Library UniMath.SubstitutionSystems.MultiSortedMonadConstruction_coind_actegorical
the coinductive analogue of MultiSortedMonadConstruction_actegorical
author: Ralph Matthes 2023
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.Combinatorics.Lists.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits.
Require Import UniMath.CategoryTheory.Limits.BinProducts.
Require Import UniMath.CategoryTheory.Limits.Products.
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
Require Import UniMath.CategoryTheory.Limits.Coproducts.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.Initial.
Require Import UniMath.CategoryTheory.exponentials.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Categories.HSET.Core.
Require Import UniMath.CategoryTheory.Categories.HSET.Colimits.
Require Import UniMath.CategoryTheory.Categories.HSET.Limits.
Require Import UniMath.CategoryTheory.Categories.HSET.Structures.
Require Import UniMath.CategoryTheory.Categories.HSET.Univalence.
Require Import UniMath.CategoryTheory.Categories.StandardCategories.
Require Import UniMath.CategoryTheory.Groupoids.
Require UniMath.SubstitutionSystems.SortIndexing.
for the additions in 2023
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.FunctorCoalgebras.
Require Import UniMath.CategoryTheory.Limits.Graphs.Limits.
Require Import UniMath.CategoryTheory.Chains.Cochains.
Require Import UniMath.CategoryTheory.Chains.CoAdamek.
Require Import UniMath.CategoryTheory.Chains.OmegaContFunctors.
Require Import UniMath.CategoryTheory.Monoidal.WhiskeredBifunctors.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Actegories.Actegories.
Require Import UniMath.CategoryTheory.Actegories.ConstructionOfActegories.
Require Import UniMath.CategoryTheory.Actegories.MorphismsOfActegories.
Require Import UniMath.CategoryTheory.Actegories.CoproductsInActegories.
Require Import UniMath.CategoryTheory.Actegories.ConstructionOfActegoryMorphisms.
Require Import UniMath.CategoryTheory.Monoidal.CategoriesOfMonoids.
Require Import UniMath.CategoryTheory.Monoidal.Examples.MonoidalPointedObjects.
Require Import UniMath.CategoryTheory.Monoidal.Examples.EndofunctorsMonoidalElementary.
Require Import UniMath.CategoryTheory.Monoidal.Examples.MonadsAsMonoidsElementary.
Require Import UniMath.SubstitutionSystems.EquivalenceLaxLineatorsHomogeneousCase.
Require UniMath.SubstitutionSystems.LiftingInitial_alt.
Require UniMath.SubstitutionSystems.SubstitutionSystems.
Require Import UniMath.SubstitutionSystems.MultiSortedBindingSig.
Require Import UniMath.SubstitutionSystems.MultiSorted_alt.
Require Import UniMath.SubstitutionSystems.MultiSorted_actegorical.
Require Import UniMath.SubstitutionSystems.MultiSortedMonadConstruction_alt.
Require Import UniMath.SubstitutionSystems.GeneralizedSubstitutionSystems.
Require Import UniMath.SubstitutionSystems.ConstructionOfGHSS.
Require UniMath.SubstitutionSystems.BindingSigToMonad_actegorical.
Require Import UniMath.SubstitutionSystems.SigmaMonoids.
Require Import UniMath.SubstitutionSystems.ContinuitySignature.ContinuityOfMultiSortedSigToFunctor.
Require Import UniMath.SubstitutionSystems.ContinuitySignature.MultiSortedSignatureFunctorEquivalence.
Require Import UniMath.SubstitutionSystems.ContinuitySignature.CommutingOfOmegaLimitsAndCoproducts.
Require Import UniMath.SubstitutionSystems.ContinuitySignature.InstantiateHSET.
Local Open Scope cat.
Import BifunctorNotations.
Import MonoidalNotations.
Section ToBeMoved.
Lemma isaprop_isCoproduct
{C : category} {I : UU}
{i : I -> C} {x : C}
(j : ∏ i0 : I, C ⟦ i i0, x ⟧)
: isaprop (isCoproduct I C i x j).
Proof.
repeat (apply impred; intro).
apply isapropiscontr.
Qed.
Definition z_iso_from_coproduct_to_coproduct
{C : category} {I : UU}
{ind : I -> C}
(CC CC' : Coproduct I C ind) : z_iso (pr11 CC) (pr11 CC').
Proof.
use make_z_iso.
- apply CoproductArrow, CoproductIn.
- apply CoproductArrow, CoproductIn.
- split.
+ etrans. 1: apply postcompWithCoproductArrow.
apply pathsinv0, Coproduct_endo_is_identity.
intro.
etrans.
1: apply CoproductInCommutes.
apply CoproductInCommutes.
+ etrans. 1: apply postcompWithCoproductArrow.
apply pathsinv0, Coproduct_endo_is_identity.
intro.
etrans.
1: apply CoproductInCommutes.
apply CoproductInCommutes.
Defined.
Definition eq_Coproduct
{C : category}
{I : UU}
{ind : I -> C}
(C1 C2 : Coproduct I C ind)
(q : pr11 C1 = pr11 C2)
(e : ∏ i : I, CoproductIn I C C2 i = CoproductIn I C C1 i · pr1 (Univalence.idtoiso q))
: C1 = C2.
Proof.
use subtypePath.
{ intro ; apply isaprop_isCoproduct. }
use total2_paths_f.
- exact q.
- rewrite transportf_sec_constant.
apply funextsec ; intro i.
rewrite <- Univalence.idtoiso_postcompose.
exact (! e i).
Defined.
Lemma isaprop_Coproducts
{C : category} (Cuniv : Univalence.is_univalent C) (I : UU)
: isaprop (Coproducts I C).
Proof.
use invproofirrelevance.
intros C1 C2.
apply funextsec ; intro ind.
use eq_Coproduct.
- refine (Univalence.isotoid _ Cuniv _).
apply z_iso_from_coproduct_to_coproduct.
- intro.
rewrite Univalence.idtoiso_isotoid ; cbn.
apply pathsinv0, CoproductInCommutes.
Qed.
Lemma ω_limits_distribute_over_I_coproducts_independent_of_product
{C : category} {I : SET}
(Cuniv : Univalence.is_univalent C)
{l : Lims_of_shape conat_graph C}
(p q : Coproducts (pr1 I) C)
: ω_limits_distribute_over_I_coproducts C I l p
-> ω_limits_distribute_over_I_coproducts C I l q.
Proof.
intro distr.
transparent assert (pq : (p = q)).
{
apply isaprop_Coproducts.
exact Cuniv.
}
induction pq.
exact distr.
Qed.
Definition BinCoproduct_of_functors_Coproduct_of_booleanshape_of_functors
{C D : category}
(BC : Colims_of_shape two_graph D)
(F G : functor C D)
: nat_z_iso (BinCoproduct_of_functors C D (BinCoproducts_from_Colims _ BC) F G)
(coproduct_of_functors bool C D (Coproducts_from_Colims _ _ BC) (λ x : bool, if x then F else G)).
Proof.
use make_nat_z_iso.
- use make_nat_trans.
+ intro c.
use colimOfArrows.
* intro b.
induction b ; apply identity.
* intros b1 b2 e.
apply fromempty.
exact e.
+ intros c1 c2 f.
cbn.
etrans.
2: apply pathsinv0, precompWithColimOfArrows.
etrans.
1: apply postcompWithColimArrow.
apply colimArrowUnique.
intro b.
cbn.
etrans.
1: apply (colimArrowCommutes (BC (bincoproduct_diagram D (F c1) (G c1)))).
cbn.
induction b.
* cbn.
etrans.
1: apply assoc'.
etrans.
1: { apply maponpaths.
apply (colimArrowCommutes (BC (bincoproduct_diagram D (F c2) (G c2))) _ _ true).
}
cbn.
etrans.
1: apply maponpaths, id_left.
apply pathsinv0, id_left.
* cbn.
etrans.
1: apply assoc'.
etrans.
1: { apply maponpaths.
apply (colimArrowCommutes (BC (bincoproduct_diagram D (F c2) (G c2))) _ _ false).
}
cbn.
etrans.
1: apply maponpaths, id_left.
apply pathsinv0, id_left.
- intro c.
use tpair.
+ use colimOfArrows.
* intro b.
induction b ; apply identity.
* intros b1 b2 e.
apply fromempty.
exact e.
+ split ; cbn.
* etrans.
1: apply postcompWithColimArrow.
apply pathsinv0.
use colimArrowUnique.
intro b.
etrans.
1: apply id_right.
cbn.
etrans.
2: apply assoc.
etrans.
2: { apply maponpaths, pathsinv0.
apply (colimArrowCommutes (BC (coproducts_diagram bool D (λ i : bool, (if i then F else G) c))) ).
}
induction b ; refine (_ @ ! id_left _) ; apply pathsinv0, id_left.
* etrans.
1: apply postcompWithColimArrow.
apply pathsinv0.
use colimArrowUnique.
intro b.
etrans.
1: apply id_right.
cbn.
etrans.
2: apply assoc.
etrans.
2: { apply maponpaths, pathsinv0.
apply (colimArrowCommutes (BC (bincoproduct_diagram D (F c) (G c))) ).
}
induction b ; refine (_ @ ! id_left _) ; apply pathsinv0, id_left.
Defined.
Definition Colims_from_BinCoproducts
{C : category} (CC : BinCoproducts C)
: Colims_of_shape two_graph C.
Proof.
unfold Colims_of_shape.
intro d.
unfold diagram in d.
cbn in d.
set (c := CC (pr1 d true) (pr1 d false)).
unfold BinCoproduct in c.
use make_ColimCocone.
- exact (pr11 c).
- use tpair.
+ intro b.
induction b.
* exact (pr121 c).
* exact (pr221 c).
+ intros b1 b2 e.
apply fromempty.
exact e.
- intros co cc.
unfold cocone in cc.
use tpair.
+ exists (pr11 (pr2 c co (pr1 cc true) (pr1 cc false))).
intro b.
induction b.
* exact (pr121 (pr2 c co (pr1 cc true) (pr1 cc false))).
* exact (pr221 (pr2 c co (pr1 cc true) (pr1 cc false))).
+ intro t.
transparent assert (ϕ : (∑ fg : C ⟦ pr11 c, co ⟧, pr121 c · fg = pr1 cc true × pr221 c · fg = pr1 cc false)).
{
use tpair.
- exact (pr1 t).
- split ; apply (pr2 t).
}
set (p := pr2 (pr2 c co (pr1 cc true) (pr1 cc false)) ϕ).
use total2_paths_f.
* apply (base_paths _ _ p).
* apply isaprop_is_cocone_mor.
Defined.
End ToBeMoved.
Section Upstream.
Context (C : category) (BC : BinCoproducts C).
Local Definition Id_H := SubstitutionSystems.Id_H C BC.
Local Definition Const_plus_H := SubstitutionSystems.Const_plus_H C BC.
Context (L : ∏ coch : cochain [C, C], LimCone coch).
Context (distr : ω_limits_distribute_over_I_coproducts [C, C] (bool,, isasetbool) L
(Coproducts_from_Colims bool [C, C]
(Colims_from_BinCoproducts (BinCoproducts_functor_precat C C BC)))).
Definition is_omega_cont_Const_plus_H (X : [C,C]) (H: [C, C] ⟶ [C, C]) :
is_omega_cont H -> is_omega_cont (Const_plus_H H X).
Proof.
intro Hc.
use is_omega_cont_z_iso.
2: {
use z_iso_from_nat_z_iso.
use nat_z_iso_inv.
transparent assert (BC0 : (Colims_of_shape two_graph [C,C])).
{
use Colims_from_BinCoproducts.
apply BinCoproducts_functor_precat.
exact BC.
}
exact (BinCoproduct_of_functors_Coproduct_of_booleanshape_of_functors BC0 (constant_functor [C, C] [C, C] X) H).
}
use (coproduct_of_functors_omega_cont [C,C] (bool,,isasetbool)).
- exact L.
- exact distr.
- intro b.
induction b.
+ apply is_omega_cont_constant_functor.
+ exact Hc.
Defined.
Definition is_omega_cont_Id_H (H: [C, C] ⟶ [C, C]) :
is_omega_cont H -> is_omega_cont (Id_H H)
:= is_omega_cont_Const_plus_H (functor_identity C) H.
End Upstream.
Section MBindingSig.
Context (sort : UU) (Hsort : isofhlevel 3 sort) (C : category).
Context (TC : Terminal C) (IC : Initial C)
(BP : BinProducts C) (BC : BinCoproducts C)
(PC : forall (I : UU), Products I C) (CC : forall (I : UU), isaset I → Coproducts I C).
Local Notation "'1'" := (TerminalObject TC).
Local Notation "a ⊕ b" := (BinCoproductObject (BC a b)).
Require Import UniMath.CategoryTheory.FunctorCoalgebras.
Require Import UniMath.CategoryTheory.Limits.Graphs.Limits.
Require Import UniMath.CategoryTheory.Chains.Cochains.
Require Import UniMath.CategoryTheory.Chains.CoAdamek.
Require Import UniMath.CategoryTheory.Chains.OmegaContFunctors.
Require Import UniMath.CategoryTheory.Monoidal.WhiskeredBifunctors.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Actegories.Actegories.
Require Import UniMath.CategoryTheory.Actegories.ConstructionOfActegories.
Require Import UniMath.CategoryTheory.Actegories.MorphismsOfActegories.
Require Import UniMath.CategoryTheory.Actegories.CoproductsInActegories.
Require Import UniMath.CategoryTheory.Actegories.ConstructionOfActegoryMorphisms.
Require Import UniMath.CategoryTheory.Monoidal.CategoriesOfMonoids.
Require Import UniMath.CategoryTheory.Monoidal.Examples.MonoidalPointedObjects.
Require Import UniMath.CategoryTheory.Monoidal.Examples.EndofunctorsMonoidalElementary.
Require Import UniMath.CategoryTheory.Monoidal.Examples.MonadsAsMonoidsElementary.
Require Import UniMath.SubstitutionSystems.EquivalenceLaxLineatorsHomogeneousCase.
Require UniMath.SubstitutionSystems.LiftingInitial_alt.
Require UniMath.SubstitutionSystems.SubstitutionSystems.
Require Import UniMath.SubstitutionSystems.MultiSortedBindingSig.
Require Import UniMath.SubstitutionSystems.MultiSorted_alt.
Require Import UniMath.SubstitutionSystems.MultiSorted_actegorical.
Require Import UniMath.SubstitutionSystems.MultiSortedMonadConstruction_alt.
Require Import UniMath.SubstitutionSystems.GeneralizedSubstitutionSystems.
Require Import UniMath.SubstitutionSystems.ConstructionOfGHSS.
Require UniMath.SubstitutionSystems.BindingSigToMonad_actegorical.
Require Import UniMath.SubstitutionSystems.SigmaMonoids.
Require Import UniMath.SubstitutionSystems.ContinuitySignature.ContinuityOfMultiSortedSigToFunctor.
Require Import UniMath.SubstitutionSystems.ContinuitySignature.MultiSortedSignatureFunctorEquivalence.
Require Import UniMath.SubstitutionSystems.ContinuitySignature.CommutingOfOmegaLimitsAndCoproducts.
Require Import UniMath.SubstitutionSystems.ContinuitySignature.InstantiateHSET.
Local Open Scope cat.
Import BifunctorNotations.
Import MonoidalNotations.
Section ToBeMoved.
Lemma isaprop_isCoproduct
{C : category} {I : UU}
{i : I -> C} {x : C}
(j : ∏ i0 : I, C ⟦ i i0, x ⟧)
: isaprop (isCoproduct I C i x j).
Proof.
repeat (apply impred; intro).
apply isapropiscontr.
Qed.
Definition z_iso_from_coproduct_to_coproduct
{C : category} {I : UU}
{ind : I -> C}
(CC CC' : Coproduct I C ind) : z_iso (pr11 CC) (pr11 CC').
Proof.
use make_z_iso.
- apply CoproductArrow, CoproductIn.
- apply CoproductArrow, CoproductIn.
- split.
+ etrans. 1: apply postcompWithCoproductArrow.
apply pathsinv0, Coproduct_endo_is_identity.
intro.
etrans.
1: apply CoproductInCommutes.
apply CoproductInCommutes.
+ etrans. 1: apply postcompWithCoproductArrow.
apply pathsinv0, Coproduct_endo_is_identity.
intro.
etrans.
1: apply CoproductInCommutes.
apply CoproductInCommutes.
Defined.
Definition eq_Coproduct
{C : category}
{I : UU}
{ind : I -> C}
(C1 C2 : Coproduct I C ind)
(q : pr11 C1 = pr11 C2)
(e : ∏ i : I, CoproductIn I C C2 i = CoproductIn I C C1 i · pr1 (Univalence.idtoiso q))
: C1 = C2.
Proof.
use subtypePath.
{ intro ; apply isaprop_isCoproduct. }
use total2_paths_f.
- exact q.
- rewrite transportf_sec_constant.
apply funextsec ; intro i.
rewrite <- Univalence.idtoiso_postcompose.
exact (! e i).
Defined.
Lemma isaprop_Coproducts
{C : category} (Cuniv : Univalence.is_univalent C) (I : UU)
: isaprop (Coproducts I C).
Proof.
use invproofirrelevance.
intros C1 C2.
apply funextsec ; intro ind.
use eq_Coproduct.
- refine (Univalence.isotoid _ Cuniv _).
apply z_iso_from_coproduct_to_coproduct.
- intro.
rewrite Univalence.idtoiso_isotoid ; cbn.
apply pathsinv0, CoproductInCommutes.
Qed.
Lemma ω_limits_distribute_over_I_coproducts_independent_of_product
{C : category} {I : SET}
(Cuniv : Univalence.is_univalent C)
{l : Lims_of_shape conat_graph C}
(p q : Coproducts (pr1 I) C)
: ω_limits_distribute_over_I_coproducts C I l p
-> ω_limits_distribute_over_I_coproducts C I l q.
Proof.
intro distr.
transparent assert (pq : (p = q)).
{
apply isaprop_Coproducts.
exact Cuniv.
}
induction pq.
exact distr.
Qed.
Definition BinCoproduct_of_functors_Coproduct_of_booleanshape_of_functors
{C D : category}
(BC : Colims_of_shape two_graph D)
(F G : functor C D)
: nat_z_iso (BinCoproduct_of_functors C D (BinCoproducts_from_Colims _ BC) F G)
(coproduct_of_functors bool C D (Coproducts_from_Colims _ _ BC) (λ x : bool, if x then F else G)).
Proof.
use make_nat_z_iso.
- use make_nat_trans.
+ intro c.
use colimOfArrows.
* intro b.
induction b ; apply identity.
* intros b1 b2 e.
apply fromempty.
exact e.
+ intros c1 c2 f.
cbn.
etrans.
2: apply pathsinv0, precompWithColimOfArrows.
etrans.
1: apply postcompWithColimArrow.
apply colimArrowUnique.
intro b.
cbn.
etrans.
1: apply (colimArrowCommutes (BC (bincoproduct_diagram D (F c1) (G c1)))).
cbn.
induction b.
* cbn.
etrans.
1: apply assoc'.
etrans.
1: { apply maponpaths.
apply (colimArrowCommutes (BC (bincoproduct_diagram D (F c2) (G c2))) _ _ true).
}
cbn.
etrans.
1: apply maponpaths, id_left.
apply pathsinv0, id_left.
* cbn.
etrans.
1: apply assoc'.
etrans.
1: { apply maponpaths.
apply (colimArrowCommutes (BC (bincoproduct_diagram D (F c2) (G c2))) _ _ false).
}
cbn.
etrans.
1: apply maponpaths, id_left.
apply pathsinv0, id_left.
- intro c.
use tpair.
+ use colimOfArrows.
* intro b.
induction b ; apply identity.
* intros b1 b2 e.
apply fromempty.
exact e.
+ split ; cbn.
* etrans.
1: apply postcompWithColimArrow.
apply pathsinv0.
use colimArrowUnique.
intro b.
etrans.
1: apply id_right.
cbn.
etrans.
2: apply assoc.
etrans.
2: { apply maponpaths, pathsinv0.
apply (colimArrowCommutes (BC (coproducts_diagram bool D (λ i : bool, (if i then F else G) c))) ).
}
induction b ; refine (_ @ ! id_left _) ; apply pathsinv0, id_left.
* etrans.
1: apply postcompWithColimArrow.
apply pathsinv0.
use colimArrowUnique.
intro b.
etrans.
1: apply id_right.
cbn.
etrans.
2: apply assoc.
etrans.
2: { apply maponpaths, pathsinv0.
apply (colimArrowCommutes (BC (bincoproduct_diagram D (F c) (G c))) ).
}
induction b ; refine (_ @ ! id_left _) ; apply pathsinv0, id_left.
Defined.
Definition Colims_from_BinCoproducts
{C : category} (CC : BinCoproducts C)
: Colims_of_shape two_graph C.
Proof.
unfold Colims_of_shape.
intro d.
unfold diagram in d.
cbn in d.
set (c := CC (pr1 d true) (pr1 d false)).
unfold BinCoproduct in c.
use make_ColimCocone.
- exact (pr11 c).
- use tpair.
+ intro b.
induction b.
* exact (pr121 c).
* exact (pr221 c).
+ intros b1 b2 e.
apply fromempty.
exact e.
- intros co cc.
unfold cocone in cc.
use tpair.
+ exists (pr11 (pr2 c co (pr1 cc true) (pr1 cc false))).
intro b.
induction b.
* exact (pr121 (pr2 c co (pr1 cc true) (pr1 cc false))).
* exact (pr221 (pr2 c co (pr1 cc true) (pr1 cc false))).
+ intro t.
transparent assert (ϕ : (∑ fg : C ⟦ pr11 c, co ⟧, pr121 c · fg = pr1 cc true × pr221 c · fg = pr1 cc false)).
{
use tpair.
- exact (pr1 t).
- split ; apply (pr2 t).
}
set (p := pr2 (pr2 c co (pr1 cc true) (pr1 cc false)) ϕ).
use total2_paths_f.
* apply (base_paths _ _ p).
* apply isaprop_is_cocone_mor.
Defined.
End ToBeMoved.
Section Upstream.
Context (C : category) (BC : BinCoproducts C).
Local Definition Id_H := SubstitutionSystems.Id_H C BC.
Local Definition Const_plus_H := SubstitutionSystems.Const_plus_H C BC.
Context (L : ∏ coch : cochain [C, C], LimCone coch).
Context (distr : ω_limits_distribute_over_I_coproducts [C, C] (bool,, isasetbool) L
(Coproducts_from_Colims bool [C, C]
(Colims_from_BinCoproducts (BinCoproducts_functor_precat C C BC)))).
Definition is_omega_cont_Const_plus_H (X : [C,C]) (H: [C, C] ⟶ [C, C]) :
is_omega_cont H -> is_omega_cont (Const_plus_H H X).
Proof.
intro Hc.
use is_omega_cont_z_iso.
2: {
use z_iso_from_nat_z_iso.
use nat_z_iso_inv.
transparent assert (BC0 : (Colims_of_shape two_graph [C,C])).
{
use Colims_from_BinCoproducts.
apply BinCoproducts_functor_precat.
exact BC.
}
exact (BinCoproduct_of_functors_Coproduct_of_booleanshape_of_functors BC0 (constant_functor [C, C] [C, C] X) H).
}
use (coproduct_of_functors_omega_cont [C,C] (bool,,isasetbool)).
- exact L.
- exact distr.
- intro b.
induction b.
+ apply is_omega_cont_constant_functor.
+ exact Hc.
Defined.
Definition is_omega_cont_Id_H (H: [C, C] ⟶ [C, C]) :
is_omega_cont H -> is_omega_cont (Id_H H)
:= is_omega_cont_Const_plus_H (functor_identity C) H.
End Upstream.
Section MBindingSig.
Context (sort : UU) (Hsort : isofhlevel 3 sort) (C : category).
Context (TC : Terminal C) (IC : Initial C)
(BP : BinProducts C) (BC : BinCoproducts C)
(PC : forall (I : UU), Products I C) (CC : forall (I : UU), isaset I → Coproducts I C).
Local Notation "'1'" := (TerminalObject TC).
Local Notation "a ⊕ b" := (BinCoproductObject (BC a b)).
Define the category of sorts
This represents "sort → C"
Let sortToC : category := SortIndexing.sortToC sort Hsort C.
Let BCsortToC : BinCoproducts sortToC := SortIndexing.BCsortToC sort Hsort _ BC.
Context (HcoC : Lims_of_shape conat_graph C)
(HCcommuteCC : ∏ I : SET, ω_limits_distribute_over_I_coproducts C I HcoC (CC (pr1 I) (pr2 I))).
Let BCsortToC : BinCoproducts sortToC := SortIndexing.BCsortToC sort Hsort _ BC.
Context (HcoC : Lims_of_shape conat_graph C)
(HCcommuteCC : ∏ I : SET, ω_limits_distribute_over_I_coproducts C I HcoC (CC (pr1 I) (pr2 I))).
Section monad.
Local Definition sortToC2 := SortIndexing.sortToC2 sort Hsort C.
Local Definition sortToC3 := SortIndexing.sortToC3 sort Hsort C.
Let BCsortToC2 : BinCoproducts sortToC2 := SortIndexing.BCsortToC2 sort Hsort _ BC.
Let TsortToC2 : Terminal sortToC2 := SortIndexing.TsortToC2 sort Hsort _ TC.
Local Definition HcoCsortToC : Lims_of_shape conat_graph sortToC := SortIndexing.LLsortToC sort Hsort C conat_graph HcoC.
Local Definition HcoCsortToC2 : Lims_of_shape conat_graph sortToC2 := SortIndexing.LLsortToC2 sort Hsort C conat_graph HcoC.
Local Definition MultiSortedSigToFunctor' : MultiSortedSig sort -> sortToC3 := MultiSortedSigToFunctor' sort Hsort C TC BP BC CC.
Local Definition is_omega_cont_MultiSortedSigToFunctor' (M : MultiSortedSig sort) :
is_omega_cont (MultiSortedSigToFunctor' M) :=
is_omega_cont_MultiSortedSigToFunctor' sort Hsort C TC
BP BC CC HcoC HCcommuteCC M.
Local Definition MultiSortedSigToStrength' : ∏ M : MultiSortedSig sort,
MultiSorted_actegorical.pointedstrengthfromselfaction_CAT sort Hsort C (MultiSortedSigToFunctor' M)
:= MultiSortedSigToStrength' sort Hsort C TC BP BC CC.
Let Id_H : sortToC3 → sortToC3 := Id_H sortToC BCsortToC.
Local Definition sortToC2 := SortIndexing.sortToC2 sort Hsort C.
Local Definition sortToC3 := SortIndexing.sortToC3 sort Hsort C.
Let BCsortToC2 : BinCoproducts sortToC2 := SortIndexing.BCsortToC2 sort Hsort _ BC.
Let TsortToC2 : Terminal sortToC2 := SortIndexing.TsortToC2 sort Hsort _ TC.
Local Definition HcoCsortToC : Lims_of_shape conat_graph sortToC := SortIndexing.LLsortToC sort Hsort C conat_graph HcoC.
Local Definition HcoCsortToC2 : Lims_of_shape conat_graph sortToC2 := SortIndexing.LLsortToC2 sort Hsort C conat_graph HcoC.
Local Definition MultiSortedSigToFunctor' : MultiSortedSig sort -> sortToC3 := MultiSortedSigToFunctor' sort Hsort C TC BP BC CC.
Local Definition is_omega_cont_MultiSortedSigToFunctor' (M : MultiSortedSig sort) :
is_omega_cont (MultiSortedSigToFunctor' M) :=
is_omega_cont_MultiSortedSigToFunctor' sort Hsort C TC
BP BC CC HcoC HCcommuteCC M.
Local Definition MultiSortedSigToStrength' : ∏ M : MultiSortedSig sort,
MultiSorted_actegorical.pointedstrengthfromselfaction_CAT sort Hsort C (MultiSortedSigToFunctor' M)
:= MultiSortedSigToStrength' sort Hsort C TC BP BC CC.
Let Id_H : sortToC3 → sortToC3 := Id_H sortToC BCsortToC.
Construction of terminal coalgebra for the omega-continuous signature functor with lax lineator
Definition coindCodatatypeOfMultisortedBindingSig_CAT (sig : MultiSortedSig sort) (Cuniv : is_univalent C) :
Terminal (CoAlg_category (Id_H (MultiSortedSigToFunctor' sig))).
Proof.
use limCoAlgTerminal.
- exact TsortToC2.
- use is_omega_cont_Id_H.
+ apply HcoCsortToC2.
+ set (CP' := CoproductsBool BCsortToC).
transparent assert (CP'' : (Coproducts bool sortToC)).
{
use Coproducts_functor_precat.
apply CC.
apply isasetbool.
}
transparent assert (CP'_distr : (ω_limits_distribute_over_I_coproducts sortToC (bool,, isasetbool) HcoCsortToC CP'')).
{
use functor_category_ω_limits_distribute_over_I_coproducts.
apply HCcommuteCC.
}
set (q := functor_category_ω_limits_distribute_over_I_coproducts sortToC (bool,, isasetbool) HcoCsortToC CP'' CP'_distr sortToC).
use (ω_limits_distribute_over_I_coproducts_independent_of_product _ _ _ q).
do 2 apply is_univalent_functor_category.
apply Cuniv.
+ exact (is_omega_cont_MultiSortedSigToFunctor' sig).
- apply HcoCsortToC2.
Defined.
Definition coindMHSSOfMultiSortedSig_CAT (sig : MultiSortedSig sort) (Cuniv : is_univalent C) :
mhss (monendocat_monoidal sortToC) (MultiSortedSigToFunctor' sig) (MultiSortedSigToStrength' sig).
Proof.
use (final_coalg_to_mhss (MultiSortedSigToStrength' sig) BCsortToC2).
- apply BindingSigToMonad_actegorical.bincoprod_distributor_pointed_CAT.
- exact (pr1 (coindCodatatypeOfMultisortedBindingSig_CAT sig Cuniv)).
- exact (pr2 (coindCodatatypeOfMultisortedBindingSig_CAT sig Cuniv)).
Defined.
Terminal (CoAlg_category (Id_H (MultiSortedSigToFunctor' sig))).
Proof.
use limCoAlgTerminal.
- exact TsortToC2.
- use is_omega_cont_Id_H.
+ apply HcoCsortToC2.
+ set (CP' := CoproductsBool BCsortToC).
transparent assert (CP'' : (Coproducts bool sortToC)).
{
use Coproducts_functor_precat.
apply CC.
apply isasetbool.
}
transparent assert (CP'_distr : (ω_limits_distribute_over_I_coproducts sortToC (bool,, isasetbool) HcoCsortToC CP'')).
{
use functor_category_ω_limits_distribute_over_I_coproducts.
apply HCcommuteCC.
}
set (q := functor_category_ω_limits_distribute_over_I_coproducts sortToC (bool,, isasetbool) HcoCsortToC CP'' CP'_distr sortToC).
use (ω_limits_distribute_over_I_coproducts_independent_of_product _ _ _ q).
do 2 apply is_univalent_functor_category.
apply Cuniv.
+ exact (is_omega_cont_MultiSortedSigToFunctor' sig).
- apply HcoCsortToC2.
Defined.
Definition coindMHSSOfMultiSortedSig_CAT (sig : MultiSortedSig sort) (Cuniv : is_univalent C) :
mhss (monendocat_monoidal sortToC) (MultiSortedSigToFunctor' sig) (MultiSortedSigToStrength' sig).
Proof.
use (final_coalg_to_mhss (MultiSortedSigToStrength' sig) BCsortToC2).
- apply BindingSigToMonad_actegorical.bincoprod_distributor_pointed_CAT.
- exact (pr1 (coindCodatatypeOfMultisortedBindingSig_CAT sig Cuniv)).
- exact (pr2 (coindCodatatypeOfMultisortedBindingSig_CAT sig Cuniv)).
Defined.
the associated Sigma-monoid
Definition coindSigmaMonoidOfMultiSortedSig_CAT (sig : MultiSortedSig sort) (Cuniv : is_univalent C) : SigmaMonoid (MultiSortedSigToStrength' sig).
Proof.
apply mhss_to_sigma_monoid.
exact (coindMHSSOfMultiSortedSig_CAT sig Cuniv).
Defined.
Proof.
apply mhss_to_sigma_monoid.
exact (coindMHSSOfMultiSortedSig_CAT sig Cuniv).
Defined.
the associated monad
Definition coindMonadOfMultiSortedSig_CAT (sig : MultiSortedSig sort) (Cuniv : is_univalent C) : Monad sortToC.
Proof.
use monoid_to_monad_CAT.
use SigmaMonoid_to_monoid.
- exact (MultiSortedSigToFunctor' sig).
- exact (MultiSortedSigToStrength' sig).
- exact (coindSigmaMonoidOfMultiSortedSig_CAT sig Cuniv).
Defined.
End monad.
End MBindingSig.
Section InstanceHSET.
Context (sort : UU) (Hsort : isofhlevel 3 sort) .
Let sortToSet : category := [path_pregroupoid sort Hsort, HSET].
Definition coindMultiSortedSigToMonadHSET_viaCAT : MultiSortedSig sort → Monad (sortToSet).
Proof.
intros sig; simple refine (coindMonadOfMultiSortedSig_CAT sort Hsort HSET _ _ _ _ _ _ sig _).
- apply TerminalHSET.
- apply BinProductsHSET.
- apply BinCoproductsHSET.
- apply CoproductsHSET.
- apply LimsHSET_of_shape.
- apply I_coproduct_distribute_over_omega_limits_HSET.
- apply is_univalent_HSET.
Defined.
End InstanceHSET.
Proof.
use monoid_to_monad_CAT.
use SigmaMonoid_to_monoid.
- exact (MultiSortedSigToFunctor' sig).
- exact (MultiSortedSigToStrength' sig).
- exact (coindSigmaMonoidOfMultiSortedSig_CAT sig Cuniv).
Defined.
End monad.
End MBindingSig.
Section InstanceHSET.
Context (sort : UU) (Hsort : isofhlevel 3 sort) .
Let sortToSet : category := [path_pregroupoid sort Hsort, HSET].
Definition coindMultiSortedSigToMonadHSET_viaCAT : MultiSortedSig sort → Monad (sortToSet).
Proof.
intros sig; simple refine (coindMonadOfMultiSortedSig_CAT sort Hsort HSET _ _ _ _ _ _ sig _).
- apply TerminalHSET.
- apply BinProductsHSET.
- apply BinCoproductsHSET.
- apply CoproductsHSET.
- apply LimsHSET_of_shape.
- apply I_coproduct_distribute_over_omega_limits_HSET.
- apply is_univalent_HSET.
Defined.
End InstanceHSET.