Library UniMath.CategoryTheory.DisplayedCats.DisplayMapCat

Display Map Category

Contents:
  • add display map as a subclass of morphisms display_map_class C
  • add an interpretation as a subcategory of codomain C
  • show that this subcategory is a cleaving display_map_cleaving
  • define the inclusion functor ι : display_map_cat D disp_codomain C
  • define the map between display maps map_dispmap D D'
  • show that given a Display Map Category we can construct a corresponding Comprehension Category
  • show that given a functor between display map categories, we can construct a pseudo map between the corresponding comprehension categories
  • show the same for natural transformations

Display Map

Definition display_map_class_data (C : category) : UU :=
   a b : C, a --> b -> hProp.
Definition display_map_class_data_to_fun {C} {a b} (D : display_map_class_data C) : a --> b -> hProp := D a b.
Coercion display_map_class_data_to_fun : display_map_class_data >-> Funclass.

Proposition isaset_display_map_class_data (C : category)
  : isaset (display_map_class_data C).
Proof.
  apply impred_isaset; intros x.
  apply impred_isaset; intros y.
  apply impred_isaset; intros f.
  exact isasethProp.
Qed.

Definition has_map_pullbacks {C : category} (D : display_map_class_data C) : UU :=
   (a b c : C) (f : b --> a) (d : c --> a),
    D _ _ d -> (p : Pullback d f), D _ _ (PullbackPr2 p).

Proposition isPredicate_has_map_pullbacks
  (C : univalent_category)
  : isPredicate (@has_map_pullbacks C).
Proof.
  intros D; apply impred_isaprop;
  intros x; apply impred_isaprop;
  intros y; apply impred_isaprop;
  intros z; apply impred_isaprop;
  intros f; apply impred_isaprop;
  intros g; apply impred_isaprop;
  intros H.
  apply isaproptotal2.
  - intros pb. apply (D pb y _).
  - intros pb₁ pb₂ H₁ H₂. apply isaprop_Pullback. apply C.
Qed.

Definition display_map_class (C : category) : UU :=
   (D : display_map_class_data C), has_map_pullbacks D.

Proposition display_map_class_equiv_weq_data_equiv
  {C : univalent_category}
  (D D' : display_map_class C)
  : D = D' pr1 D = pr1 D'.
Proof.
  use (_ total2_paths_equiv _ _ _)%weq.
  use make_weq.
  - intros p. apply p.
  - use isweq_iso.
    + intros base_p. exists base_p.
      apply isPredicate_has_map_pullbacks.
    + cbn. intros p. use subtypePath.
      * intros base_p. apply isasetaprop. apply isPredicate_has_map_pullbacks.
      * apply idpath.
    + intros p. apply idpath.
Qed.

Definition display_map_class_to_data {C : category} (D : display_map_class C) : display_map_class_data C := pr1 D.
Coercion display_map_class_to_data : display_map_class >-> display_map_class_data.

Definition isPredicate_display_map_class
  {C : category} (D : display_map_class C)
  (a b : C)
  : isPredicate (pr1 D a b).
Proof.
  intros f. apply (pr2 (pr1 D a b f)).
Qed.

Display Map Category

This is based on the definition for disp_codomain. See: Codomain.v

Definition disp_map_ob_mor {C : category} (D : display_map_class C) : disp_cat_ob_mor C.
Proof.
  exists (λ x : C, y (f : y --> x), (pr1 D) _ _ f).
  intros x y dx dy f.
  exact ( df : pr1 dx --> pr1 dy, df · pr12 dy = pr12 dx · f).
Defined.

Definition disp_map_id_comp
  {C : category} {D : display_map_class C}
  : disp_cat_id_comp _ (disp_map_ob_mor D).
Proof.
  split; cbn.
  - intros x xx.
    exists (identity (pr1 xx)).
    abstract (rewrite id_left, id_right; reflexivity ).
  - intros x y z f g xx yy zz ff gg.
    exists (pr1 ff · pr1 gg).
    abstract (
      rewrite <- assoc; rewrite (pr2 gg), assoc, (pr2 ff);
      symmetry; exact (assoc _ _ _)).
Defined.

Definition display_map_cat_data {C : category} (D : display_map_class C) : disp_cat_data _ := (disp_map_ob_mor D ,, disp_map_id_comp).

Definition eq_display_map_cat_ob
  {C : category} {D : display_map_class C}
  {x : C}
  {dx₁ dx₂ : display_map_cat_data D x}
  {p₁ : pr1 dx₁ = pr1 dx₂}
  (p₂ : transportf (λ y, y --> x) p₁ (pr12 dx₁) = pr12 dx₂)
  : dx₁ = dx₂.
Proof.
  use total2_paths_f; try (use subtypePath).
  - exact p₁.
  - exact (isPredicate_display_map_class _ _ _).
  - rewrite pr1_transportf. exact p₂.
Qed.

Proposition transportf_display_map
  {C : category} {D : display_map_class C}
  {x₁ x₂ : C} {dx₁ : y d, pr1 D y x₁ d} {dx₂ : y d, pr1 D y x₂ d}
  {f g : x₁ --> x₂}
  (p : f = g) (ff : df : pr1 dx₁ --> pr1 dx₂, df · pr12 dx₂ = pr12 dx₁ · f)
  : pr1 (transportf (λ _, _) p ff) = pr1 ff.
Proof.
  refine (pr1_transportf (A := C_, _) _ _ @ _).
  rewrite transportf_const.
  reflexivity.
Qed.

Proposition transportf_display_map_mor
  {C : category} {D : display_map_class C}
  {x y : C} {dx : display_map_cat_data D x} {dy : display_map_cat_data D y}
  {f g : x --> y}
  (p : f = g) (ff : dx -->[f] dy)
  : pr1 (transportf (mor_disp dx dy) p ff) = pr1 ff.
Proof.
  exact (transportf_display_map _ _).
Qed.

Proposition transportb_display_map
  {C : category} {D : display_map_class C}
  {x₁ x₂ : C} {dx₁ : y d, pr1 D y x₁ d} {dx₂ : y d, pr1 D y x₂ d}
  {f g : x₁ --> x₂}
  (p : g = f) (ff : df : pr1 dx₁ --> pr1 dx₂, df · pr12 dx₂ = pr12 dx₁ · f)
  : pr1 (transportb (λ _, _) p ff) = pr1 ff.
Proof.
  exact (transportf_display_map _ _).
Qed.

Proposition transportb_display_map_mor
  {C : category} {D : display_map_class C}
  {x y : C} {dx : display_map_cat_data D x} {dy : display_map_cat_data D y}
  {f g : x --> y}
  (p : g = f) (ff : dx -->[f] dy)
  : pr1 (transportb (mor_disp dx dy) p ff) = pr1 ff.
Proof.
  exact (transportb_display_map _ _).
Qed.

Definition eq_display_map_map
  {C : category} {D : display_map_class C}
  {x₁ x₂ : C} {dx₁ : y d, pr1 D y x₁ d} {dx₂ : y d, pr1 D y x₂ d}
  {f : x₁ --> x₂} {ff gg : df : pr1 dx₁ --> pr1 dx₂, df · pr12 dx₂ = pr12 dx₁ · f}
  (p : pr1 ff = pr1 gg)
  : ff = gg.
Proof.
  use subtypePath.
  - exact (λ _, homset_property _ _ _ _ _).
  - exact p.
Qed.

Definition eq_display_map_cat_mor
  {C : category} {D : display_map_class C}
  {x y : C} {dx : display_map_cat_data D x} {dy : display_map_cat_data D y}
  {f : x --> y} {ff gg : dx -->[f] dy}
  (p : pr1 ff = pr1 gg)
  : ff = gg.
Proof.
  exact (eq_display_map_map p).
Qed.

Definition display_map_cat_axioms {C : category} {D : display_map_class C}
  : disp_cat_axioms C (display_map_cat_data D).
Proof.
  use tpair; try (use tpair); try (use tpair); intros; cbn in *.
  - use eq_display_map_cat_mor; cbn.
    rewrite transportb_display_map with (ff := ff).
    exact (id_left _).
  - use eq_display_map_cat_mor; cbn.
    rewrite transportb_display_map with (ff := ff).
    exact (id_right _).
  - use eq_display_map_cat_mor.
    rewrite transportb_display_map with (ff := (pr1 ff · pr1 gg · pr1 hh ,, _)).
    exact (assoc _ _ _).
  - intros. apply isaset_total2.
    + exact (homset_property _ _ _).
    + intros. apply isasetaprop. exact (homset_property _ _ _ _ _).
Qed.

Definition display_map_cat {C : category} (D : display_map_class C) : disp_cat C
  := (display_map_cat_data D ,, display_map_cat_axioms).

Proofs about isomorphisms

These are largely based on proofs from `codomain`.

Definition iso_to_display_map_iso
  {C : category} (D : display_map_class C)
  {x : C} (dx₁ dx₂ : display_map_cat D x)
  (h : z_iso (pr1 dx₁) (pr1 dx₂))
  (p : (pr12 dx₁) = h · (pr12 dx₂))
  : z_iso_disp (identity_z_iso x) dx₁ dx₂.
Proof.
  use make_z_iso_disp.
  - refine (pr1 h ,, _).
    abstract (cbn ; rewrite id_right ; exact (!p)).
  - simple refine (_ ,, _ ,, _).
    + refine (inv_from_z_iso h ,, _).
      abstract (cbn ; rewrite id_right ; use z_iso_inv_on_right ; exact p).
    + abstract (
          use eq_display_map_cat_mor;
          symmetry; etrans; [ apply transportb_display_map_mor | symmetry; apply z_iso_after_z_iso_inv ]).
    + abstract (
          use eq_display_map_cat_mor;
          symmetry; etrans; [ apply transportb_display_map_mor | symmetry; apply z_iso_inv_after_z_iso ]).
Defined.

Definition display_map_iso_to_iso
  {C : category} (D : display_map_class C)
  {x : C} (dx₁ dx₂ : display_map_cat D x)
  (ff : z_iso_disp (identity_z_iso x) dx₁ dx₂)
  : (h : z_iso (pr1 dx₁) (pr1 dx₂)), (pr12 dx₁) = h · (pr12 dx₂).
Proof.
  simple refine (_ ,, _).
  - use make_z_iso.
    + exact (pr11 ff).
    + exact (pr1 (inv_mor_disp_from_z_iso ff)).
    + split.
      * abstract (
        refine (maponpaths pr1 (inv_mor_after_z_iso_disp ff) @ _);
        etrans; [apply transportb_display_map_mor | apply idpath ]).
      * abstract (
        refine (maponpaths pr1 (z_iso_disp_after_inv_mor ff) @ _);
        etrans; [apply transportb_display_map_mor | apply idpath ]).
  - abstract
      (refine (!(pr21 ff @ _)) ; apply id_right).
Defined.

Definition display_map_iso_weq_iso
  {C : category} (D : display_map_class C)
  {x : C} (dx₁ dx₂ : display_map_cat D x)
  : ( (h : z_iso (pr1 dx₁) (pr1 dx₂)), (pr12 dx₁) = h · (pr12 dx₂))
      
      z_iso_disp (identity_z_iso x) dx₁ dx₂.
Proof.
  use weq_iso.
    - exact (λ h, iso_to_display_map_iso _ _ _ (pr1 h) (pr2 h)).
    - exact (display_map_iso_to_iso _ _ _).
    - abstract
        (intro ff ;
         use subtypePath ; [ intro ; apply homset_property | ] ;
         use z_iso_eq ; cbn ;
         apply idpath).
    - abstract
        (intro ff ;
         use subtypePath ; [ intro ; apply isaprop_is_z_iso_disp | ] ;
         use eq_display_map_cat_mor ;
         cbn ;
         apply idpath).
Defined.

Bit of univalence

This was written following `disp_univalent_disp_codomain`.
Lemma is_univalent_display_map_cat
  (C : univalent_category)
  (D : display_map_class C)
  : is_univalent_disp (display_map_cat D).
Proof.
  use is_univalent_disp_from_fibers.
  intros x dx₁ dx₂.
  use weqhomot.
  - refine (display_map_iso_weq_iso _ _ _
               weqtotal2 (make_weq _ (univalent_category_is_univalent C _ _)) _
               total2_paths_equiv _ _ _)%weq.
    abstract (
      induction dx₁ as [y₁ [d₁ H₁]]; induction dx₂ as [y₂ [d₂ H₂]]; cbn;
       intro p; induction p; cbn;
       rewrite id_left;
       intermediate_weq ( p : d₁ = d₂, transportf (λ f, pr1 D y₁ x f) p H₁ = H₂);
       [ exact (total2_paths_equiv _ _ _) | refine (weqpr1 _ _); intros p; exact (isPredicate_display_map_class _ _ _ _ _ _) ]).
  - intro p. induction p. use subtypePath.
    { intro. apply isaprop_is_z_iso_disp. }
    use eq_display_map_cat_mor. cbn.
    apply idpath.
Qed.

Definition univalent_display_map_cat
  {C : univalent_category} (D : display_map_class C)
  : disp_univalent_category C.
Proof.
  use make_disp_univalent_category.
  - exact (display_map_cat D).
  - exact (is_univalent_display_map_cat C D).
Defined.

Definition display_map_pullback
  {C : category} {D : display_map_class C}
  {Γ Γ' : C} (f : Γ' --> Γ)
  (d : display_map_cat D Γ)
  := pr2 D _ _ _ f (pr12 d) (pr22 d).

Proof that display_map_cat is a cleaving.
Definition display_map_cartesian_candidate
  {C : category} {D : display_map_class C}
  {Γ Γ' : C} (f : Γ' --> Γ)
  (d : display_map_cat D Γ)
  : (d' : display_map_cat D Γ'), d' -->[f] d.
Proof.
  use tpair.
  - use tpair.
    + exact (PullbackObject (pr1 (display_map_pullback f d))).
    + exact (PullbackPr2 (pr1 (display_map_pullback f d)) ,, (pr2 (display_map_pullback f d))).
  - use tpair.
    + exact (PullbackPr1 (pr1 (display_map_pullback f d))).
    + cbn. exact (PullbackSqrCommutes (pr1 (display_map_pullback f d))).
Defined.

Definition display_map_is_cartesian
  {C : category} {D : display_map_class C}
  {Γ Γ' : C} (f : Γ' --> Γ)
  (d : display_map_cat D Γ)
  : is_cartesian (pr2 (display_map_cartesian_candidate f d)).
Proof.
  intros Γ'' g d'' [t Ht].
  use tpair.
  - use tpair.
    + exists ((PullbackArrow (pr1 (display_map_pullback f d)) (pr1 d'') t (pr12 d'' · g) (Ht @ assoc _ _ _))).
      exact (PullbackArrow_PullbackPr2 _ _ _ _ _).
    + simpl. use subtypePath.
      abstract ( exact (λ _, homset_property _ _ _ _ _)).
      exact (PullbackArrow_PullbackPr1 _ _ _ _ _).
  - simpl. intros [[p Hp] Hcomp]. use subtypePath.
    abstract ( intros [p' Hp']; exact (homsets_disp (g · f) d'' _ _ (t,,Ht))).
    use subtypePath.
    abstract ( exact (λ _, homset_property _ _ _ _ _)).
    simpl. apply PullbackArrowUnique'.
    + apply base_paths in Hcomp. simpl in Hcomp. exact Hcomp.
    + exact Hp.
Defined.

Definition display_map_cleaving
  {C : category} {D : display_map_class C}
  : cleaving (display_map_cat D).
Proof.
  intros Γ Γ' f d.
  exists (pr1 (display_map_cartesian_candidate f d)).
  exists (pr2 (display_map_cartesian_candidate f d)).
  exact (display_map_is_cartesian f d).
Defined.

Inclusion Functor


Definition display_map_inclusion
  {C : category} (D : display_map_class C)
  : disp_functor (functor_identity C) (display_map_cat D) (disp_codomain C).
Proof.
  use tpair; use tpair; simpl.
  - exact (λ _ d, pr1 d ,, pr12 d).
  - exact (λ _ _ _ _ _ ff, ff).
  - simpl. intros x dx. use eq_display_map_cat_mor.
    reflexivity.
  - simpl. intros x y z dx dy dz f g ff gg. use eq_display_map_cat_mor.
    reflexivity.
Defined.
Notation "'ι'" := display_map_inclusion : disp_map_cat.

Definition ι_preserves_cartesian
  {C : category} {D : display_map_class C}
  : (c c' : C) (f : c' --> c) (d : display_map_cat D c),
  is_cartesian ( (ι D) (display_map_cleaving c c' f d)).
Proof.
  intros x y f dx.
  apply cartesian_iff_isPullback.
  simpl.
  apply isPullback_Pullback.
Qed.

Lemma is_cartesian_ι
  {C : category} (D : display_map_class C)
  : is_cartesian_disp_functor (ι D).
Proof.
  apply (cartesian_functor_from_cleaving display_map_cleaving).
  exact (ι_preserves_cartesian).
Qed.

Definition cartesian_ι
  {C : category} (D : display_map_class C)
  : cartesian_disp_functor (functor_identity C) (display_map_cat D) (disp_codomain C)
  := (ι D ,, is_cartesian_ι D).

Lemma ι_ff
  {C : category} (D : display_map_class C)
  : disp_functor_ff (ι D).
Proof.
  intros x₁ x₂ dx₁ dx₂ f [ι_g Hsq].
  unfold iscontr, hfiber.
  assert (Heq : (♯(ι D))%mor_disp (ι_g ,, Hsq) = (ι_g,,Hsq)).
  {
    cbn. exact (idpath _).
  }
  exists ((ι_g ,, Hsq) ,, Heq).
  intros [[g' Hsq'] Heq'].
  use subtypePath.
  - intros t. exact (homsets_disp _ _ _ _ _).
  - cbn. exact Heq'.
Qed.

Functor between Display Map Classes


Definition preserves_maps {C C' : category} (D : display_map_class C) (D' : display_map_class C') (F : C C') :=
   (a b : C) (d : a --> b), D d -> D' (#F d).

Proposition isPredicate_preserves_maps
  {C C' : category} (D : display_map_class C) (D' : display_map_class C') :
  isPredicate (preserves_maps D D').
Proof.
  intros F.
  use impred_isaprop; intros x.
  use impred_isaprop; intros y.
  use impred_isaprop; intros f.
  simpl. use isapropimpl.
  apply isPredicate_display_map_class.
Qed.

Definition preserves_pullbacks {C C' : category} (D : display_map_class C) (D' : display_map_class C') (F : C C') :=
   (a b c : C) (f : b --> a) (g : c --> a) (_ : D f) (pb : Pullback f g), isPullback (!functor_comp F _ _ @ maponpaths (#F) (PullbackSqrCommutes pb) @ functor_comp F _ _).

Proposition isPredicate_preserves_pullbacks
  {C C' : category} (D : display_map_class C) (D' : display_map_class C') :
  isPredicate (preserves_pullbacks D D').
Proof.
  intros F.
  use impred_isaprop; intros x.
  use impred_isaprop; intros y.
  use impred_isaprop; intros z.
  use impred_isaprop; intros f.
  use impred_isaprop; intros g.
  simpl. use isapropimpl.
  use impred_isaprop; intros pb.
  apply isaprop_isPullback.
Qed.

Definition is_display_map_class_functor {C C' : category} (D : display_map_class C) (D' : display_map_class C') (F: C C') := preserves_maps D D' F × preserves_pullbacks D D' F.

Proposition isPredicate_is_display_map_class_functor
  {C C' : category} (D : display_map_class C) (D' : display_map_class C') :
  isPredicate (is_display_map_class_functor D D').
Proof.
  intros F. use isapropdirprod.
  - apply isPredicate_preserves_maps.
  - apply isPredicate_preserves_pullbacks.
Qed.

Definition preserves_maps_is_display_map_class_functor
  {C C' : category} (D : display_map_class C) (D' : display_map_class C') (F : C C')
  : is_display_map_class_functor D D' F -> preserves_maps D D' F := pr1.
Definition preserves_pullbacks_is_display_map_class_functor
  {C C' : category} (D : display_map_class C) (D' : display_map_class C') (F : C C')
  : is_display_map_class_functor D D' F -> preserves_pullbacks D D' F := pr2.

Definition display_map_class_iso_to_id
  {C : univalent_category} {D₁ D₂ : display_map_class C}
  (HF : is_display_map_class_functor D₁ D₂ (functor_identity C))
  (HG : is_display_map_class_functor D₂ D₁ (functor_identity C))
  : D₁ = D₂.
Proof.
  use subtypePath.
  - apply isPredicate_has_map_pullbacks.
  - apply funextsec. intros x.
    apply funextsec. intros y.
    apply funextsec. intros f.
    use subtypePath. { intro. apply isapropisaprop. }
    apply (invmap (univalence _ _)). use weq_iso.
    + apply (preserves_maps_is_display_map_class_functor _ _ _ HF).
    + apply (preserves_maps_is_display_map_class_functor _ _ _ HG).
    + intro. apply propproperty.
    + intro. apply propproperty.
Qed.

Definition display_map_class_equiv_to_display_map_class_adjoint
  {C : category}
  (D D' : display_map_class C)
  : pr1 D = pr1 D'
  ->
    (is_display_map_class_functor D D' (functor_identity C))
      ×
    (is_display_map_class_functor D' D (functor_identity C)).
Proof.
  intros p. split; split.
  - intros x y f H. unfold display_map_class_to_data. rewrite <- p. apply H.
  - intros x y z f g Hf pb. apply pb.
  - intros x y f H. unfold display_map_class_to_data. rewrite -> p. apply H.
  - intros x y z f g Hf pb. apply pb.
Defined.

Definition display_map_class_adjoint_to_display_map_class_equiv
  {C : univalent_category}
  (D D' : display_map_class C)
  : (is_display_map_class_functor D D' (functor_identity C))
      ×
    (is_display_map_class_functor D' D (functor_identity C))
  ->
    pr1 D = pr1 D'.
Proof.
  intros [HF HG].
  apply (maponpaths (pr1) (display_map_class_iso_to_id HF HG)).
Defined.

Proposition display_map_class_equiv_to_adj_to_equiv
  {C : univalent_category}
  (D D' : display_map_class C)
  : p : pr1 D = pr1 D',
    display_map_class_adjoint_to_display_map_class_equiv D D'
    (display_map_class_equiv_to_display_map_class_adjoint D D' p) = p.
Proof.
  intros p. apply isaset_display_map_class_data.
Qed.

Proposition display_map_class_adjoint_to_equiv_to_adj
  {C : univalent_category}
  (D D' : display_map_class C)
  : adj : is_display_map_class_functor D D' (functor_identity C) × is_display_map_class_functor D' D (functor_identity C),
    display_map_class_equiv_to_display_map_class_adjoint D D'
    (display_map_class_adjoint_to_display_map_class_equiv D D' adj) = adj.
Proof.
  intros [HF HG].
  apply dirprod_paths; apply isPredicate_is_display_map_class_functor.
Qed.

Lemma display_map_class_data_equiv_weq_display_map_class_adjoint
  {C : univalent_category}
  (D D' : display_map_class C)
  : pr1 D = pr1 D'
    
    (is_display_map_class_functor D D' (functor_identity C))
      ×
    (is_display_map_class_functor D' D (functor_identity C)).
Proof.
  use make_weq.
  - apply display_map_class_equiv_to_display_map_class_adjoint.
  - use isweq_iso.
    + apply display_map_class_adjoint_to_display_map_class_equiv.
    + apply display_map_class_equiv_to_adj_to_equiv.
    + apply display_map_class_adjoint_to_equiv_to_adj.
Qed.

Definition display_map_class_functor {C C' : category} (D : display_map_class C) (D' : display_map_class C') :=
   (F: C C'), is_display_map_class_functor D D' F.

Definition functor_from_display_map_class_functor {C C' : category} (D : display_map_class C) (D' : display_map_class C') (F : display_map_class_functor D D') : C C' := pr1 F.
Coercion functor_from_display_map_class_functor : display_map_class_functor >-> functor.

Definition display_map_class_functor_preserves_pullback
  {C₁ C₂ : category} {D₁ : display_map_class C₁} {D₂ : display_map_class C₂}
  (F : display_map_class_functor D₁ D₂)
  {a b c: C₁} {d : b --> a} {f : c --> a} (H : D₁ d) (pb : Pullback d f)
  : Pullback (#F d) (#F f).
Proof.
  repeat (use tpair).
  - exact (F pb).
  - exact (#F (PullbackPr1 pb)).
  - exact (#F (PullbackPr2 pb)).
  - simpl. exact (!functor_comp F _ _ @ maponpaths (#F) (PullbackSqrCommutes pb) @ functor_comp F _ _).
  - simpl. exact (pr22 F _ _ _ _ _ H pb).
Defined.

Definition is_display_map_class_functor_identity
  {C : category} (D : display_map_class C)
  : is_display_map_class_functor D D (functor_identity C).
Proof.
  exact ((λ _ _ _ tt, tt) ,, (λ _ _ _ _ _ _ pb, isPullback_Pullback pb)).
Defined.

Definition display_map_class_functor_identity
  {C : category} (D : display_map_class C)
  : display_map_class_functor D D
  := (_ ,, is_display_map_class_functor_identity _).

Definition is_display_map_class_functor_composite
  {C₁ C₂ C₃ : category}
  {D₁ : display_map_class C₁} {D₂ : display_map_class C₂} {D₃ : display_map_class C₃}
  {F₁ : C₁ C₂} {F₂ : C₂ C₃}
  (HF₁ : is_display_map_class_functor D₁ D₂ F₁) (HF₂ : is_display_map_class_functor D₂ D₃ F₂)
  : is_display_map_class_functor D₁ D₃ (F₁ F₂).
Proof.
  split.
  - exact (λ _ _ _ tt, (pr1 HF₂) _ _ _ ((pr1 HF₁) _ _ _ tt)).
  - intros ? ? ? ? ? tt pb; unfold functor_comp; simpl.
    apply ((pr2 HF₂) _ _ _ _ _ ((pr1 HF₁) _ _ _ tt) (display_map_class_functor_preserves_pullback (_ ,, HF₁) tt pb)).
Defined.

Definition display_map_class_functor_composite
  {C₁ C₂ C₃ : category}
  {D₁ : display_map_class C₁} {D₂ : display_map_class C₂} {D₃ : display_map_class C₃}
  (F₁ : display_map_class_functor D₁ D₂)
  (F₂ : display_map_class_functor D₂ D₃)
  : display_map_class_functor D₁ D₃
  := (_ ,, is_display_map_class_functor_composite (pr2 F₁) (pr2 F₂)).

Functor between Display Map Categories

Define how functor `F` acts on the Display Map Category

Here, we once again follow the definitions for codomain from Codomain/CodFunctor.v.
Definition display_map_functor_data
  {C₁ C₂ : category}
  {D₁ : display_map_class C₁} {D₂ : display_map_class C₂}
  (F : display_map_class_functor D₁ D₂)
  : disp_functor_data F (display_map_cat D₁) (display_map_cat D₂).
Proof.
  simple refine (_ ,, _).
  - exact (λ x yf, F (pr1 yf) ,, #F (pr12 yf) ,, pr12 F _ _ _ (pr22 yf)).
  - refine (λ x₁ x₂ yf₁ yf₂ g hp, #F (pr1 hp) ,, _).
    abstract
      (cbn ;
       rewrite <- !functor_comp ;
       apply maponpaths ;
       exact (pr2 hp)).
Defined.

Proposition display_map_functor_axioms
  {C₁ C₂ : category}
  {D₁ : display_map_class C₁} {D₂ : display_map_class C₂}
  (F : display_map_class_functor D₁ D₂)
  : disp_functor_axioms (display_map_functor_data F).
Proof.
  split.
  - intros x yf.
    use eq_display_map_cat_mor.
    simpl.
    rewrite (@transportb_display_map_mor _ _ _ _ (F (pr1 yf),, # F (pr12 yf),, (pr12 F) (pr1 yf) x (pr12 yf) (pr22 yf))).
    cbn.
    rewrite functor_id.
    apply idpath.
  - intros x₁ x₂ y₃ yf₁ yf₂ yf₃ f₁ f₂ gp₁ gp₂.
    use eq_display_map_cat_mor.
    simpl.
    rewrite (@transportb_display_map_mor _ _ _ _ (F (pr1 yf₁),, # F (pr12 yf₁),, (pr12 F) (pr1 yf₁) x₁ (pr12 yf₁) (pr22 yf₁))).
    cbn.
    rewrite functor_comp.
    apply idpath.
Qed.

Definition display_map_functor
  {C₁ C₂ : category}
  {D₁ : display_map_class C₁} {D₂ : display_map_class C₂}
  (F : display_map_class_functor D₁ D₂)
  : disp_functor F (display_map_cat D₁) (display_map_cat D₂).
Proof.
  simple refine (_ ,, _).
  - exact (display_map_functor_data F).
  - exact (display_map_functor_axioms F).
Defined.

Lemma isPullback_is_cartesian_display_map
  {C : category} (D : display_map_class C)
  {x₁ x₂ : C} {f : x₁ --> x₂}
  {dx₁ : display_map_cat D x₁} {dx₂ : display_map_cat D x₂} {df : dx₁ -->[f] dx₂}
  : isPullback (pr2 df) -> is_cartesian df.
Proof.
  intros Hpb x₃ g dx₃ dh. unfold isPullback in Hpb. specialize Hpb with (pr1 dx₃) (pr1 dh) (pr12 dx₃ · g).
  pose (pb := Hpb (pr2 dh @ assoc _ _ _)). destruct pb as [[hk [H1 H2]] Hunique].
  repeat (use tpair).
  - exact hk.
  - exact H2.
  - use eq_display_map_cat_mor; cbn. exact H1.
  - intros [[hk' H2'] H1'].
    repeat (use subtypePath).
    + exact (λ _, homsets_disp _ _ _ _ _).
    + exact (λ _, homset_property _ _ _ _ _).
    + simpl. apply base_paths in H1'. simpl in *.
      set (aux := (hk' ,, (H1' ,, H2')) : hk : C pr1 dx₃, pr1 dx₁ , hk · pr1 df = pr1 dh × hk · pr12 dx₁ = pr12 dx₃ · g).
      specialize Hunique with aux.
      apply base_paths in Hunique. simpl in Hunique.
      exact Hunique.
Qed.

Lemma is_cartesian_display_map_functor
  {C₁ C₂ : category}
  {D₁ : display_map_class C₁} {D₂ : display_map_class C₂}
  (F : display_map_class_functor D₁ D₂)
  : is_cartesian_disp_functor (display_map_functor F).
Proof.
  apply (cartesian_functor_from_cleaving display_map_cleaving).
  intros x₁ x₂ f dx₁.
  apply isPullback_is_cartesian_display_map.
  apply (pr22 F).
  exact (pr22 dx₁).
Qed.

Definition display_map_functor_composite_to_composite_display_map_functor_data
  {C₁ C₂ C₃ : category} {D₁ : display_map_class C₁} {D₂ : display_map_class C₂} {D₃ : display_map_class C₃}
  (F : display_map_class_functor D₁ D₂) (G : display_map_class_functor D₂ D₃)
  : disp_nat_trans_data (nat_trans_id (functor_composite_data (pr1 F) (pr1 G)))
      (disp_functor_composite_data (display_map_functor F) (display_map_functor G))
      (display_map_functor_data (display_map_class_functor_composite F G)).
Proof.
  intros x dx; cbn.
  exists (identity _).
  abstract (exact (id_left _ @ !id_right _)).
Defined.

Definition display_map_functor_composite_to_composite_display_map_functor_axiom
  {C₁ C₂ C₃ : category} {D₁ : display_map_class C₁} {D₂ : display_map_class C₂} {D₃ : display_map_class C₃}
  (F : display_map_class_functor D₁ D₂) (G : display_map_class_functor D₂ D₃)
  : disp_nat_trans_axioms (display_map_functor_composite_to_composite_display_map_functor_data F G).
Proof.
  intros x₁ x₂ f dx₁ dx₂ df.
  use subtypePath. abstract (exact (λ _, homset_property _ _ _ _ _)).
  symmetry. etrans.
  apply transportb_display_map_mor.
  simpl.
  exact (id_left _ @ !id_right _).
Qed.

Definition display_map_functor_composite_to_composite_display_map_functor
  {C₁ C₂ C₃ : category} {D₁ : display_map_class C₁} {D₂ : display_map_class C₂} {D₃ : display_map_class C₃}
  {F : display_map_class_functor D₁ D₂} {G : display_map_class_functor D₂ D₃}
  : disp_nat_trans (nat_trans_id (functor_composite_data (pr1 F) (pr1 G)))
      (disp_functor_composite_data (display_map_functor F) (display_map_functor G))
      (display_map_functor_data (display_map_class_functor_composite F G)).
Proof.
  use tpair.
  - exact (display_map_functor_composite_to_composite_display_map_functor_data _ _).
  - exact (display_map_functor_composite_to_composite_display_map_functor_axiom _ _).
Defined.

Natural Transformation

Once more we rely on the definition for the codomain display category to define the transformation between two display map categories.
Definition display_map_nat_trans
  {C₁ C₂ : category}
  {D₁ : display_map_class C₁} {D₂ : display_map_class C₂}
  {F G : display_map_class_functor D₁ D₂}
  (α : F G)
  : disp_nat_trans α (display_map_functor F) (display_map_functor G).
Proof.
  simple refine (_ ,, _).
  - refine (λ y xf, α _ ,, _).
    abstract
      (cbn ;
       apply (!(nat_trans_ax α _ _ _))).
  - abstract (intros y₁ y₂ g xf₁ xf₂ p ;
       use eq_display_map_cat_mor ;
       rewrite (@transportb_display_map_mor _ _ _ _ (display_map_functor F y₁ xf₁)) ;
       apply (nat_trans_ax α _ _ _)).
Defined.

Corresponding Comprehension Category

Definition display_map_to_comprehension_category
  {C : category}
  (D : display_map_class C)
  :
  comprehension_cat_structure C.
Proof.
  use make_comprehension_cat_structure.
  - exact (display_map_cat D).
  - exact display_map_cleaving.
  - exact (ι D).
  - exact ι_preserves_cartesian.
Defined.
Notation "'DM2CC'" := display_map_to_comprehension_category : disp_map_cat.

Pseudo Map corresponding to a functor between Display Map Categories

Definition map_ι_is_ι_map
  {C₁ C₂ : category}
  {D₁ : display_map_class C₁} {D₂ : display_map_class C₂}
  (F : display_map_class_functor D₁ D₂)
  : disp_nat_z_iso
      (disp_functor_composite (π_χ (DM2CC D₁)) (disp_codomain_functor F))
      (disp_functor_composite (display_map_functor F) (π_χ (DM2CC D₂)))
    (nat_z_iso_id F).
Proof.
  repeat (use tpair); simpl.
  - intros x dx. exact (id_disp (display_map_functor F _ dx)).
  - intros y x f dy dx ff. simpl.
    use subtypePath.
    + exact (λ _, homset_property _ _ _ _ _).
    + rewrite transportb_cod_disp.
      simpl. rewrite id_left. rewrite id_right.
      reflexivity.
  - intros x dx. repeat (use tpair); cbn.
    + exact (identity (F (pr1 dx))).
    + rewrite id_left. rewrite id_right. reflexivity.
    + use subtypePath.
      * exact (λ _, homset_property _ _ _ _ _).
      * rewrite transportb_cod_disp. cbn.
        exact (id_left _).
    + use subtypePath.
      * exact (λ _, homset_property _ _ _ _ _).
      * rewrite transportb_cod_disp. cbn.
        exact (id_left _).
Defined.

Definition map_display_map_to_pseudo_map_structure
  {C C': category}
  {D : display_map_class C} {D' : display_map_class C'}
  (F : display_map_class_functor D D')
  : pseudo_map_structure (DM2CC D) (DM2CC D').
Proof.
  use make_pseudo_map_structure.
  - exact F.
  - exact (display_map_functor F).
  - exact (map_ι_is_ι_map F).
Defined.
Notation "'MD2PM'" := map_display_map_to_pseudo_map_structure : disp_map_cat.

Transformation corresponding to a natural transformation between functors between display map categories


Definition nat_trans_to_transformation_structure_axiom
  {C C' : category}
  {D : display_map_class C} {D' : display_map_class C'}
  {F F' : display_map_class_functor D D'}
  (α : nat_trans F F')
  : @transformation_structure_axiom _ _ _ _ (MD2PM F) (MD2PM F') α (display_map_nat_trans α).
Proof.
  intros x xx.
  use eq_cod_mor.
  rewrite transportb_cod_disp.
  simpl.
  rewrite id_left,id_right.
  exact (idpath _).
Qed.

Definition nat_trans_to_transformation_structure
  {C C' : category}
  {D : display_map_class C} {D' : display_map_class C'}
  {F F' : display_map_class_functor D D'}
  (α : nat_trans F F')
  : transformation_structure (MD2PM F) (MD2PM F').
Proof.
  use (_ ,, _ ,, _); cbn.
 - exact α.
 - exact (display_map_nat_trans α).
 - exact (nat_trans_to_transformation_structure_axiom _).
Defined.