Library UniMath.Bicategories.RezkCompletions.StructuredCats.SubobjectClassifier
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.WeakEquivalences.Core.
Require Import UniMath.CategoryTheory.WeakEquivalences.Terminal.
Require Import UniMath.CategoryTheory.WeakEquivalences.Preservation.SubobjectClassifier.
Require Import UniMath.CategoryTheory.WeakEquivalences.Reflection.SubobjectClassifier.
Require Import UniMath.CategoryTheory.WeakEquivalences.LiftPreservation.SubobjectClassifier.
Require Import UniMath.Bicategories.Core.Bicat. Import Bicat.Notations.
Require Import UniMath.Bicategories.Core.Examples.BicatOfUnivCats.
Require Import UniMath.Bicategories.Core.Examples.BicatOfCats.
Require Import UniMath.Bicategories.DisplayedBicats.DispBicat.
Require Import UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.
Require Import UniMath.Bicategories.PseudoFunctors.UniversalArrow.
Import PseudoFunctor.Notations.
Import DispBicat.Notations.
Require Import UniMath.Bicategories.PseudoFunctors.Examples.BicatOfCatToUnivCat.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.DispBicatOnCatToUniv.
Require Import UniMath.Bicategories.DisplayedBicats.DisplayedUniversalArrow.
Require Import UniMath.Bicategories.DisplayedBicats.DisplayedUniversalArrowOnCat.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.Sigma.
Require Import UniMath.CategoryTheory.SubobjectClassifier.SubobjectClassifier.
Require Import UniMath.CategoryTheory.SubobjectClassifier.PreservesSubobjectClassifier.
Require Import UniMath.Bicategories.DisplayedBicats.Examples.CategoriesWithStructure.SubobjectClassifier.
Require Import UniMath.Bicategories.RezkCompletions.DisplayedRezkCompletions.
Require Import UniMath.Bicategories.RezkCompletions.StructuredCats.FiniteLimits.
Local Open Scope cat.
Section CategoriesSubobjectClassifierAdmitRezkCompletions.
Context (LUR : left_universal_arrow univ_cats_to_cats)
(η_weak_equiv : ∏ C : category, is_weak_equiv (pr12 LUR C)).
Lemma disp_bicat_subobject_classifier_has_RC
: cat_with_struct_has_RC η_weak_equiv disp_bicat_subobject_classifier.
Proof.
use make_cat_with_struct_has_RC_from_sigma ; cbn.
- exact (disp_bicat_limits_has_RC _ η_weak_equiv).
- simpl ; intros C₁ C₂ C₂_univ F F_weq [[T₁ ?] [BP₁ ?]] [Ω₁ ?].
refine (_ ,, tt).
apply (weak_equiv_creates_subobject_classifier _ _ Ω₁).
- cbn ; intros C [[T ?] [BP ?]] [Ω ?].
refine (tt ,, _).
apply weak_equiv_preserves_subobject_classifier.
- cbn ; intros C₁ C₂ C₃ F G H n
[[T₁ ?] [BP₁ ?]] [Ω₁ _]
[[T₂ ?] [BP₂ ?]] [Ω₂ _]
[[T₃ ?] [BP₃ ?]] [Ω₃ _]
G_weq
[[? Fpt] [? Fpb]]
[? FΩ].
refine (tt ,, _).
use preserves_subobject_classifier_independent_of_chosen_terminal_if_univalent.
+ exact (weak_equiv_creates_terminal G_weq T₁).
+ exact (weak_equiv_lifts_preserves_subobject_classifier C₂ C₃ n G_weq Fpt T₁ T₃ FΩ).
+ apply C₂.
Defined.
Theorem disp_bicat_subobject_classifier_has_RezkCompletion
: cat_with_structure_has_RezkCompletion disp_bicat_subobject_classifier.
Proof.
apply (make_RezkCompletion_from_locally_contractible η_weak_equiv).
- exact disp_bicat_subobject_classifier_has_RC.
- apply disp_2cells_iscontr_subobject_classifier.
Defined.
End CategoriesSubobjectClassifierAdmitRezkCompletions.