Library UniMath.AlgebraicTheories.Examples.FreeMonoidTheory
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Export UniMath.Algebra.BinaryOperations.
Require Import UniMath.Algebra.Free_Monoids_and_Groups.
Require Import UniMath.Algebra.IteratedBinaryOperations.
Require Import UniMath.Algebra.Monoids.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Require Import UniMath.CategoryTheory.Categories.Monoid.
Require Import UniMath.Combinatorics.Lists.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.Combinatorics.Vectors.
Require Import UniMath.AlgebraicTheories.AlgebraicTheories.
Require Import UniMath.AlgebraicTheories.Algebras.
Require Import UniMath.AlgebraicTheories.AlgebraCategoryCore.
Require Import UniMath.AlgebraicTheories.AlgebraCategory.
Require Import UniMath.AlgebraicTheories.AlgebraMorphisms.
Require Import UniMath.AlgebraicTheories.Examples.FreeObjectTheory.
Local Open Scope algebraic_theories.
Local Open Scope vec_scope.
Local Open Scope cat.
Require Import UniMath.MoreFoundations.All.
Require Export UniMath.Algebra.BinaryOperations.
Require Import UniMath.Algebra.Free_Monoids_and_Groups.
Require Import UniMath.Algebra.IteratedBinaryOperations.
Require Import UniMath.Algebra.Monoids.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Equivalences.Core.
Require Import UniMath.CategoryTheory.Categories.Monoid.
Require Import UniMath.Combinatorics.Lists.
Require Import UniMath.Combinatorics.StandardFiniteSets.
Require Import UniMath.Combinatorics.Vectors.
Require Import UniMath.AlgebraicTheories.AlgebraicTheories.
Require Import UniMath.AlgebraicTheories.Algebras.
Require Import UniMath.AlgebraicTheories.AlgebraCategoryCore.
Require Import UniMath.AlgebraicTheories.AlgebraCategory.
Require Import UniMath.AlgebraicTheories.AlgebraMorphisms.
Require Import UniMath.AlgebraicTheories.Examples.FreeObjectTheory.
Local Open Scope algebraic_theories.
Local Open Scope vec_scope.
Local Open Scope cat.
Definition free_monoid_theory
: algebraic_theory
:= free_object_theory monoid_free_forgetful_adjunction.
Definition monoid_to_algebra
: monoid_category ⟶ algebra_cat free_monoid_theory
:= free_object_algebra_functor monoid_free_forgetful_adjunction.
Definition op_el
: free_monoid_theory 2
:= op
(free_monoid_unit (X := stnset _) (make_stn 2 0 (idpath _)))
(free_monoid_unit (X := stnset _) (make_stn 2 1 (idpath _))).
Definition unit_el
: free_monoid_theory 0
:= unel (free_monoid _).
Definition free_monoid_theory_algebra_to_setwithbinop
(A : algebra free_monoid_theory)
: setwithbinop.
Proof.
use make_setwithbinop.
- exact A.
- intros a b.
exact (action op_el (weqvecfun _ [(a ; b)])).
Defined.
Local Lemma move_action_through_weqvecfun
{A : algebra free_monoid_theory}
{n : nat}
{f g : free_monoid_theory n}
(h : stn n → A)
: weqvecfun _ [( action f h ; action g h )] = λ i, action (weqvecfun _ [(f ; g)] i) h.
Proof.
now apply (invmaponpathsweq (invweq (weqvecfun _))).
Qed.
Lemma free_monoid_theory_algebra_to_setwithbinop_op_is_assoc
(A : algebra free_monoid_theory)
: isassoc (op (X := free_monoid_theory_algebra_to_setwithbinop A)).
Proof.
intros a b c.
pose (f := weqvecfun _ [(a ; b ; c)]).
pose (Hf := λ i Hi, !(var_action _ (make_stn 3 i Hi) f)).
cbn -[weqvecfun action].
rewrite (Hf 0 (idpath true) : a = _),
(Hf 1 (idpath true) : b = _),
(Hf 2 (idpath true) : c = _).
now do 4 rewrite (move_action_through_weqvecfun f), <- subst_action.
Qed.
Definition free_monoid_theory_algebra_to_unit (A : algebra free_monoid_theory)
: A
:= action unit_el (weqvecfun _ [()]).
Lemma free_monoid_theory_algebra_to_isunit (A : algebra free_monoid_theory)
: isunit
(op (X := free_monoid_theory_algebra_to_setwithbinop A))
(free_monoid_theory_algebra_to_unit A).
Proof.
split;
intro x;
cbn -[weqvecfun action];
now rewrite <- (var_action _ (make_stn 1 0 (idpath _)) (λ _, x)),
<- (lift_constant_action 1 _ (λ _, x) : _ = free_monoid_theory_algebra_to_unit A),
(move_action_through_weqvecfun (λ _, x)),
<- subst_action.
Qed.
Definition free_monoid_theory_algebra_to_setwithbinop_op_is_unital
(A : algebra free_monoid_theory)
: isunital (op (X := free_monoid_theory_algebra_to_setwithbinop A))
:= _ ,, free_monoid_theory_algebra_to_isunit A.
Definition free_monoid_theory_algebra_to_setwithbinop_op_is_monoidop
(A : algebra free_monoid_theory)
: ismonoidop (op (X := free_monoid_theory_algebra_to_setwithbinop A))
:= free_monoid_theory_algebra_to_setwithbinop_op_is_assoc A ,,
free_monoid_theory_algebra_to_setwithbinop_op_is_unital A.
Definition free_monoid_theory_algebra_to_monoid (A : algebra free_monoid_theory)
: monoid
:= free_monoid_theory_algebra_to_setwithbinop A ,,
free_monoid_theory_algebra_to_setwithbinop_op_is_monoidop A.
Definition fully_faithful_monoid_to_algebra
: fully_faithful monoid_to_algebra.
Proof.
intros M M'.
use isweq_iso.
- refine (λ (f : algebra_morphism _ _), _).
refine (make_monoidfun (f := f) _).
abstract (
use make_ismonoidfun;
[ exact (λ m m', mor_action f op_el (weqvecfun _ [(m ; m')]))
| exact (mor_action f unit_el (weqvecfun _ [()])) ]
).
- abstract (
intro f;
now apply monoidfun_eq
).
- abstract (
intro f;
now apply algebra_morphism_eq
).
Defined.
Lemma mor_action_ax_identity
(A : algebra free_monoid_theory)
(n : nat)
(f : free_monoid_theory n)
(a : stn n → (monoid_to_algebra (free_monoid_theory_algebra_to_monoid A) : algebra _))
: mor_action_ax (identity _) (idfun A)
(@action free_monoid_theory
(monoid_to_algebra (free_monoid_theory_algebra_to_monoid A) : algebra _))
(@action free_monoid_theory A) n f a.
Proof.
pose (A' := monoid_to_algebra (free_monoid_theory_algebra_to_monoid A) : algebra _).
apply (list_ind (λ x, action (A := A') x a = action (A := A) x a)).
- exact (!(lift_constant_action (A := A) _ (unel (free_monoid _)) a)).
- intros i xs Haction.
refine (subst_action A' op_el (weqvecfun _ [(free_monoid_unit i ; xs)]) a @ !_).
refine (subst_action A op_el (weqvecfun _ [(free_monoid_unit i ; xs)]) a @ !_).
now rewrite <- (move_action_through_weqvecfun (A := A) a),
<- Haction,
(var_action A _ _ :
action (free_monoid_unit i : free_monoid_theory n) _ = _).
Qed.
Definition monoid_algebra_equivalence
: adj_equivalence_of_cats monoid_to_algebra.
Proof.
apply rad_equivalence_of_cats.
- apply is_univalent_monoid_category.
- apply fully_faithful_monoid_to_algebra.
- intro A.
apply hinhpr.
exists (free_monoid_theory_algebra_to_monoid A).
use make_algebra_z_iso.
+ apply identity_z_iso.
+ apply mor_action_ax_identity.
Defined.