Library UniMath.SubstitutionSystems.MultiSorted_alt
- Definition of multisorted binding signatures (MultiSortedSig)
- Construction of a functor from a multisorted binding signature (MultiSortedSigToFunctor)
- Construction of signature with strength from a multisorted binding signature (MultiSortedSigToSignature)
- Proof that the functor obtained from a multisorted binding signature is omega-cocontinuous (is_omega_cocont_MultiSortedSigToFunctor)
Require Import UniMath.Foundations.PartD.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.Combinatorics.Lists.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits.
Require Import UniMath.CategoryTheory.Limits.BinProducts.
Require Import UniMath.CategoryTheory.Limits.Products.
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
Require Import UniMath.CategoryTheory.Limits.Coproducts.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.Initial.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.exponentials.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.Chains.All.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Categories.HSET.Core.
Require Import UniMath.CategoryTheory.Categories.HSET.Colimits.
Require Import UniMath.CategoryTheory.Categories.HSET.Limits.
Require Import UniMath.CategoryTheory.Categories.HSET.Structures.
Require Import UniMath.CategoryTheory.Categories.StandardCategories.
Require Import UniMath.CategoryTheory.Groupoids.
Require Import UniMath.SubstitutionSystems.Signatures.
Require Import UniMath.SubstitutionSystems.SumOfSignatures.
Require Import UniMath.SubstitutionSystems.BinProductOfSignatures.
Require Import UniMath.SubstitutionSystems.SignatureExamples.
Require Import UniMath.SubstitutionSystems.MultiSortedBindingSig.
Require UniMath.SubstitutionSystems.SortIndexing.
Local Open Scope cat.
Arguments Gθ_Signature {_ _ _ _} _ _.
Arguments Signature_Functor {_ _ _} _.
Arguments BinProduct_of_functors {_ _} _ _ _.
Arguments DL_comp {_ _} _ {_} _.
Arguments θ_from_δ_Signature {_ _} _.
Arguments BinProduct_of_Signatures {_ _ _} _ _ _.
Arguments Sum_of_Signatures _ {_ _ _} _ _.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.Combinatorics.Lists.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits.
Require Import UniMath.CategoryTheory.Limits.BinProducts.
Require Import UniMath.CategoryTheory.Limits.Products.
Require Import UniMath.CategoryTheory.Limits.BinCoproducts.
Require Import UniMath.CategoryTheory.Limits.Coproducts.
Require Import UniMath.CategoryTheory.Limits.Terminal.
Require Import UniMath.CategoryTheory.Limits.Initial.
Require Import UniMath.CategoryTheory.FunctorAlgebras.
Require Import UniMath.CategoryTheory.exponentials.
Require Import UniMath.CategoryTheory.Adjunctions.Core.
Require Import UniMath.CategoryTheory.Chains.All.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Categories.HSET.Core.
Require Import UniMath.CategoryTheory.Categories.HSET.Colimits.
Require Import UniMath.CategoryTheory.Categories.HSET.Limits.
Require Import UniMath.CategoryTheory.Categories.HSET.Structures.
Require Import UniMath.CategoryTheory.Categories.StandardCategories.
Require Import UniMath.CategoryTheory.Groupoids.
Require Import UniMath.SubstitutionSystems.Signatures.
Require Import UniMath.SubstitutionSystems.SumOfSignatures.
Require Import UniMath.SubstitutionSystems.BinProductOfSignatures.
Require Import UniMath.SubstitutionSystems.SignatureExamples.
Require Import UniMath.SubstitutionSystems.MultiSortedBindingSig.
Require UniMath.SubstitutionSystems.SortIndexing.
Local Open Scope cat.
Arguments Gθ_Signature {_ _ _ _} _ _.
Arguments Signature_Functor {_ _ _} _.
Arguments BinProduct_of_functors {_ _} _ _ _.
Arguments DL_comp {_ _} _ {_} _.
Arguments θ_from_δ_Signature {_ _} _.
Arguments BinProduct_of_Signatures {_ _ _} _ _ _.
Arguments Sum_of_Signatures _ {_ _ _} _ _.
Section MBindingSig.
Context (sort : UU) (Hsort : isofhlevel 3 sort) (C : category).
Context (TC : Terminal C) (IC : Initial C)
(BP : BinProducts C) (BC : BinCoproducts C)
(eqsetPC : forall (s s' : sort), Products (s=s') C)
(CC : forall (I : UU), isaset I → Coproducts I C).
Local Notation "'1'" := (TerminalObject TC).
Local Notation "a ⊕ b" := (BinCoproductObject (BC a b)).
Context (sort : UU) (Hsort : isofhlevel 3 sort) (C : category).
Context (TC : Terminal C) (IC : Initial C)
(BP : BinProducts C) (BC : BinCoproducts C)
(eqsetPC : forall (s s' : sort), Products (s=s') C)
(CC : forall (I : UU), isaset I → Coproducts I C).
Local Notation "'1'" := (TerminalObject TC).
Local Notation "a ⊕ b" := (BinCoproductObject (BC a b)).
Define the category of sorts
This represents "sort → C"
Let sortToC : category := SortIndexing.sortToC sort Hsort C.
Let make_sortToC (f : sort → C) : sortToC := SortIndexing.make_sortToC sort Hsort C f.
Let make_sortToC_mor (ξ ξ' : sortToC) (fam : ∏ s: sort, pr1 ξ s --> pr1 ξ' s) : sortToC⟦ξ,ξ'⟧
:= SortIndexing.make_sortToC_mor sort Hsort C ξ ξ' fam.
Let BCsortToC : BinCoproducts sortToC := SortIndexing.BCsortToC sort Hsort _ BC.
Let sortToCC : category := SortIndexing.sortToCC sort Hsort C.
Let TsortToCC : Terminal sortToCC := SortIndexing.TsortToCC sort Hsort C TC.
Let BPsortToCC : BinProducts sortToCC := SortIndexing.BPsortToCC sort Hsort _ BP.
Let sortToC2 : category := SortIndexing.sortToC2 sort Hsort C.
Context (EsortToCC : Exponentials BPsortToCC)
(HC : Colims_of_shape nat_graph C).
Definition CoproductsMultiSortedSig_base (M : MultiSortedSig sort) : Coproducts (ops _ M) sortToC
:= SortIndexing.CCsortToC sort Hsort C CC _ (setproperty (ops sort M)).
Definition CoproductsMultiSortedSig (M : MultiSortedSig sort) : Coproducts (ops _ M) [sortToC,sortToC]
:= SortIndexing.CCsortToC2 sort Hsort C CC _ (setproperty (ops sort M)).
Let make_sortToC (f : sort → C) : sortToC := SortIndexing.make_sortToC sort Hsort C f.
Let make_sortToC_mor (ξ ξ' : sortToC) (fam : ∏ s: sort, pr1 ξ s --> pr1 ξ' s) : sortToC⟦ξ,ξ'⟧
:= SortIndexing.make_sortToC_mor sort Hsort C ξ ξ' fam.
Let BCsortToC : BinCoproducts sortToC := SortIndexing.BCsortToC sort Hsort _ BC.
Let sortToCC : category := SortIndexing.sortToCC sort Hsort C.
Let TsortToCC : Terminal sortToCC := SortIndexing.TsortToCC sort Hsort C TC.
Let BPsortToCC : BinProducts sortToCC := SortIndexing.BPsortToCC sort Hsort _ BP.
Let sortToC2 : category := SortIndexing.sortToC2 sort Hsort C.
Context (EsortToCC : Exponentials BPsortToCC)
(HC : Colims_of_shape nat_graph C).
Definition CoproductsMultiSortedSig_base (M : MultiSortedSig sort) : Coproducts (ops _ M) sortToC
:= SortIndexing.CCsortToC sort Hsort C CC _ (setproperty (ops sort M)).
Definition CoproductsMultiSortedSig (M : MultiSortedSig sort) : Coproducts (ops _ M) [sortToC,sortToC]
:= SortIndexing.CCsortToC2 sort Hsort C CC _ (setproperty (ops sort M)).
Given a sort s this applies the sortToC to s and returns C
Definition projSortToC (s : sort) : functor sortToC C.
Proof.
use make_functor.
+ use make_functor_data.
- intro ξ; apply (pr1 ξ s).
- simpl; intros a b ξ; apply (ξ s).
+ abstract (split; intros ξ *; apply idpath).
Defined.
Proof.
use make_functor.
+ use make_functor_data.
- intro ξ; apply (pr1 ξ s).
- simpl; intros a b ξ; apply (ξ s).
+ abstract (split; intros ξ *; apply idpath).
Defined.
not needed here - illustration that also the sort can vary
Definition projSortToCvariable (f: sort -> sort) : functor sortToC sortToC.
Proof.
use make_functor.
- use make_functor_data.
+ intro ξ.
apply make_sortToC.
intro s.
exact (pr1 ξ (f s)).
+ intros ξ ξ' h.
apply make_sortToC_mor.
intro s.
exact (pr1 h (f s)).
- abstract (split; red; intros; apply nat_trans_eq; try (apply C);
intro t; apply idpath).
Defined.
Definition hat_functor (t : sort) : functor C sortToC.
Proof.
use make_functor.
+ use make_functor_data.
- intros A.
use make_sortToC; intros s.
use (CoproductObject (t = s) C (CC _ (Hsort t s) (λ _, A))).
- intros a b f.
apply (nat_trans_functor_path_pregroupoid); intros s.
apply CoproductOfArrows; intros p; apply f.
+ split.
- abstract (intros x; apply nat_trans_eq_alt; intros s;
apply pathsinv0, CoproductArrowUnique; intros p;
now rewrite id_left, id_right).
- abstract (intros x y z f g; apply nat_trans_eq_alt; intros s;
apply pathsinv0, CoproductArrowUnique; intros p; cbn;
now rewrite assoc, (CoproductOfArrowsIn _ _ (CC _ (Hsort t s) (λ _, x))),
<- !assoc, (CoproductOfArrowsIn _ _ (CC _ (Hsort t s) (λ _, y)))).
Defined.
Section Sorted_Option_Functor.
Context (s : sort).
Definition option_fun_summand : sortToC.
Proof.
apply make_sortToC; intro t.
exact (CoproductObject (t = s) C (CC _ (Hsort t s) (λ _, 1))).
Defined.
Definition sorted_option_functor : functor sortToC sortToC :=
constcoprod_functor1 BCsortToC option_fun_summand.
Proof.
use make_functor.
- use make_functor_data.
+ intro ξ.
apply make_sortToC.
intro s.
exact (pr1 ξ (f s)).
+ intros ξ ξ' h.
apply make_sortToC_mor.
intro s.
exact (pr1 h (f s)).
- abstract (split; red; intros; apply nat_trans_eq; try (apply C);
intro t; apply idpath).
Defined.
Definition hat_functor (t : sort) : functor C sortToC.
Proof.
use make_functor.
+ use make_functor_data.
- intros A.
use make_sortToC; intros s.
use (CoproductObject (t = s) C (CC _ (Hsort t s) (λ _, A))).
- intros a b f.
apply (nat_trans_functor_path_pregroupoid); intros s.
apply CoproductOfArrows; intros p; apply f.
+ split.
- abstract (intros x; apply nat_trans_eq_alt; intros s;
apply pathsinv0, CoproductArrowUnique; intros p;
now rewrite id_left, id_right).
- abstract (intros x y z f g; apply nat_trans_eq_alt; intros s;
apply pathsinv0, CoproductArrowUnique; intros p; cbn;
now rewrite assoc, (CoproductOfArrowsIn _ _ (CC _ (Hsort t s) (λ _, x))),
<- !assoc, (CoproductOfArrowsIn _ _ (CC _ (Hsort t s) (λ _, y)))).
Defined.
Section Sorted_Option_Functor.
Context (s : sort).
Definition option_fun_summand : sortToC.
Proof.
apply make_sortToC; intro t.
exact (CoproductObject (t = s) C (CC _ (Hsort t s) (λ _, 1))).
Defined.
Definition sorted_option_functor : functor sortToC sortToC :=
constcoprod_functor1 BCsortToC option_fun_summand.
the following two definitions are currently not used
Local Definition Some_sorted_option_functor : functor_identity sortToC ⟹ sorted_option_functor :=
BinCoproductIn2 (BinCoproducts_functor_precat _ _ BCsortToC
(constant_functor _ _ option_fun_summand)
(functor_identity sortToC)).
Local Definition None_sorted_option_functor : constant_functor _ _ option_fun_summand ⟹ sorted_option_functor :=
BinCoproductIn1 (BinCoproducts_functor_precat _ _ BCsortToC
(constant_functor _ _ option_fun_summand)
(functor_identity sortToC)).
End Sorted_Option_Functor.
Sorted option functor for lists
Definition option_list (xs : list sort) : sortToC2.
Proof.
use (foldr1_map (λ F G, F ∙ G) (functor_identity _) sorted_option_functor xs).
Defined.
Proof.
use (foldr1_map (λ F G, F ∙ G) (functor_identity _) sorted_option_functor xs).
Defined.
Define a functor
F^(l,t)(X) := projSortToC(t) ∘ X ∘ sorted_option_functor(l)
if l is nonempty and
F^(l,t)(X) := projSortToC(t) ∘ X
otherwise
Definition exp_functor (lt : list sort × sort) : functor sortToC2 sortToCC.
Proof.
induction lt as [l t].
use (list_ind _ _ _ l); clear l.
- exact (post_comp_functor (projSortToC t)).
- intros s l _.
exact (pre_comp_functor (option_list (cons s l)) ∙ post_comp_functor (projSortToC t)).
Defined.
Proof.
induction lt as [l t].
use (list_ind _ _ _ l); clear l.
- exact (post_comp_functor (projSortToC t)).
- intros s l _.
exact (pre_comp_functor (option_list (cons s l)) ∙ post_comp_functor (projSortToC t)).
Defined.
This defines F^lts where lts is a list of (l,t). Outputs a product of
functors if the list is nonempty and otherwise the constant functor.
Definition exp_functor_list (xs : list (list sort × sort)) :
functor sortToC2 sortToCC.
Proof.
set (T := constant_functor sortToC2 _ TsortToCC).
exact (foldr1_map (λ F G, BinProduct_of_functors BPsortToCC F G) T exp_functor xs).
Defined.
Local Lemma exp_functor_list_cons (lt1 lt2 : list sort × sort) (xs : list (list sort × sort)) :
exp_functor_list (cons lt2 (cons lt1 xs)) =
BinProduct_of_functors BPsortToCC (exp_functor lt2) (exp_functor_list (cons lt1 xs)).
Proof.
apply idpath.
Qed.
Definition hat_exp_functor_list (xst : list (list sort × sort) × sort) :
functor sortToC2 sortToC2 :=
exp_functor_list (pr1 xst) ∙ post_comp_functor (hat_functor (pr2 xst)).
functor sortToC2 sortToCC.
Proof.
set (T := constant_functor sortToC2 _ TsortToCC).
exact (foldr1_map (λ F G, BinProduct_of_functors BPsortToCC F G) T exp_functor xs).
Defined.
Local Lemma exp_functor_list_cons (lt1 lt2 : list sort × sort) (xs : list (list sort × sort)) :
exp_functor_list (cons lt2 (cons lt1 xs)) =
BinProduct_of_functors BPsortToCC (exp_functor lt2) (exp_functor_list (cons lt1 xs)).
Proof.
apply idpath.
Qed.
Definition hat_exp_functor_list (xst : list (list sort × sort) × sort) :
functor sortToC2 sortToC2 :=
exp_functor_list (pr1 xst) ∙ post_comp_functor (hat_functor (pr2 xst)).
The function from multisorted signatures to functors
Definition MultiSortedSigToFunctor (M : MultiSortedSig sort) :
functor sortToC2 sortToC2.
Proof.
use (coproduct_of_functors (ops _ M) _ _ (CoproductsMultiSortedSig M)).
intros op.
exact (hat_exp_functor_list (arity _ M op)).
Defined.
End functor.
functor sortToC2 sortToC2.
Proof.
use (coproduct_of_functors (ops _ M) _ _ (CoproductsMultiSortedSig M)).
intros op.
exact (hat_exp_functor_list (arity _ M op)).
Defined.
End functor.
Construction of the strength for the endofunctor on C^sort,C^sort
derived from a multisorted signature
Section strength.
Definition DL_sorted_option_functor (s : sort) :
DistributiveLaw sortToC (sorted_option_functor s) :=
genoption_DistributiveLaw sortToC (option_fun_summand s) BCsortToC.
Definition DL_option_list (xs : list sort) : DistributiveLaw _ (option_list xs).
Proof.
induction xs as [[|n] xs].
+ induction xs.
apply DL_id.
+ induction n as [|n IH].
* induction xs as [m []].
apply DL_sorted_option_functor.
* induction xs as [m [k xs]].
apply (DL_comp (DL_sorted_option_functor m) (IH (k,,xs))).
Defined.
Definition Sig_exp_functor (lt : list sort × sort) :
Signature sortToC C sortToC.
Proof.
exists (exp_functor lt).
induction lt as [l t]; revert l.
use list_ind.
+ exact (pr2 (Gθ_Signature (IdSignature _ _) (projSortToC t))).
+ intros x xs H; simpl.
set (Sig_option_list := θ_from_δ_Signature (DL_option_list (cons x xs))).
apply (pr2 (Gθ_Signature Sig_option_list (projSortToC t))).
Defined.
Local Lemma functor_in_Sig_exp_functor_ok (lt : list sort × sort) :
Signature_Functor (Sig_exp_functor lt) = exp_functor lt.
Proof.
apply idpath.
Qed.
Definition Sig_exp_functor_list (xs : list (list sort × sort)) :
Signature sortToC C sortToC.
Proof.
exists (exp_functor_list xs).
induction xs as [[|n] xs].
- induction xs.
exact (pr2 (ConstConstSignature _ _ _ _)).
- induction n as [|n IH].
+ induction xs as [m []].
exact (pr2 (Sig_exp_functor m)).
+ induction xs as [m [k xs]].
exact (pr2 (BinProduct_of_Signatures _ (Sig_exp_functor _) (tpair _ _ (IH (k,,xs))))).
Defined.
Local Lemma functor_in_Sig_exp_functor_list_ok (xs : list (list sort × sort)) :
Signature_Functor (Sig_exp_functor_list xs) = exp_functor_list xs.
Proof.
apply idpath.
Qed.
Definition Sig_hat_exp_functor_list (xst : list (list sort × sort) × sort) :
Signature sortToC sortToC sortToC.
Proof.
apply (Gθ_Signature (Sig_exp_functor_list (pr1 xst)) (hat_functor (pr2 xst))).
Defined.
Local Lemma functor_in_Sig_hat_exp_functor_list_ok (xst : list (list sort × sort) × sort) :
Signature_Functor (Sig_hat_exp_functor_list xst) = hat_exp_functor_list xst.
Proof.
apply idpath.
Qed.
Definition MultiSortedSigToSignature (M : MultiSortedSig sort) : Signature sortToC sortToC sortToC.
Proof.
set (Hyps := λ (op : ops _ M), Sig_hat_exp_functor_list (arity _ M op)).
apply (Sum_of_Signatures (ops _ M) (CoproductsMultiSortedSig_base M) Hyps).
Defined.
Local Lemma functor_in_MultiSortedSigToSignature_ok (M : MultiSortedSig sort) :
Signature_Functor (MultiSortedSigToSignature M) = MultiSortedSigToFunctor M.
Proof.
apply idpath.
Qed.
End strength.
Definition DL_sorted_option_functor (s : sort) :
DistributiveLaw sortToC (sorted_option_functor s) :=
genoption_DistributiveLaw sortToC (option_fun_summand s) BCsortToC.
Definition DL_option_list (xs : list sort) : DistributiveLaw _ (option_list xs).
Proof.
induction xs as [[|n] xs].
+ induction xs.
apply DL_id.
+ induction n as [|n IH].
* induction xs as [m []].
apply DL_sorted_option_functor.
* induction xs as [m [k xs]].
apply (DL_comp (DL_sorted_option_functor m) (IH (k,,xs))).
Defined.
Definition Sig_exp_functor (lt : list sort × sort) :
Signature sortToC C sortToC.
Proof.
exists (exp_functor lt).
induction lt as [l t]; revert l.
use list_ind.
+ exact (pr2 (Gθ_Signature (IdSignature _ _) (projSortToC t))).
+ intros x xs H; simpl.
set (Sig_option_list := θ_from_δ_Signature (DL_option_list (cons x xs))).
apply (pr2 (Gθ_Signature Sig_option_list (projSortToC t))).
Defined.
Local Lemma functor_in_Sig_exp_functor_ok (lt : list sort × sort) :
Signature_Functor (Sig_exp_functor lt) = exp_functor lt.
Proof.
apply idpath.
Qed.
Definition Sig_exp_functor_list (xs : list (list sort × sort)) :
Signature sortToC C sortToC.
Proof.
exists (exp_functor_list xs).
induction xs as [[|n] xs].
- induction xs.
exact (pr2 (ConstConstSignature _ _ _ _)).
- induction n as [|n IH].
+ induction xs as [m []].
exact (pr2 (Sig_exp_functor m)).
+ induction xs as [m [k xs]].
exact (pr2 (BinProduct_of_Signatures _ (Sig_exp_functor _) (tpair _ _ (IH (k,,xs))))).
Defined.
Local Lemma functor_in_Sig_exp_functor_list_ok (xs : list (list sort × sort)) :
Signature_Functor (Sig_exp_functor_list xs) = exp_functor_list xs.
Proof.
apply idpath.
Qed.
Definition Sig_hat_exp_functor_list (xst : list (list sort × sort) × sort) :
Signature sortToC sortToC sortToC.
Proof.
apply (Gθ_Signature (Sig_exp_functor_list (pr1 xst)) (hat_functor (pr2 xst))).
Defined.
Local Lemma functor_in_Sig_hat_exp_functor_list_ok (xst : list (list sort × sort) × sort) :
Signature_Functor (Sig_hat_exp_functor_list xst) = hat_exp_functor_list xst.
Proof.
apply idpath.
Qed.
Definition MultiSortedSigToSignature (M : MultiSortedSig sort) : Signature sortToC sortToC sortToC.
Proof.
set (Hyps := λ (op : ops _ M), Sig_hat_exp_functor_list (arity _ M op)).
apply (Sum_of_Signatures (ops _ M) (CoproductsMultiSortedSig_base M) Hyps).
Defined.
Local Lemma functor_in_MultiSortedSigToSignature_ok (M : MultiSortedSig sort) :
Signature_Functor (MultiSortedSigToSignature M) = MultiSortedSigToFunctor M.
Proof.
apply idpath.
Qed.
End strength.
Section omega_cocont.
Local Definition projSortToC_rad (t : sort) : functor C sortToC.
Proof.
use make_functor.
+ use make_functor_data.
- intros A.
use make_sortToC; intros s.
exact (ProductObject (t = s) C (eqsetPC _ _ (λ _, A))).
- intros a b f.
apply (nat_trans_functor_path_pregroupoid); intros s.
apply ProductOfArrows; intros p; apply f.
+ split.
- abstract (intros x; apply nat_trans_eq_alt; intros s;
apply pathsinv0, ProductArrowUnique; intros p;
now rewrite id_left, id_right).
- abstract(intros x y z f g; apply nat_trans_eq_alt; intros s; cbn;
now rewrite ProductOfArrows_comp).
Defined.
Local Lemma is_left_adjoint_projSortToC (s : sort) : is_left_adjoint (projSortToC s).
Proof.
exists (projSortToC_rad s).
use make_are_adjoints.
- use make_nat_trans.
+ intros A.
use make_nat_trans.
* intros t; apply ProductArrow; intros p; induction p; apply identity.
* abstract (now intros a b []; rewrite id_right, (functor_id A), id_left).
+ abstract (intros A B F; apply nat_trans_eq_alt; intros t; cbn;
rewrite precompWithProductArrow, postcompWithProductArrow;
apply ProductArrowUnique; intros []; cbn;
now rewrite (ProductPrCommutes _ _ _ (eqsetPC _ _ (λ _, pr1 B s))), id_left, id_right).
- use make_nat_trans.
+ intros A.
exact (ProductPr _ _ (eqsetPC _ _ (λ _, A)) (idpath _)).
+ abstract (now intros a b f; cbn; rewrite (ProductOfArrowsPr _ _ (eqsetPC _ _ (λ _, b)))).
- use make_form_adjunction.
+ intros A; cbn.
now rewrite (ProductPrCommutes _ _ _ (eqsetPC _ _ (λ _, pr1 A s))).
+ intros c; apply nat_trans_eq_alt; intros t; cbn.
rewrite postcompWithProductArrow.
apply pathsinv0, ProductArrowUnique; intros [].
now rewrite !id_left.
Qed.
Local Lemma is_omega_cocont_post_comp_projSortToC (s : sort) :
is_omega_cocont (post_comp_functor (A := sortToC) (projSortToC s)).
Proof.
apply is_omega_cocont_post_composition_functor.
apply is_left_adjoint_projSortToC.
Defined.
Local Lemma is_omega_cocont_exp_functor (a : list sort × sort) :
is_omega_cocont (exp_functor a).
Proof.
induction a as [xs t]; revert xs.
use list_ind.
- apply is_omega_cocont_post_comp_projSortToC.
- intros x xs H.
apply is_omega_cocont_functor_composite.
+ apply (is_omega_cocont_pre_composition_functor (option_list _)).
apply (ColimsFunctorCategory_of_shape nat_graph sort_cat _ HC).
+ apply is_omega_cocont_post_comp_projSortToC.
Defined.
Local Lemma is_omega_cocont_exp_functor_list (xs : list (list sort × sort)) :
is_omega_cocont (exp_functor_list xs).
Proof.
refine (foldr1_map_ind_nodep _ _ _ is_omega_cocont _ _ _ xs).
- apply is_omega_cocont_constant_functor.
- intro lt. apply is_omega_cocont_exp_functor.
- intros lt F Hyp.
apply is_omega_cocont_BinProduct_of_functors.
+ apply BinProducts_functor_precat, BinProducts_functor_precat, BP.
+ apply is_omega_cocont_constprod_functor1.
apply EsortToCC.
+ apply is_omega_cocont_exp_functor.
+ exact Hyp.
Defined.
Local Lemma is_left_adjoint_hat (s : sort) : is_left_adjoint (hat_functor s).
Proof.
exists (projSortToC s).
use make_are_adjoints.
- use make_nat_trans.
+ intros A.
exact (CoproductIn _ _ (CC (s = s) _ (λ _, A)) (idpath _)).
+ abstract (now intros A B f; cbn; rewrite (CoproductOfArrowsIn _ _ (CC _ _ (λ _, A)))).
- use make_nat_trans.
+ intros A.
use make_nat_trans.
* intros t; apply CoproductArrow; intros p.
exact (transportf (λ z, C ⟦ pr1 A s , z ⟧) (maponpaths (pr1 A) p) (identity _)).
* abstract (intros a b []; now rewrite id_left, (functor_id A), id_right).
+ abstract (intros A B F;
apply nat_trans_eq_alt; intros t; cbn;
rewrite precompWithCoproductArrow, postcompWithCoproductArrow;
apply CoproductArrowUnique; intros []; cbn;
now rewrite id_left, (CoproductInCommutes _ _ _ (CC _ _ (λ _, pr1 A s))), id_right).
- use make_form_adjunction.
+ intros c; apply nat_trans_eq_alt; intros t; cbn.
rewrite precompWithCoproductArrow.
apply pathsinv0, CoproductArrowUnique; intros [].
now rewrite !id_right.
+ intros A; cbn.
now rewrite (CoproductInCommutes _ _ _ (CC _ _ (λ _, pr1 A s))).
Qed.
Local Lemma is_omega_cocont_post_comp_hat_functor (s : sort) :
is_omega_cocont (post_comp_functor (A := sortToC) (hat_functor s)).
Proof.
apply is_omega_cocont_post_composition_functor, is_left_adjoint_hat.
Defined.
Local Lemma is_omega_cocont_hat_exp_functor_list (xst : list (list sort × sort) × sort) :
is_omega_cocont (hat_exp_functor_list xst).
Proof.
apply is_omega_cocont_functor_composite.
+ apply is_omega_cocont_exp_functor_list.
+ apply is_omega_cocont_post_comp_hat_functor.
Defined.
Local Definition projSortToC_rad (t : sort) : functor C sortToC.
Proof.
use make_functor.
+ use make_functor_data.
- intros A.
use make_sortToC; intros s.
exact (ProductObject (t = s) C (eqsetPC _ _ (λ _, A))).
- intros a b f.
apply (nat_trans_functor_path_pregroupoid); intros s.
apply ProductOfArrows; intros p; apply f.
+ split.
- abstract (intros x; apply nat_trans_eq_alt; intros s;
apply pathsinv0, ProductArrowUnique; intros p;
now rewrite id_left, id_right).
- abstract(intros x y z f g; apply nat_trans_eq_alt; intros s; cbn;
now rewrite ProductOfArrows_comp).
Defined.
Local Lemma is_left_adjoint_projSortToC (s : sort) : is_left_adjoint (projSortToC s).
Proof.
exists (projSortToC_rad s).
use make_are_adjoints.
- use make_nat_trans.
+ intros A.
use make_nat_trans.
* intros t; apply ProductArrow; intros p; induction p; apply identity.
* abstract (now intros a b []; rewrite id_right, (functor_id A), id_left).
+ abstract (intros A B F; apply nat_trans_eq_alt; intros t; cbn;
rewrite precompWithProductArrow, postcompWithProductArrow;
apply ProductArrowUnique; intros []; cbn;
now rewrite (ProductPrCommutes _ _ _ (eqsetPC _ _ (λ _, pr1 B s))), id_left, id_right).
- use make_nat_trans.
+ intros A.
exact (ProductPr _ _ (eqsetPC _ _ (λ _, A)) (idpath _)).
+ abstract (now intros a b f; cbn; rewrite (ProductOfArrowsPr _ _ (eqsetPC _ _ (λ _, b)))).
- use make_form_adjunction.
+ intros A; cbn.
now rewrite (ProductPrCommutes _ _ _ (eqsetPC _ _ (λ _, pr1 A s))).
+ intros c; apply nat_trans_eq_alt; intros t; cbn.
rewrite postcompWithProductArrow.
apply pathsinv0, ProductArrowUnique; intros [].
now rewrite !id_left.
Qed.
Local Lemma is_omega_cocont_post_comp_projSortToC (s : sort) :
is_omega_cocont (post_comp_functor (A := sortToC) (projSortToC s)).
Proof.
apply is_omega_cocont_post_composition_functor.
apply is_left_adjoint_projSortToC.
Defined.
Local Lemma is_omega_cocont_exp_functor (a : list sort × sort) :
is_omega_cocont (exp_functor a).
Proof.
induction a as [xs t]; revert xs.
use list_ind.
- apply is_omega_cocont_post_comp_projSortToC.
- intros x xs H.
apply is_omega_cocont_functor_composite.
+ apply (is_omega_cocont_pre_composition_functor (option_list _)).
apply (ColimsFunctorCategory_of_shape nat_graph sort_cat _ HC).
+ apply is_omega_cocont_post_comp_projSortToC.
Defined.
Local Lemma is_omega_cocont_exp_functor_list (xs : list (list sort × sort)) :
is_omega_cocont (exp_functor_list xs).
Proof.
refine (foldr1_map_ind_nodep _ _ _ is_omega_cocont _ _ _ xs).
- apply is_omega_cocont_constant_functor.
- intro lt. apply is_omega_cocont_exp_functor.
- intros lt F Hyp.
apply is_omega_cocont_BinProduct_of_functors.
+ apply BinProducts_functor_precat, BinProducts_functor_precat, BP.
+ apply is_omega_cocont_constprod_functor1.
apply EsortToCC.
+ apply is_omega_cocont_exp_functor.
+ exact Hyp.
Defined.
Local Lemma is_left_adjoint_hat (s : sort) : is_left_adjoint (hat_functor s).
Proof.
exists (projSortToC s).
use make_are_adjoints.
- use make_nat_trans.
+ intros A.
exact (CoproductIn _ _ (CC (s = s) _ (λ _, A)) (idpath _)).
+ abstract (now intros A B f; cbn; rewrite (CoproductOfArrowsIn _ _ (CC _ _ (λ _, A)))).
- use make_nat_trans.
+ intros A.
use make_nat_trans.
* intros t; apply CoproductArrow; intros p.
exact (transportf (λ z, C ⟦ pr1 A s , z ⟧) (maponpaths (pr1 A) p) (identity _)).
* abstract (intros a b []; now rewrite id_left, (functor_id A), id_right).
+ abstract (intros A B F;
apply nat_trans_eq_alt; intros t; cbn;
rewrite precompWithCoproductArrow, postcompWithCoproductArrow;
apply CoproductArrowUnique; intros []; cbn;
now rewrite id_left, (CoproductInCommutes _ _ _ (CC _ _ (λ _, pr1 A s))), id_right).
- use make_form_adjunction.
+ intros c; apply nat_trans_eq_alt; intros t; cbn.
rewrite precompWithCoproductArrow.
apply pathsinv0, CoproductArrowUnique; intros [].
now rewrite !id_right.
+ intros A; cbn.
now rewrite (CoproductInCommutes _ _ _ (CC _ _ (λ _, pr1 A s))).
Qed.
Local Lemma is_omega_cocont_post_comp_hat_functor (s : sort) :
is_omega_cocont (post_comp_functor (A := sortToC) (hat_functor s)).
Proof.
apply is_omega_cocont_post_composition_functor, is_left_adjoint_hat.
Defined.
Local Lemma is_omega_cocont_hat_exp_functor_list (xst : list (list sort × sort) × sort) :
is_omega_cocont (hat_exp_functor_list xst).
Proof.
apply is_omega_cocont_functor_composite.
+ apply is_omega_cocont_exp_functor_list.
+ apply is_omega_cocont_post_comp_hat_functor.
Defined.
The functor obtained from a multisorted binding signature is omega-cocontinuous
Lemma is_omega_cocont_MultiSortedSigToFunctor (M : MultiSortedSig sort) :
is_omega_cocont (MultiSortedSigToFunctor M).
Proof.
apply is_omega_cocont_coproduct_of_functors.
intros op; apply is_omega_cocont_hat_exp_functor_list.
Defined.
Lemma is_omega_cocont_MultiSortedSigToSignature (M : MultiSortedSig sort) :
is_omega_cocont (MultiSortedSigToSignature M).
Proof.
apply is_omega_cocont_MultiSortedSigToFunctor.
Defined.
End omega_cocont.
End MBindingSig.
is_omega_cocont (MultiSortedSigToFunctor M).
Proof.
apply is_omega_cocont_coproduct_of_functors.
intros op; apply is_omega_cocont_hat_exp_functor_list.
Defined.
Lemma is_omega_cocont_MultiSortedSigToSignature (M : MultiSortedSig sort) :
is_omega_cocont (MultiSortedSigToSignature M).
Proof.
apply is_omega_cocont_MultiSortedSigToFunctor.
Defined.
End omega_cocont.
End MBindingSig.