite (extend_tuple_i _ _ _ _ (idpath true : ( 0 : stn 4) < 3)).
Ltac extend_tuple_4_1 := rewrite (extend_tuple_i _ _ _ _ (idpath true : ( 1 : stn 4) < 3)).
Ltac extend_tuple_4_2 := rewrite (extend_tuple_i _ _ _ _ (idpath true : ( 2 : stn 4) < 3)).
Ltac extend_tuple_4_3 := rewrite (extend_tuple_last _ _ _ (idpath 3 : stntonat _ ( 3 : stn 4) = 3)).

Ltac extend_tuple_4 :=
  extend_tuple_4_0;
  extend_tuple_4_1;
  extend_tuple_4_2;
  extend_tuple_4_3.