Library UniMath.OrderTheory.Lattice.Examples.Trivial
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.OrderTheory.Lattice.Lattice.
Require Import UniMath.OrderTheory.Lattice.Bounded.
Require Import UniMath.OrderTheory.Lattice.Heyting.
Require Import UniMath.OrderTheory.Lattice.CompleteHeyting.
Definition unit_lattice
: lattice unitset.
Proof.
use make_lattice.
- exact (λ _ _, tt).
- exact (λ _ _, tt).
- abstract
(repeat split ; intro ; intros ; apply isapropunit).
Defined.
Definition unit_bounded_lattice
: bounded_lattice unitset.
Proof.
use make_bounded_lattice.
- exact unit_lattice.
- exact tt.
- exact tt.
- abstract
(split ; intro ; intros ; apply isapropunit).
Defined.
Definition unit_complete_lattice
: is_complete_lattice unit_bounded_lattice.
Proof.
intros I f.
refine (tt ,, _).
abstract
(split ; intro ; intros ; apply isapropunit).
Defined.
Definition unit_lattice_exponential
: exponential unit_bounded_lattice.
Proof.
use make_exponential.
- exact (λ _ _, tt).
- abstract
(intros ; split ; intro ; intros ; apply isapropunit).
Defined.
Definition unit_cha
: complete_heyting_algebra.
Proof.
use make_complete_heyting_algebra.
- exact unitset.
- exact unit_bounded_lattice.
- exact unit_complete_lattice.
- exact unit_lattice_exponential.
Defined.
Require Import UniMath.Algebra.BinaryOperations.
Require Import UniMath.OrderTheory.Lattice.Lattice.
Require Import UniMath.OrderTheory.Lattice.Bounded.
Require Import UniMath.OrderTheory.Lattice.Heyting.
Require Import UniMath.OrderTheory.Lattice.CompleteHeyting.
Definition unit_lattice
: lattice unitset.
Proof.
use make_lattice.
- exact (λ _ _, tt).
- exact (λ _ _, tt).
- abstract
(repeat split ; intro ; intros ; apply isapropunit).
Defined.
Definition unit_bounded_lattice
: bounded_lattice unitset.
Proof.
use make_bounded_lattice.
- exact unit_lattice.
- exact tt.
- exact tt.
- abstract
(split ; intro ; intros ; apply isapropunit).
Defined.
Definition unit_complete_lattice
: is_complete_lattice unit_bounded_lattice.
Proof.
intros I f.
refine (tt ,, _).
abstract
(split ; intro ; intros ; apply isapropunit).
Defined.
Definition unit_lattice_exponential
: exponential unit_bounded_lattice.
Proof.
use make_exponential.
- exact (λ _ _, tt).
- abstract
(intros ; split ; intro ; intros ; apply isapropunit).
Defined.
Definition unit_cha
: complete_heyting_algebra.
Proof.
use make_complete_heyting_algebra.
- exact unitset.
- exact unit_bounded_lattice.
- exact unit_complete_lattice.
- exact unit_lattice_exponential.
Defined.