Library UniMath.Bicategories.RezkCompletions.StructuredCats.FiniteLimits
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.WeakEquivalences.Core.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.BicatOfCats.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Require Import UniMath.Bicategories.PseudoFunctors.UniversalArrow.
Import PseudoFunctor.Notations.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.BicatOfCatToUnivCat.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.DispBicatOnCatToUniv.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Prod.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.CategoriesWithStructure.FiniteLimits.
Require Import UniMath.Bicategories.RezkCompletions.DisplayedRezkCompletions.
Require Import UniMath.Bicategories.RezkCompletions.StructuredCats.Terminal.
Require Import UniMath.Bicategories.RezkCompletions.StructuredCats.BinProducts.
Require Import UniMath.Bicategories.RezkCompletions.StructuredCats.Pullbacks.
Require Import UniMath.Bicategories.RezkCompletions.StructuredCats.Equalizers.
Local Open Scope cat.
Section CategoriesWithChosenFiniteLimitsAdmitRezkCompletions.
Context (LUR : left_universal_arrow univ_cats_to_cats)
(η_weak_equiv : ∏ C : category, is_weak_equiv (pr12 LUR C)).
Lemma disp_bicat_chosen_limits_has_RC
: cat_with_struct_has_RC η_weak_equiv disp_bicat_chosen_limits.
Proof.
repeat use make_cat_with_struct_has_RC_from_dirprod.
- apply disp_bicat_chosen_terminal_has_RC.
- apply disp_bicat_chosen_binproducts_has_RC.
- apply disp_bicat_chosen_pullbacks_has_RC.
- apply disp_bicat_chosen_equalizers_has_RC.
Defined.
Theorem disp_bicat_chosen_limits_has_RezkCompletion
: cat_with_structure_has_RezkCompletion disp_bicat_chosen_limits.
Proof.
apply (make_RezkCompletion_from_locally_contractible η_weak_equiv).
- exact disp_bicat_chosen_limits_has_RC.
- exact disp_2cells_iscontr_chosen_limits.
Defined.
End CategoriesWithChosenFiniteLimitsAdmitRezkCompletions.
Section CategoriesHavingFiniteLimitsAdmitRezkCompletions.
Context (LUR : left_universal_arrow univ_cats_to_cats)
(η_weak_equiv : ∏ C : category, is_weak_equiv (pr12 LUR C)).
Lemma disp_bicat_have_limits_has_RC
: cat_with_struct_has_RC η_weak_equiv disp_bicat_have_limits.
Proof.
repeat use make_cat_with_struct_has_RC_from_dirprod.
- apply disp_bicat_have_terminal_has_RC.
- apply disp_bicat_have_binproducts_has_RC.
- apply disp_bicat_have_pullbacks_has_RC.
- apply disp_bicat_have_equalizers_has_RC.
Defined.
Theorem disp_bicat_have_limits_has_RezkCompletion
: cat_with_structure_has_RezkCompletion disp_bicat_have_limits.
Proof.
apply (make_RezkCompletion_from_locally_contractible η_weak_equiv).
- exact disp_bicat_have_limits_has_RC.
- exact disp_2cells_iscontr_have_limits.
Defined.
End CategoriesHavingFiniteLimitsAdmitRezkCompletions.
Section CategoriesWithFiniteLimitsAdmitRezkCompletions.
Context (LUR : left_universal_arrow univ_cats_to_cats)
(η_weak_equiv : ∏ C : category, is_weak_equiv (pr12 LUR C)).
Lemma disp_bicat_limits_has_RC
: cat_with_struct_has_RC η_weak_equiv disp_bicat_limits.
Proof.
repeat use make_cat_with_struct_has_RC_from_dirprod.
- apply disp_bicat_terminal_has_RC.
- apply disp_bicat_binproducts_has_RC.
- apply disp_bicat_pullbacks_has_RC.
- apply disp_bicat_equalizers_has_RC.
Defined.
Theorem disp_bicat_limits_has_RezkCompletion
: cat_with_structure_has_RezkCompletion disp_bicat_limits.
Proof.
apply (make_RezkCompletion_from_locally_contractible η_weak_equiv).
- exact disp_bicat_limits_has_RC.
- exact disp_2cells_iscontr_limits.
Defined.
End CategoriesWithFiniteLimitsAdmitRezkCompletions.