Library UniMath.Algebra.GaussianElimination.Vectors
Matrices
Require Import UniMath.Foundations.PartA.
Require Import UniMath.Foundations.NaturalNumbers.
Require Import UniMath.MoreFoundations.PartA.
Require Import UniMath.MoreFoundations.Nat.
Require Import UniMath.MoreFoundations.Tactics.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.Combinatorics.Vectors.
Require Import UniMath.Algebra.RigsAndRings.
Require Import UniMath.Algebra.IteratedBinaryOperations.
Require Import UniMath.Algebra.Matrix.
Require Import UniMath.Algebra.GaussianElimination.Auxiliary.
Section Arbitrary_Vectors.
Lemma vector_fmap {X Y : UU} (f : X -> Y) {n} : Vector X n -> Vector Y n.
Proof.
intros ? ?; auto.
Defined.
Lemma iscontr_nil_vector {X : UU} : iscontr (Vector X 0).
Proof.
apply iscontrfunfromempty2. apply fromstn0.
Defined.
Lemma vector_1_inj { X : rig } { n : nat } (e1 e2 : X)
: (λ y : (⟦ 1 ⟧)%stn, e1) = (λ y : (⟦ 1 ⟧)%stn, e2) -> e1 = e2.
Proof.
intros eq; apply (invmaponpathsweq (@weq_vector_1 X) _ _ eq).
Defined.
Lemma const_vec_eq {X : UU} {n : nat} (v : Vector X n) (e : X) (i : ⟦ n ⟧%stn)
: v = const_vec e -> v i = e.
Proof.
intros eq. rewrite eq. reflexivity.
Defined.
End Arbitrary_Vectors.
Proof.
intros ? ?; auto.
Defined.
Lemma iscontr_nil_vector {X : UU} : iscontr (Vector X 0).
Proof.
apply iscontrfunfromempty2. apply fromstn0.
Defined.
Lemma vector_1_inj { X : rig } { n : nat } (e1 e2 : X)
: (λ y : (⟦ 1 ⟧)%stn, e1) = (λ y : (⟦ 1 ⟧)%stn, e2) -> e1 = e2.
Proof.
intros eq; apply (invmaponpathsweq (@weq_vector_1 X) _ _ eq).
Defined.
Lemma const_vec_eq {X : UU} {n : nat} (v : Vector X n) (e : X) (i : ⟦ n ⟧%stn)
: v = const_vec e -> v i = e.
Proof.
intros eq. rewrite eq. reflexivity.
Defined.
End Arbitrary_Vectors.
Basic vector algebra over rigs
Local Notation "v1 *pw v2" := ((pointwise _ op2) v1 v2) (at level 40, left associativity).
Local Notation "v1 +pw v2" := ((pointwise _ op1) v1 v2) (at level 50, left associativity).
Section Basic_Vector_Algebra.
Context { R : rig }.
Definition scalar_lmult_vec (s : R) {n} (vec: Vector R n)
:= vector_fmap (fun x => s * x)%rig vec.
Definition scalar_rmult_vec {n} (vec: Vector R n) (s : R)
:= vector_fmap (fun x => x * s)%rig vec.
Lemma pointwise_rdistr_vector { n : nat } (v1 v2 v3 : Vector R n)
: (v1 +pw v2) *pw v3 = (v1 *pw v3) +pw (v2 *pw v3).
Proof.
use (pointwise_rdistr (rigrdistr R)).
Defined.
Lemma pointwise_assoc2_vector { n : nat } (v1 v2 v3 : Vector R n)
: (v1 *pw v2) *pw v3 = v1 *pw (v2 *pw v3).
Proof.
use (pointwise_assoc (rigassoc2 R)).
Defined.
Lemma pointwise_comm2_vector {CR: commrig} { n : nat } (v1 v2 : Vector CR n)
: v1 *pw v2 = v2 *pw v1.
Proof.
use (pointwise_comm (rigcomm2 CR)).
Defined.
Definition stdb_vector { n : nat } (i : ⟦ n ⟧%stn) : Vector R n.
Proof.
intros j.
induction (stn_eq_or_neq i j).
- exact rigunel2.
- exact rigunel1.
Defined.
Definition stdb_ii {n : nat} (i : ⟦ n ⟧%stn)
: (stdb_vector i) i = rigunel2.
Proof.
unfold stdb_vector; rewrite (stn_eq_or_neq_refl); apply idpath.
Defined.
Definition stdb_ij {n : nat} (i j : ⟦ n ⟧%stn)
: i ≠ j -> (stdb_vector i) j = rigunel1.
Proof.
intros i_neq_j. unfold stdb_vector.
now rewrite (stn_eq_or_neq_right i_neq_j).
Defined.
End Basic_Vector_Algebra.
Many of the following are generalisations of versions for natural numbers, given in Combinatorics.StandardFiniteSets using the keyword stnsum.
For now they are given here for rigs; many use only the additive structure, so could be generalised to commutative monoids (or arbitrary monoids). Lemmas involving the least structure are given first.
Lemma vecsum_empty (v1 : Vector R 0) : Σ v1 = 0%rig.
Proof.
reflexivity.
Defined.
Lemma vecsum_step {n : nat} (f : ⟦ S n ⟧%stn -> R) :
Σ f = (Σ (f ∘ (dni lastelement)) + f lastelement)%rig.
Proof.
intros; apply iterop_fun_step; apply riglunax1.
Defined.
Lemma transport_vecsum {m n : nat} (e: m = n) (g: ⟦ n ⟧%stn -> R) :
Σ g = Σ (λ i, g (transportf stn e i)).
Proof.
intros; now induction e.
Defined.
Lemma vecsum_eq {n : nat} (f g : ⟦ n ⟧%stn -> R) : f ~ g -> Σ f = Σ g.
Proof.
intros H.
induction n as [|n IH]; try apply idpath.
rewrite 2 vecsum_step.
induction (H lastelement).
apply (maponpaths (λ i, op1 i (f lastelement))).
apply IH; intro x; apply H.
Defined.
Lemma vecsum_zero {n} : Σ (@const_vec R n 0%rig) = 0%rig.
Proof.
induction n as [ | n IH].
{ reflexivity. }
rewrite vecsum_step.
rewrite rigrunax1.
apply IH.
Defined.
Lemma vecsum_eq_zero {n} (v : Vector R n) (v_0 : v ~ const_vec 0%rig)
: Σ v = 0%rig.
Proof.
etrans. { apply vecsum_eq, v_0. }
apply vecsum_zero.
Defined.
Lemma vecsum_left_right :
∏ (m n : nat) (f : (⟦ m + n ⟧)%stn → R),
Σ f = op1 (Σ (f ∘ stn_left m n)) (Σ (f ∘ stn_right m n)).
Proof.
intros.
induction n as [| n IHn].
{ change (Σ _) with (@rigunel1 R) at 3.
set (a := m + 0). assert (a = m). { apply natplusr0. }
assert (e := ! natplusr0 m).
rewrite (transport_vecsum e).
unfold funcomp.
rewrite rigrunax1.
apply maponpaths. apply pathsinv0.
apply funextfun. intros i.
now rewrite <- stn_left_0.
}
rewrite vecsum_step.
assert (e : S (m + n) = m + S n).
{ apply pathsinv0. apply natplusnsm. }
rewrite (transport_vecsum e).
rewrite vecsum_step.
rewrite <- rigassoc1. apply map_on_two_paths.
{ rewrite IHn; clear IHn. apply map_on_two_paths.
{ apply vecsum_eq; intro i. unfold funcomp.
apply maponpaths. apply subtypePath_prop.
rewrite stn_left_compute. induction e.
rewrite idpath_transportf. rewrite dni_last.
apply idpath. }
{ apply vecsum_eq; intro i. unfold funcomp.
apply maponpaths. apply subtypePath_prop.
rewrite stn_right_compute. unfold stntonat. induction e.
rewrite idpath_transportf. rewrite 2? dni_last.
apply idpath. } }
unfold funcomp. apply maponpaths. apply subtypePath_prop.
now induction e.
Defined.
Lemma vecsum_dni {n : nat} (f : ⟦ S n ⟧%stn -> R) (j : ⟦ S n ⟧%stn ) :
Σ f = op1 (Σ (f ∘ dni j)) (f j).
Proof.
intros.
induction j as [j J].
assert (e2 : j + (n - j) = n).
{ rewrite natpluscomm. apply minusplusnmm. apply natlthsntoleh. exact J. }
assert (e : (S j) + (n - j) = S n).
{ change (S j + (n - j)) with (S (j + (n - j))). apply maponpaths. exact e2. }
intermediate_path (Σ (λ i, f (transportf stn e i))).
- apply (transport_vecsum e).
- rewrite (vecsum_left_right (S j) (n - j)); unfold funcomp.
apply pathsinv0. rewrite (transport_vecsum e2).
rewrite (vecsum_left_right j (n-j)); unfold funcomp.
rewrite (vecsum_step (λ x, f (transportf stn e _))); unfold funcomp.
apply pathsinv0.
rewrite rigassoc1. rewrite (@rigcomm1 R (f _) ). rewrite <- rigassoc1.
apply map_on_two_paths.
+ apply map_on_two_paths.
* apply vecsum_eq; intro i. induction i as [i I].
apply maponpaths. apply subtypePath_prop.
induction e. rewrite idpath_transportf. rewrite stn_left_compute.
unfold dni,di, stntonat; simpl.
induction (natlthorgeh i j) as [R'|R'].
-- unfold stntonat; simpl; rewrite transport_stn; simpl.
induction (natlthorgeh i j) as [a|b].
++ apply idpath.
++ contradicts R' (natlehneggth b).
-- unfold stntonat; simpl; rewrite transport_stn; simpl.
induction (natlthorgeh i j) as [V|V].
++ contradicts I (natlehneggth R').
++ apply idpath.
* apply vecsum_eq; intro i. induction i as [i I]. apply maponpaths.
unfold dni,di, stn_right, stntonat; repeat rewrite transport_stn; simpl.
induction (natlthorgeh (j+i) j) as [X|X].
-- contradicts (negnatlthplusnmn j i) X.
-- apply subtypePath_prop. simpl. apply idpath.
+ apply maponpaths.
rewrite transport_stn; simpl.
apply subtypePath_prop, idpath.
Defined.
Lemma vecsum_to_rightsum {n m' n' : nat} (p : m' + n' = n) (f : ⟦ m' + n' ⟧%stn -> R)
(left_part_is_zero : (f ∘ stn_left m' n') = const_vec 0%rig):
Σ f = Σ (f ∘ stn_right m' n' ).
Proof.
rewrite vecsum_left_right, vecsum_eq_zero.
- now rewrite riglunax1.
- now rewrite (left_part_is_zero ).
Defined.
Lemma vecsum_to_leftsum {n m' n' : nat} (p : m' + n' = n) (f : ⟦ m' + n' ⟧%stn -> R)
(right_part_is_zero : (f ∘ stn_right m' n') = const_vec 0%rig):
Σ f = Σ (f ∘ stn_left m' n' ).
Proof.
rewrite vecsum_left_right, rigcomm1, vecsum_eq_zero.
- now rewrite riglunax1.
- now rewrite right_part_is_zero.
Defined.
Lemma vecsum_add {n} (v1 v2 : (⟦ n ⟧)%stn -> R)
: Σ (v1 +pw v2) = (Σ v1 + Σ v2)%rig.
Proof.
induction n as [| n IH].
- cbn. apply pathsinv0, riglunax1.
- rewrite 3 vecsum_step.
etrans. { apply maponpaths_2. apply IH. }
refine (rigassoc1 _ _ _ _ @ _ @ !rigassoc1 _ _ _ _).
apply maponpaths.
refine (!rigassoc1 _ _ _ _ @ _ @ rigassoc1 _ _ _ _).
apply maponpaths_2.
apply rigcomm1.
Defined.
Lemma vecsum_interchange :
∏ (m n : nat)
(f : (⟦ n ⟧)%stn -> (⟦ m ⟧)%stn -> R),
Σ (λ i: (⟦ m ⟧)%stn, Σ (λ j : (⟦ n ⟧)%stn, f j i) )
= Σ (λ j: (⟦ n ⟧)%stn, Σ (λ i : (⟦ m ⟧)%stn, f j i)).
Proof.
intros. induction n as [| n IH].
- induction m.
{ reflexivity. }
change (Σ (λ i : (⟦ 0 ⟧)%stn, Σ ((λ j : (⟦ _ ⟧)%stn, f i j) )))
with (@rigunel1 R).
apply vecsum_zero.
- rewrite vecsum_step.
unfold funcomp.
rewrite <- IH, <- vecsum_add.
apply maponpaths, funextfun; intros i.
rewrite vecsum_step.
reflexivity.
Defined.
From here on, we are really using the ring structure
Lemma vecsum_ldistr :
∏ (n : nat) (vec : Vector R n) (s : R),
op2 s (Σ vec) = Σ (scalar_lmult_vec s vec).
Proof.
intros. induction n as [| n IH].
- simpl. apply rigmultx0.
- rewrite 2 vecsum_step.
rewrite rigldistr. apply maponpaths_2, IH.
Defined.
Lemma vecsum_rdistr:
∏ (n : nat) (vec : Vector R n) (s : R),
op2 (Σ vec) s = Σ (scalar_rmult_vec vec s).
Proof.
intros. induction n as [| n IH].
- apply rigmult0x.
- rewrite 2 vecsum_step.
rewrite rigrdistr. apply maponpaths_2, IH.
Defined.
Lemma vecsum_scalar_lmult {m} (s : R) (v w : Vector R m)
: Σ (scalar_lmult_vec s v *pw w) = (s * Σ (v *pw w))%rig.
Proof.
etrans. 2: { apply pathsinv0, vecsum_ldistr. }
apply vecsum_eq. intro i. apply rigassoc2.
Defined.
End Vector_Sums.
Section Pulse_Functions.
∏ (n : nat) (vec : Vector R n) (s : R),
op2 s (Σ vec) = Σ (scalar_lmult_vec s vec).
Proof.
intros. induction n as [| n IH].
- simpl. apply rigmultx0.
- rewrite 2 vecsum_step.
rewrite rigldistr. apply maponpaths_2, IH.
Defined.
Lemma vecsum_rdistr:
∏ (n : nat) (vec : Vector R n) (s : R),
op2 (Σ vec) s = Σ (scalar_rmult_vec vec s).
Proof.
intros. induction n as [| n IH].
- apply rigmult0x.
- rewrite 2 vecsum_step.
rewrite rigrdistr. apply maponpaths_2, IH.
Defined.
Lemma vecsum_scalar_lmult {m} (s : R) (v w : Vector R m)
: Σ (scalar_lmult_vec s v *pw w) = (s * Σ (v *pw w))%rig.
Proof.
etrans. 2: { apply pathsinv0, vecsum_ldistr. }
apply vecsum_eq. intro i. apply rigassoc2.
Defined.
End Vector_Sums.
Section Pulse_Functions.
Pulse functions
Context { R : rig }.
Definition is_pulse_function { n : nat } ( i : ⟦ n ⟧%stn )
(f : ⟦ n ⟧%stn -> R)
:= ∏ (j: ⟦ n ⟧%stn), (i ≠ j) -> (f j = 0%rig).
Lemma pulse_function_sums_to_point { n : nat }
(f : ⟦ n ⟧%stn -> R) (i : ⟦ n ⟧%stn)
(f_pulse_function : is_pulse_function i f)
: Σ f = f i.
Proof.
destruct (stn_inhabited_implies_succ i) as [n' e_n_Sn'].
destruct (!e_n_Sn').
rewrite (vecsum_dni f i).
rewrite vecsum_eq_zero.
{ rewrite riglunax1. apply idpath. }
intros k.
unfold funcomp.
unfold const_vec.
assert (i_neq_dni : i ≠ dni i k). {exact (dni_neq_i i k). }
intros; destruct (stn_eq_or_neq i (dni i k) ) as [eq | neq].
- apply (stnneq_iff_nopath i (dni i k)) in eq.
apply weqtoempty. intros. apply eq. assumption.
exact (dni_neq_i i k).
- apply f_pulse_function; exact neq.
Defined.
Lemma is_pulse_function_stdb_vector
{ n : nat } (i : ⟦ n ⟧%stn)
: is_pulse_function i (stdb_vector i).
Proof.
intros j i_neq_j.
unfold stdb_vector, pointwise.
now rewrite (stn_eq_or_neq_right i_neq_j).
Defined.
Lemma stdb_vector_sums_to_1 { n : nat } (i : ⟦ n ⟧%stn)
: Σ (@stdb_vector R n i) = 1%rig.
Proof.
etrans.
{ apply (pulse_function_sums_to_point _ i), is_pulse_function_stdb_vector. }
unfold stdb_vector; now rewrite stn_eq_or_neq_refl.
Defined.
Lemma pulse_prod_is_pulse {n : nat}
(f g : stn n -> R) {i : stn n} (H : is_pulse_function i f)
: is_pulse_function i (f *pw g).
Proof.
unfold is_pulse_function in * |- ; intros j.
intros neq; unfold pointwise.
etrans. { apply maponpaths_2. apply(H j neq). }
apply rigmult0x.
Defined.
Lemma sum_stdb_vector_pointwise_prod { n : nat } (v : Vector R n) (i : ⟦ n ⟧%stn)
: Σ (stdb_vector i *pw v) = (v i).
Proof.
etrans.
{ apply
(pulse_function_sums_to_point _ i)
, (pulse_prod_is_pulse _ _ )
, is_pulse_function_stdb_vector. }
unfold pointwise, stdb_vector.
rewrite stn_eq_or_neq_refl.
apply riglunax2.
Defined.
Lemma pointwise_prod_stdb_vector {n : nat} (v : Vector R n) (i : ⟦ n ⟧%stn)
: v *pw (stdb_vector i) = scalar_lmult_vec (v i) (stdb_vector i).
Proof.
apply funextfun. intros j.
unfold scalar_lmult_vec, vector_fmap, pointwise.
destruct (stn_eq_or_neq i j) as [i_eq_j | i_neq_j].
- rewrite i_eq_j; apply idpath.
- unfold stdb_vector.
rewrite (stn_eq_or_neq_right i_neq_j).
now do 2 rewrite rigmultx0.
Defined.
Lemma two_pulse_function_sums_to_points { n : nat }
(f : ⟦ n ⟧%stn -> R)
(i : ⟦ n ⟧%stn) (j : ⟦ n ⟧%stn) (ne_i_j : i ≠ j)
(f_two_pulse : ∏ (k: ⟦ n ⟧%stn), (k ≠ i) -> (k ≠ j) -> (f k = 0%rig))
: (Σ f = f i + f j)%rig.
Proof.
assert (H : f = (scalar_lmult_vec (f i) (stdb_vector i))
+pw (scalar_lmult_vec (f j) (stdb_vector j))).
{ apply funextfun. intros k.
unfold stdb_vector, scalar_lmult_vec, vector_fmap, pointwise.
destruct (stn_eq_or_neq i k) as [i_eq_k | i_neq_k].
- destruct (stn_eq_or_neq j k) as [j_eq_k | j_neq_k]; destruct i_eq_k.
+ destruct j_eq_k.
now apply isirrefl_natneq in ne_i_j.
+ now rewrite rigmultx0, rigrunax1, rigrunax2.
- rewrite rigmultx0, riglunax1.
destruct (stn_eq_or_neq j k) as [j_eq_k | j_neq_k].
+ now rewrite rigrunax2, j_eq_k.
+ rewrite rigmultx0; apply f_two_pulse; now apply issymm_natneq.
}
etrans. { apply maponpaths, H. }
etrans. { apply vecsum_add. }
apply maponpaths_12;
rewrite <- vecsum_ldistr, stdb_vector_sums_to_1; apply rigrunax2.
Defined.
End Pulse_Functions.