Library UniMath.Topology.Topology

Results about Topology

Author: Catherine LELAY. Jan 2016 - Based on Bourbaki

Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Export UniMath.Topology.Filters.
Require Import UniMath.Algebra.Groups.
Require Import UniMath.Algebra.DivisionRig.
Require Import UniMath.Algebra.ConstructiveStructures.

Section Open.

Context {X : UU}.
Context (O : (X hProp) hProp).

Definition isSetOfOpen_union :=
   P : (X hProp) hProp,
    ( A : X hProp, P A O A) O (union P).
Lemma isaprop_isSetOfOpen_union :
  isaprop isSetOfOpen_union.
Proof.
  apply (impred_isaprop _ (λ _, isapropimpl _ _ (propproperty _))).
Qed.
Definition isSetOfOpen_finite_intersection :=
   (P : Sequence (X hProp)), ( m, O (P m)) O (finite_intersection P).
Lemma isaprop_isSetOfOpen_finite_intersection :
  isaprop isSetOfOpen_finite_intersection.
Proof.
  apply (impred_isaprop _ (λ _, isapropimpl _ _ (propproperty _))).
Qed.

Definition isSetOfOpen_htrue :=
  O (λ _, htrue).

Definition isSetOfOpen_and :=
   A B, O A O B O (λ x, A x B x).
Lemma isaprop_isSetOfOpen_and :
  isaprop isSetOfOpen_and.
Proof.
  apply impred_isaprop ; intros A.
  apply impred_isaprop ; intros B.
  apply isapropimpl, isapropimpl.
  now apply propproperty.
Qed.

Lemma isSetOfOpen_hfalse :
  isSetOfOpen_union
   O (λ _ : X, hfalse).
Proof.
  intros H0.
  rewrite <- union_hfalse.
  apply H0.
  intro.
  apply fromempty.
Qed.

Lemma isSetOfOpen_finite_intersection_htrue :
  isSetOfOpen_finite_intersection
   isSetOfOpen_htrue.
Proof.
  intro H0.
  unfold isSetOfOpen_htrue.
  rewrite <- finite_intersection_htrue.
  apply H0.
  intros m.
  induction (nopathsfalsetotrue (pr2 m)).
Qed.

Lemma isSetOfOpen_finite_intersection_and :
  isSetOfOpen_finite_intersection
   isSetOfOpen_and.
Proof.
  intros H0 A B Ha Hb.
  rewrite <- finite_intersection_and.
  apply H0.
  intros m ; simpl.
  induction m as [m Hm].
  now induction m.
Qed.
Lemma isSetOfOpen_finite_intersection_carac :
  isSetOfOpen_htrue
   isSetOfOpen_and
   isSetOfOpen_finite_intersection.
Proof.
  intros Htrue Hpair L.
  apply (pr2 (finite_intersection_hProp O)).
  split.
  - exact Htrue.
  - exact Hpair.
Qed.

Definition isSetOfOpen :=
  isSetOfOpen_union × isSetOfOpen_finite_intersection.

End Open.

Definition isTopologicalSpace (X : hSet) :=
   O : (X hProp) hProp, isSetOfOpen O.
Definition TopologicalSpace := X : hSet, isTopologicalSpace X.

Definition make_TopologicalSpace (X : hSet) (O : (X hProp) hProp)
           (is : isSetOfOpen_union O)
           (is0 : isSetOfOpen_htrue O)
           (is1 : isSetOfOpen_and O) : TopologicalSpace :=
  (X,,O,,is,,(isSetOfOpen_finite_intersection_carac _ is0 is1)).

Definition pr1TopologicatSpace : TopologicalSpace hSet := pr1.
Coercion pr1TopologicatSpace : TopologicalSpace >-> hSet.

Definition isOpen {T : TopologicalSpace} : (T hProp) hProp := pr1 (pr2 T).
Definition Open {T : TopologicalSpace} :=
   O : T hProp, isOpen O.
Definition pr1Open {T : TopologicalSpace} : Open (T hProp) := pr1.
Coercion pr1Open : Open >-> Funclass.

Section Topology_pty.

Context {T : TopologicalSpace}.

Lemma isOpen_union :
   P : (T hProp) hProp,
    ( A : T hProp, P A isOpen A)
     isOpen (union P).
Proof.
  apply (pr1 (pr2 (pr2 T))).
Qed.
Lemma isOpen_finite_intersection :
   (P : Sequence (T hProp)),
    ( m , isOpen (P m))
     isOpen (finite_intersection P).
Proof.
  apply (pr2 (pr2 (pr2 T))).
Qed.

Lemma isOpen_hfalse :
  isOpen (λ _ : T, hfalse).
Proof.
  apply isSetOfOpen_hfalse.
  intros P H.
  now apply isOpen_union.
Qed.
Lemma isOpen_htrue :
  isOpen (λ _ : T, htrue).
Proof.
  rewrite <- finite_intersection_htrue.
  apply isOpen_finite_intersection.
  intros m.
  induction (nopathsfalsetotrue (pr2 m)).
Qed.
Lemma isOpen_and :
   A B : T hProp,
    isOpen A isOpen B isOpen (λ x : T, A x B x).
Proof.
  apply isSetOfOpen_finite_intersection_and.
  intros P Hp.
  apply isOpen_finite_intersection.
  apply Hp.
Qed.
Lemma isOpen_or :
   A B : T hProp,
    isOpen A isOpen B isOpen (λ x : T, A x B x).
Proof.
  intros A B Ha Hb.
  rewrite <- union_or.
  apply isOpen_union.
  intros C.
  apply hinhuniv.
  apply sumofmaps ; intros ->.
  - exact Ha.
  - exact Hb.
Qed.

End Topology_pty.

Neighborhood


Section Neighborhood.

Context {T : TopologicalSpace}.

Definition neighborhood (x : T) : (T hProp) hProp :=
  λ P : T hProp, O : Open, O x × ( y : T, O y P y).

Lemma neighborhood_isOpen (P : T hProp) :
  ( x, P x neighborhood x P) <-> isOpen P.
Proof.
  split.
  - intros Hp.
    assert (H : A : T hProp, isaprop ( y : T, A y P y)).
    { intros A.
      apply impred_isaprop.
      intro y.
      apply isapropimpl.
      apply propproperty. }
    set (Q := λ A : T hProp, isOpen A (make_hProp ( y : T, A y P y) (H A))).
    assert (X : P = (union Q)).
    { apply funextfun.
      intros x.
      apply hPropUnivalence.
      - intros Px.
        generalize (Hp _ Px).
        apply hinhfun.
        intros A.
        exists (pr1 A) ; split.
        + split.
          * apply (pr2 (pr1 A)).
          * exact (pr2 (pr2 A)).
        + exact (pr1 (pr2 A)).
      - apply hinhuniv.
        intros A.
        apply (pr2 (pr1 (pr2 A))).
        exact (pr2 (pr2 A)). }
    rewrite X.
    apply isOpen_union.
    intros A Ha.
    apply (pr1 Ha).
  - intros Hp x Px.
    apply hinhpr.
    exists (P,,Hp).
    split.
    + exact Px.
    + intros y Py.
      exact Py.
Qed.

Lemma neighborhood_imply :
   (x : T) (P Q : T hProp),
    ( y : T, P y Q y) neighborhood x P neighborhood x Q.
Proof.
  intros x P Q H.
  apply hinhfun.
  intros O.
  exists (pr1 O).
  split.
  - apply (pr1 (pr2 O)).
  - intros y Hy.
    apply H.
    apply (pr2 (pr2 O)).
    exact Hy.
Qed.
Lemma neighborhood_forall :
   (x : T) (P : T hProp),
    ( y, P y) neighborhood x P.
Proof.
  intros x P H.
  apply hinhpr.
  exists ((λ _ : T, htrue),,isOpen_htrue).
  split.
  - reflexivity.
  - intros y _.
    now apply H.
Qed.
Lemma neighborhood_and :
   (x : T) (A B : T hProp),
    neighborhood x A neighborhood x B neighborhood x (λ y, A y B y).
Proof.
  intros x A B.
  apply hinhfun2.
  intros Oa Ob.
  exists ((λ x, pr1 Oa x pr1 Ob x) ,, isOpen_and _ _ (pr2 (pr1 Oa)) (pr2 (pr1 Ob))).
  simpl.
  split.
  - split.
    + apply (pr1 (pr2 Oa)).
    + apply (pr1 (pr2 Ob)).
  - intros y Hy.
    split.
    + apply (pr2 (pr2 Oa)).
      apply (pr1 Hy).
    + apply (pr2 (pr2 Ob)).
      apply (pr2 Hy).
Qed.
Lemma neighborhood_point :
   (x : T) (P : T hProp),
    neighborhood x P P x.
Proof.
  intros x P.
  apply hinhuniv.
  intros O.
  apply (pr2 (pr2 O)).
  apply (pr1 (pr2 O)).
Qed.

Lemma neighborhood_neighborhood :
   (x : T) (P : T hProp),
    neighborhood x P
     Q : T hProp, neighborhood x Q
                        × y : T, Q y neighborhood y P.
Proof.
  intros x P.
  apply hinhfun.
  intros Q.
  exists (pr1 Q).
  split.
  - apply (pr2 (neighborhood_isOpen _)).
    + apply (pr2 (pr1 Q)).
    + apply (pr1 (pr2 Q)).
  - intros y Qy.
    apply hinhpr.
    exists (pr1 Q).
    split.
    + exact Qy.
    + exact (pr2 (pr2 Q)).
Qed.

End Neighborhood.

Definition locally {T : TopologicalSpace} (x : T) : Filter T.
Proof.
  simple refine (make_Filter _ _ _ _ _).
  - apply (neighborhood x).
  - abstract (intros A B ;
              apply neighborhood_imply).
  - abstract (apply (pr2 (neighborhood_isOpen _)) ;
              [ apply isOpen_htrue |
                apply tt]).
  - abstract (intros A B ;
              apply neighborhood_and).
  - abstract (intros A Ha ;
              apply hinhpr ;
              exists x ;
              now apply neighborhood_point in Ha).
Defined.

Base of Neighborhood


Definition is_base_of_neighborhood {T : TopologicalSpace} (x : T) (B : (T hProp) hProp) :=
  ( P : T hProp, B P neighborhood x P)
    × ( P : T hProp, neighborhood x P Q : T hProp, B Q × ( t : T, Q t P t)).

Definition base_of_neighborhood {T : TopologicalSpace} (x : T) :=
   (B : (T hProp) hProp), is_base_of_neighborhood x B.
Definition pr1base_of_neighborhood {T : TopologicalSpace} (x : T) :
  base_of_neighborhood x ((T hProp) hProp) := pr1.
Coercion pr1base_of_neighborhood : base_of_neighborhood >-> Funclass.

Section base_default.

Context {T : TopologicalSpace} (x : T).

Definition base_default : (T hProp) hProp :=
  λ P : T hProp, isOpen P P x.

Lemma base_default_1 :
   P : T hProp, base_default P neighborhood x P.
Proof.
  intros P Hp.
  apply hinhpr.
  exists (P,,(pr1 Hp)) ; split.
  - exact (pr2 Hp).
  - intros. assumption.
Qed.
Lemma base_default_2 :
   P : T hProp, neighborhood x P Q : T hProp, base_default Q × ( t : T, Q t P t).
Proof.
  intros P.
  apply hinhfun.
  intros Q.
  exists (pr1 Q).
  repeat split.
  - exact (pr2 (pr1 Q)).
  - exact (pr1 (pr2 Q)).
  - exact (pr2 (pr2 Q)).
Qed.

End base_default.

Definition base_of_neighborhood_default {T : TopologicalSpace} (x : T) : base_of_neighborhood x.
Proof.
  exists (base_default x).
  split.
  - now apply base_default_1.
  - now apply base_default_2.
Defined.

Definition neighborhood' {T : TopologicalSpace} (x : T) (B : base_of_neighborhood x) : (T hProp) hProp :=
  λ P : T hProp, O : T hProp, B O × ( t : T, O t P t).

Lemma neighborhood_equiv {T : TopologicalSpace} (x : T) (B : base_of_neighborhood x) :
   P, neighborhood' x B P <-> neighborhood x P.
Proof.
  split.
  - apply hinhuniv.
    intros O.
    generalize ((pr1 (pr2 B)) (pr1 O) (pr1 (pr2 O))).
    apply neighborhood_imply.
    exact (pr2 (pr2 O)).
  - intros Hp.
    generalize (pr2 (pr2 B) P Hp).
    apply hinhfun.
    intros O.
    exists (pr1 O).
    exact (pr2 O).
Qed.

Some topologies

Topology from neighborhood


Definition isNeighborhood {X : UU} (B : X (X hProp) hProp) :=
  ( x, isfilter_imply (B x))
    × ( x, isfilter_htrue (B x))
    × ( x, isfilter_and (B x))
    × ( x P, B x P P x)
    × ( x P, B x P Q, B x Q × y, Q y B y P).

Lemma isNeighborhood_neighborhood {T : TopologicalSpace} :
  isNeighborhood (neighborhood (T := T)).
Proof.
  repeat split.
  - intros x A B.
    apply (neighborhood_imply x).
  - intros x.
    apply (pr2 (neighborhood_isOpen _)).
    + exact (isOpen_htrue (T := T)).
    + apply tt.
  - intros A B.
    apply neighborhood_and.
  - intros x P.
    apply neighborhood_point.
  - intros x P.
    apply neighborhood_neighborhood.
Qed.

Section TopologyFromNeighborhood.

Context {X : hSet}.
Context (N : X (X hProp) hProp).
Context (Himpl : x, isfilter_imply (N x))
        (Htrue : x, isfilter_htrue (N x))
        (Hand : x, isfilter_and (N x))
        (Hpt : x P, N x P P x)
        (H : x P, N x P Q, N x Q × y, Q y N y P).

Definition topologyfromneighborhood (A : X hProp) :=
   x : X, A x N x A.
Lemma isaprop_topologyfromneighborhood :
   A, isaprop (topologyfromneighborhood A).
Proof.
  intros A.
  apply impred_isaprop ; intros x ;
  apply isapropimpl, propproperty.
Qed.

Lemma topologyfromneighborhood_open :
  isSetOfOpen_union
   (λ A : X hProp,
          make_hProp (topologyfromneighborhood A)
                    (isaprop_topologyfromneighborhood A)).
Proof.
  intros L Hl x.
  apply hinhuniv.
  intros A.
  apply Himpl with (pr1 A).
  - intros y Hy.
    apply hinhpr.
    now exists (pr1 A), (pr1 (pr2 A)).
  - apply Hl.
    + exact (pr1 (pr2 A)).
    + exact (pr2 (pr2 A)).
Qed.

End TopologyFromNeighborhood.

Definition TopologyFromNeighborhood {X : hSet}
  (N : X (X hProp) hProp)
  (H : isNeighborhood N)
  : TopologicalSpace.
Proof.
  use make_TopologicalSpace.
  - apply X.
  - intros A.
    simple refine (make_hProp _ _).
    + apply (topologyfromneighborhood N A).
    + apply isaprop_topologyfromneighborhood.
  - apply topologyfromneighborhood_open.
    apply (pr1 H).
  - intros x _.
    apply (pr1 (pr2 H)).
  - intros A B Ha Hb x Hx.
    apply (pr1 (pr2 (pr2 H))).
    + now apply Ha, (pr1 Hx).
    + now apply Hb, (pr2 Hx).
Defined.

Lemma TopologyFromNeighborhood_correct {X : hSet}
  (N : X (X hProp) hProp)
  (H : isNeighborhood N)
  : (x : X) (P : X hProp),
    N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P.
Proof.
  split.
  - intros Hx.
    apply hinhpr.
    simple refine (tpair _ _ _).
    + simple refine (tpair _ _ _).
      * intros y.
        apply (N y P).
      * simpl ; intros y Hy.
        generalize (pr2 (pr2 (pr2 (pr2 H))) _ _ Hy).
        apply hinhuniv.
        intros Q.
        apply (pr1 H) with (2 := pr1 (pr2 Q)).
        exact (pr2 (pr2 Q)).
    + split ; simpl.
      * exact Hx.
      * intros y.
        now apply (pr1 (pr2 (pr2 (pr2 H)))).
  - apply hinhuniv.
    intros O.
    apply (pr1 H) with (pr1 (pr1 O)).
    + apply (pr2 (pr2 O)).
    + simple refine (pr2 (pr1 O) _ _).
      exact (pr1 (pr2 O)).
Qed.

Lemma isNeighborhood_isPreFilter {X : hSet} N :
  isNeighborhood N -> x : X, isPreFilter (N x).
Proof.
  intros Hn x.
  split.
  - apply (pr1 Hn).
  - apply isfilter_finite_intersection_carac.
    + apply (pr1 (pr2 Hn)).
    + apply (pr1 (pr2 (pr2 Hn))).
Qed.
Lemma isNeighborhood_isFilter {X : hSet} N :
  isNeighborhood N -> x : X, isFilter (N x).
Proof.
  intros Hn x.
  split.
  - apply isNeighborhood_isPreFilter, Hn.
  - intros A Fa.
    apply hinhpr.
    exists x.
    apply ((pr1 (pr2 (pr2 (pr2 Hn)))) _ _ Fa).
Qed.

Generated Topology


Section topologygenerated.

Context {X : hSet} (O : (X hProp) hProp).

Definition topologygenerated :=
  λ (x : X) (A : X hProp),
  ( L : Sequence (X hProp), ( n, O (L n)) × (finite_intersection L x) × ( y, finite_intersection L y A y)).

Lemma topologygenerated_imply :
   x : X, isfilter_imply (topologygenerated x).
Proof.
  intros x A B H.
  apply hinhfun.
  intros L.
  exists (pr1 L).
  repeat split.
  - exact (pr1 (pr2 L)).
  - exact (pr1 (pr2 (pr2 L))).
  - intros y Hy.
    apply H, (pr2 (pr2 (pr2 L))), Hy.
Qed.

Lemma topologygenerated_htrue :
   x : X, isfilter_htrue (topologygenerated x).
Proof.
  intros x.
  apply hinhpr.
  exists nil.
  repeat split; intros n; induction (nopathsfalsetotrue (pr2 n)).
Qed.

Lemma topologygenerated_and :
   x : X, isfilter_and (topologygenerated x).
Proof.
  intros x A B.
  apply hinhfun2.
  intros La Lb.
  exists (concatenate (pr1 La) (pr1 Lb)).
  repeat split.
  - simpl ; intro.
    apply (coprod_rect (λ x, O (coprod_rect _ _ _ x))) ; intros m.
    + rewrite coprod_rect_compute_1.
      exact (pr1 (pr2 La) _).
    + rewrite coprod_rect_compute_2.
      exact (pr1 (pr2 Lb) _).
  - simpl ; intro.
    apply (coprod_rect (λ y, (coprod_rect (λ _ : stn (length (pr1 La)) ⨿ stn (length (pr1 Lb)), X hProp) (λ j : stn (length (pr1 La)), (pr1 La) j)
       (λ k : stn (length (pr1 Lb)), (pr1 Lb) k) y) x)) ; intros m.
    + rewrite coprod_rect_compute_1.
      exact (pr1 (pr2 (pr2 La)) _).
    + rewrite coprod_rect_compute_2.
      exact (pr1 (pr2 (pr2 Lb)) _).
  - apply (pr2 (pr2 (pr2 La))).
    intros n.
    simpl in X0.
    unfold concatenate' in X0.
    specialize (X0 (weqfromcoprodofstn_map (length (pr1 La)) (length (pr1 Lb)) (ii1 n))).
    now rewrite (weqfromcoprodofstn_eq1 _ _) , coprod_rect_compute_1 in X0.
  - apply (pr2 (pr2 (pr2 Lb))).
    intros n.
    simpl in X0.
    unfold concatenate' in X0.
    specialize (X0 (weqfromcoprodofstn_map (length (pr1 La)) (length (pr1 Lb)) (ii2 n))).
    now rewrite (weqfromcoprodofstn_eq1 _ _), coprod_rect_compute_2 in X0.
Qed.

Lemma topologygenerated_point :
   (x : X) (P : X hProp), topologygenerated x P P x.
Proof.
  intros x P.
  apply hinhuniv.
  intros L.
  apply (pr2 (pr2 (pr2 L))).
  exact (pr1 (pr2 (pr2 L))).
Qed.

Lemma topologygenerated_neighborhood :
(x : X) (P : X hProp),
 topologygenerated x P
  Q : X hProp,
    topologygenerated x Q × ( y : X, Q y topologygenerated y P).
Proof.
  intros x P.
  apply hinhfun.
  intros L.
  exists (finite_intersection (pr1 L)).
  split.
  - apply hinhpr.
    exists (pr1 L).
    repeat split.
    + exact (pr1 (pr2 L)).
    + exact (pr1 (pr2 (pr2 L))).
    + intros. assumption.
  - intros y Hy.
    apply hinhpr.
    exists (pr1 L).
    repeat split.
    + exact (pr1 (pr2 L)).
    + exact Hy.
    + exact (pr2 (pr2 (pr2 L))).
Qed.

End topologygenerated.

Definition TopologyGenerated {X : hSet} (O : (X hProp) hProp) : TopologicalSpace.
Proof.
  simple refine (TopologyFromNeighborhood _ _).
  - apply X.
  - apply topologygenerated, O.
  - repeat split.
    + apply topologygenerated_imply.
    + apply topologygenerated_htrue.
    + apply topologygenerated_and.
    + apply topologygenerated_point.
    + apply topologygenerated_neighborhood.
Defined.

Lemma TopologyGenerated_included {X : hSet} :
   (O : (X hProp) hProp) (P : X hProp),
    O P isOpen (T := TopologyGenerated O) P.
Proof.
  intros O P Op.
  apply neighborhood_isOpen.
  intros x Hx.
  apply TopologyFromNeighborhood_correct.
  apply hinhpr.
  exists (singletonSequence P).
  repeat split.
  - induction n as [n Hn].
    exact Op.
  - intros n ;
    induction n as [n Hn].
    exact Hx.
  - intros y Hy.
    now apply (Hy (0%nat,,paths_refl _)).
Qed.
Lemma TopologyGenerated_smallest {X : hSet} :
   (O : (X hProp) hProp) (T : isTopologicalSpace X),
    ( P : X hProp, O P pr1 T P)
     P : X hProp, isOpen (T := TopologyGenerated O) P pr1 T P.
Proof.
  intros O T Ht P Hp.
  apply (neighborhood_isOpen (T := (X,,T))).
  intros x Px.
  generalize (Hp x Px) ; clear Hp.
  apply hinhfun.
  intros L.
  simple refine (tpair _ _ _).
  - simple refine (tpair _ _ _).
    + apply (finite_intersection (pr1 L)).
    + apply (isOpen_finite_intersection (T := X,,T)).
      intros m.
      apply Ht.
      apply (pr1 (pr2 L)).
  - split.
    + exact (pr1 (pr2 (pr2 L))).
    + exact (pr2 (pr2 (pr2 L))).
Qed.

Product of topologies


Section topologydirprod.

Context (U V : TopologicalSpace).

Definition topologydirprod :=
  λ (z : U × V) (A : U × V hProp),
  ( (Ax : U hProp) (Ay : V hProp),
      (Ax (pr1 z) × isOpen Ax)
        × (Ay (pr2 z) × isOpen Ay)
        × ( x y, Ax x Ay y A (x,,y))).

Lemma topologydirprod_imply :
   x : U × V, isfilter_imply (topologydirprod x).
Proof.
  intros x A B H.
  apply hinhfun.
  intros AB.
  exists (pr1 AB), (pr1 (pr2 AB)) ; split ; [ | split].
  - exact (pr1 (pr2 (pr2 AB))).
  - exact (pr1 (pr2 (pr2 (pr2 AB)))).
  - intros x' y' Hx' Hy'.
    now apply H, (pr2 (pr2 (pr2 (pr2 AB)))).
Qed.

Lemma topologydirprod_htrue :
   x : U × V, isfilter_htrue (topologydirprod x).
Proof.
  intros z.
  apply hinhpr.
  exists (λ _, htrue), (λ _, htrue).
  repeat split.
  - apply isOpen_htrue.
  - apply isOpen_htrue.
Qed.

Lemma topologydirprod_and :
   x : U × V, isfilter_and (topologydirprod x).
Proof.
  intros z A B.
  apply hinhfun2.
  intros A' B'.
  exists (λ x, pr1 A' x pr1 B' x), (λ y, pr1 (pr2 A') y pr1 (pr2 B') y).
  repeat split.
  - apply (pr1 (pr1 (pr2 (pr2 A')))).
  - apply (pr1 (pr1 (pr2 (pr2 B')))).
  - apply isOpen_and.
    + apply (pr2 (pr1 (pr2 (pr2 A')))).
    + apply (pr2 (pr1 (pr2 (pr2 B')))).
  - apply (pr1 (pr1 (pr2 (pr2 (pr2 A'))))).
  - apply (pr1 (pr1 (pr2 (pr2 (pr2 B'))))).
  - apply isOpen_and.
    + apply (pr2 (pr1 (pr2 (pr2 (pr2 A'))))).
    + apply (pr2 (pr1 (pr2 (pr2 (pr2 B'))))).
  - apply (pr2 (pr2 (pr2 (pr2 A')))).
    + apply (pr1 X).
    + apply (pr1 X0).
  - apply (pr2 (pr2 (pr2 (pr2 B')))).
    + apply (pr2 X).
    + apply (pr2 X0).
Qed.

Lemma topologydirprod_point :
   (x : U × V) (P : U × V hProp), topologydirprod x P P x.
Proof.
  intros xy A.
  apply hinhuniv.
  intros A'.
  apply (pr2 (pr2 (pr2 (pr2 A')))).
  - exact (pr1 (pr1 (pr2 (pr2 A')))).
  - exact (pr1 (pr1 (pr2 (pr2 (pr2 A'))))).
Qed.

Lemma topologydirprod_neighborhood :
   (x : U × V) (P : U × V hProp),
    topologydirprod x P
     Q : U × V hProp,
      topologydirprod x Q
                      × ( y : U × V, Q y topologydirprod y P).
Proof.
  intros xy P.
  apply hinhfun.
  intros A'.
  exists (λ z, pr1 A' (pr1 z) pr1 (pr2 A') (pr2 z)).
  split.
  - apply hinhpr.
    exists (pr1 A'), (pr1 (pr2 A')).
    split.
    + exact (pr1 (pr2 (pr2 A'))).
    + split.
      * exact (pr1 (pr2 (pr2 (pr2 A')))).
      * intros x' y' Ax' Ay'.
        now split.
  - intros z Az.
    apply hinhpr.
    exists (pr1 A'), (pr1 (pr2 A')).
    repeat split.
    + exact (pr1 Az).
    + exact (pr2 (pr1 (pr2 (pr2 A')))).
    + exact (pr2 Az).
    + exact (pr2 (pr1 (pr2 (pr2 (pr2 A'))))).
    + exact (pr2 (pr2 (pr2 (pr2 A')))).
Qed.

End topologydirprod.

Definition TopologyDirprod (U V : TopologicalSpace) : TopologicalSpace.
Proof.
  simple refine (TopologyFromNeighborhood _ _).
  - apply (U × V)%set.
  - apply topologydirprod.
  - repeat split.
    + apply topologydirprod_imply.
    + apply topologydirprod_htrue.
    + apply topologydirprod_and.
    + apply topologydirprod_point.
    + apply topologydirprod_neighborhood.
Defined.

Definition locally2d {T S : TopologicalSpace} (x : T) (y : S) : Filter (T × S) :=
  FilterDirprod (locally x) (locally y).

Lemma locally2d_correct {T S : TopologicalSpace} (x : T) (y : S) :
   P : T × S hProp, locally2d x y P <-> locally (T := TopologyDirprod T S) (x,,y) P.
Proof.
  intros P.
  split ; apply hinhuniv.
  - intros A.
    apply TopologyFromNeighborhood_correct.
    generalize (pr1 (pr2 (pr2 A))) (pr1 (pr2 (pr2 (pr2 A)))).
    apply hinhfun2.
    intros Ox Oy.
    exists (pr1 Ox), (pr1 Oy).
    repeat split.
    + exact (pr1 (pr2 Ox)).
    + exact (pr2 (pr1 Ox)).
    + exact (pr1 (pr2 Oy)).
    + exact (pr2 (pr1 Oy)).
    + intros x' y' Hx' Hy'.
      apply (pr2 (pr2 (pr2 (pr2 A)))).
      * now apply (pr2 (pr2 Ox)).
      * now apply (pr2 (pr2 Oy)).
  - intros O.
    generalize (pr2 (pr1 O) _ (pr1 (pr2 O))).
    apply hinhfun.
    intros A.
    exists (pr1 A), (pr1 (pr2 A)).
    repeat split.
    + apply (pr2 (neighborhood_isOpen _)).
      * exact (pr2 (pr1 (pr2 (pr2 A)))).
      * exact (pr1 (pr1 (pr2 (pr2 A)))).
    + apply (pr2 (neighborhood_isOpen _)).
      * exact (pr2 (pr1 (pr2 (pr2 (pr2 A))))).
      * exact (pr1 (pr1 (pr2 (pr2 (pr2 A))))).
    + intros x' y' Ax' Ay'.
      apply (pr2 (pr2 O)).
      now apply (pr2 (pr2 (pr2 (pr2 A)))).
Qed.

Topology on a subtype


Section topologysubtype.

Context {T : TopologicalSpace} (dom : T hProp).

Definition topologysubtype :=
  λ (x : x : T, dom x) (A : ( x0 : T, dom x0) hProp),
   B : T hProp,
    (B (pr1 x) × isOpen B) × ( y : x0 : T, dom x0, B (pr1 y) A y).

Lemma topologysubtype_imply :
   x : x : T, dom x, isfilter_imply (topologysubtype x).
Proof.
  intros x A B H.
  apply hinhfun.
  intros A'.
  exists (pr1 A').
  split.
  - exact (pr1 (pr2 A')).
  - intros y Hy.
    now apply H, (pr2 (pr2 A')).
Qed.

Lemma topologysubtype_htrue :
   x : x : T, dom x, isfilter_htrue (topologysubtype x).
Proof.
  intros x.
  apply hinhpr.
  exists (λ _, htrue).
  repeat split.
  now apply isOpen_htrue.
Qed.

Lemma topologysubtype_and :
   x : x : T, dom x, isfilter_and (topologysubtype x).
Proof.
  intros x A B.
  apply hinhfun2.
  intros A' B'.
  exists (λ x, pr1 A' x pr1 B' x).
  repeat split.
  - exact (pr1 (pr1 (pr2 A'))).
  - exact (pr1 (pr1 (pr2 B'))).
  - apply isOpen_and.
    + exact (pr2 (pr1 (pr2 A'))).
    + exact (pr2 (pr1 (pr2 B'))).
  - apply (pr2 (pr2 A')), (pr1 X).
  - apply (pr2 (pr2 B')), (pr2 X).
Qed.

Lemma topologysubtype_point :
   (x : x : T, dom x) (P : ( x0 : T, dom x0) hProp),
    topologysubtype x P P x.
Proof.
  intros x A.
  apply hinhuniv.
  intros B.
  apply (pr2 (pr2 B)), (pr1 (pr1 (pr2 B))).
Qed.

Lemma topologysubtype_neighborhood :
   (x : x : T, dom x) (P : ( x0 : T, dom x0) hProp),
    topologysubtype x P
     Q : ( x0 : T, dom x0) hProp,
      topologysubtype x Q
       × ( y : x0 : T, dom x0, Q y topologysubtype y P).
Proof.
  intros x A.
  apply hinhfun.
  intros B.
  exists (λ y : x : T, dom x, pr1 B (pr1 y)).
  split.
  - apply hinhpr.
    exists (pr1 B).
    split.
    + exact (pr1 (pr2 B)).
    + intros.
      assumption.
  - intros y By.
    apply hinhpr.
    exists (pr1 B).
    repeat split.
    + exact By.
    + exact (pr2 (pr1 (pr2 B))).
    + exact (pr2 (pr2 B)).
Qed.

End topologysubtype.

Definition TopologySubtype {T : TopologicalSpace}
  (dom : T hProp)
  : TopologicalSpace.
Proof.
  simple refine (TopologyFromNeighborhood _ _).
  - exact (carrier_subset dom).
  - apply topologysubtype.
  - repeat split.
    + apply topologysubtype_imply.
    + apply topologysubtype_htrue.
    + apply topologysubtype_and.
    + apply topologysubtype_point.
    + apply topologysubtype_neighborhood.
Defined.

Limits in a Topological Set


Section locally_base.

Context {T : TopologicalSpace} (x : T) (base : base_of_neighborhood x).

Lemma locally_base_imply :
  isfilter_imply (neighborhood' x base).
Proof.
  intros A B H Ha.
  apply (pr2 (neighborhood_equiv _ _ _)).
  eapply neighborhood_imply.
  - exact H.
  - eapply neighborhood_equiv.
    exact Ha.
Qed.
Lemma locally_base_htrue :
  isfilter_htrue (neighborhood' x base).
Proof.
  apply (pr2 (neighborhood_equiv _ _ _)).
  apply (pr2 (neighborhood_isOpen _)).
  - apply isOpen_htrue.
  - apply tt.
Qed.
Lemma locally_base_and :
  isfilter_and (neighborhood' x base).
Proof.
  intros A B Ha Hb.
  apply (pr2 (neighborhood_equiv _ _ _)).
  eapply neighborhood_and.
  - eapply neighborhood_equiv, Ha.
  - eapply neighborhood_equiv, Hb.
Qed.

End locally_base.

Definition locally_base {T : TopologicalSpace} (x : T) (base : base_of_neighborhood x) : Filter T.
Proof.
  simple refine (make_Filter _ _ _ _ _).
  - apply (neighborhood' x base).
  - apply locally_base_imply.
  - apply locally_base_htrue.
  - apply locally_base_and.
  - intros A Ha.
    apply neighborhood_equiv in Ha.
    apply neighborhood_point in Ha.
    apply hinhpr.
    now exists x.
Defined.

Limit of a filter


Definition is_filter_lim {T : TopologicalSpace} (F : Filter T) (x : T) :=
  filter_le F (locally x).
Definition ex_filter_lim {T : TopologicalSpace} (F : Filter T) :=
   (x : T), is_filter_lim F x.

Definition is_filter_lim_base {T : TopologicalSpace} (F : Filter T) (x : T) base :=
  filter_le F (locally_base x base).
Definition ex_filter_lim_base {T : TopologicalSpace} (F : Filter T) :=
   (x : T) base, is_filter_lim_base F x base.

Lemma is_filter_lim_base_correct {T : TopologicalSpace} (F : Filter T) (x : T) base :
  is_filter_lim_base F x base <-> is_filter_lim F x.
Proof.
  split.
  - intros Hx P HP.
    apply (pr2 (neighborhood_equiv _ base _)) in HP.
    apply Hx.
    exact HP.
  - intros Hx P HP.
    apply neighborhood_equiv in HP.
    apply Hx.
    exact HP.
Qed.
Lemma ex_filter_lim_base_correct {T : TopologicalSpace} (F : Filter T) :
  ex_filter_lim_base F <-> ex_filter_lim F.
Proof.
  split.
  - apply hinhfun.
    intros x.
    exists (pr1 x).
    eapply is_filter_lim_base_correct.
    exact (pr2 (pr2 x)).
  - apply hinhfun.
    intros x.
    exists (pr1 x), (base_of_neighborhood_default (pr1 x)).
    apply (pr2 (is_filter_lim_base_correct _ _ _)).
    exact (pr2 x).
Qed.

Limit of a function


Definition is_lim {X : UU} {T : TopologicalSpace} (f : X T) (F : Filter X) (x : T) :=
  filterlim f F (locally x).

Definition ex_lim {X : UU} {T : TopologicalSpace} (f : X T) (F : Filter X) :=
   (x : T), is_lim f F x.

Definition is_lim_base {X : UU} {T : TopologicalSpace} (f : X T) (F : Filter X) (x : T) base :=
  filterlim f F (locally_base x base).
Definition ex_lim_base {X : UU} {T : TopologicalSpace} (f : X T) (F : Filter X) :=
   (x : T) base, is_lim_base f F x base.

Lemma is_lim_base_correct {X : UU} {T : TopologicalSpace} (f : X T) (F : Filter X) (x : T) base :
  is_lim_base f F x base <-> is_lim f F x.
Proof.
  split.
  - intros Hx P HP.
    apply Hx, (pr2 (neighborhood_equiv _ _ _)).
    exact HP.
  - intros Hx P HP.
    eapply Hx, neighborhood_equiv.
    exact HP.
Qed.
Lemma ex_lim_base_correct {X : UU} {T : TopologicalSpace} (f : X T) (F : Filter X) :
  ex_lim_base f F <-> ex_lim f F.
Proof.
  split.
  - apply hinhfun.
    intros x.
    exists (pr1 x).
    eapply is_lim_base_correct.
    exact (pr2 (pr2 x)).
  - apply hinhfun.
    intros x.
    exists (pr1 x), (base_of_neighborhood_default (pr1 x)).
    apply (pr2 (is_lim_base_correct _ _ _ _)).
    exact (pr2 x).
Qed.

Continuity


Definition continuous_at {U V : TopologicalSpace} (f : U V) (x : U) :=
  is_lim f (locally x) (f x).

Definition continuous_on {U V : TopologicalSpace} (dom : U hProp) (f : (x : U), dom x V) :=
   (x : U) (Hx : dom x),
     H,
      is_lim (λ y : ( x : U, dom x), f (pr1 y) (pr2 y)) (FilterSubtype (locally x) dom H) (f x Hx).
Definition continuous {U V : TopologicalSpace} (f : U V) :=
   x : U, continuous_at f x.

Lemma isaprop_continuous (x y : TopologicalSpace)
  (f : x y)
  : isaprop (continuous (λ x0 : x, f x0)).
Proof.
  do 3 (apply impred_isaprop; intro).
  apply propproperty.
Qed.

Definition continuous_base_at {U V : TopologicalSpace} (f : U V) (x : U) base_x base_fx :=
  is_lim_base f (locally_base x base_x) (f x) base_fx.

Continuity for 2 variable functions


Definition continuous2d_at {U V W : TopologicalSpace} (f : U V W) (x : U) (y : V) :=
  is_lim (λ z : U × V, f (pr1 z) (pr2 z)) (FilterDirprod (locally x) (locally y)) (f x y).
Definition continuous2d {U V W : TopologicalSpace} (f : U V W) :=
   (x : U) (y : V), continuous2d_at f x y.

Definition continuous2d_base_at {U V W : TopologicalSpace} (f : U V W)
           (x : U) (y : V) base_x base_y base_fxy :=
  is_lim_base (λ z : U × V, f (pr1 z) (pr2 z))
              (FilterDirprod (locally_base x base_x) (locally_base y base_y))
              (f x y) base_fxy.

Continuity of basic functions


Lemma continuous_comp {X : UU} {U V : TopologicalSpace}
  (f : X U) (g : U V) (F : Filter X) (l : U)
  : is_lim f F l continuous_at g l
    is_lim (funcomp f g) F (g l).
Proof.
  apply filterlim_comp.
Qed.

Lemma continuous_funcomp {X Y Z : TopologicalSpace} (f : X Y) (g : Y Z) :
  continuous f continuous g
  continuous (funcomp f g).
Proof.
  intros Hf Hg x.
  refine (continuous_comp _ _ _ _ _ _).
  - apply Hf.
  - apply Hg.
Qed.

Lemma continuous2d_comp {X : UU} {U V W : TopologicalSpace}
  (f : X U) (g : X V)
  (h : U V W)
  (F : Filter X)
  (lf : U) (lg : V)
  : is_lim f F lf is_lim g F lg continuous2d_at h lf lg
    is_lim (λ x, h (f x) (g x)) F (h lf lg).
Proof.
  intros Hf Hg.
  apply (filterlim_comp (λ x, (f x ,, g x))).
  intros P.
  apply hinhuniv.
  intros Hp.
  generalize (filter_and F _ _ (Hf _ (pr1 (pr2 (pr2 Hp)))) (Hg _ (pr1 (pr2 (pr2 (pr2 Hp)))))).
  apply (filter_imply F).
  intros x Hx.
  apply (pr2 (pr2 (pr2 (pr2 Hp)))).
  - exact (pr1 Hx).
  - exact (pr2 Hx).
Qed.

Lemma continuous_tpair {U V : TopologicalSpace} :
  continuous2d (W := TopologyDirprod U V) (λ (x : U) (y : V), (x,,y)).
Proof.
  intros x y P.
  apply hinhuniv.
  intros O.
  simple refine (filter_imply _ _ _ _ _).
  - exact (pr1 O).
  - exact (pr2 (pr2 O)).
  - generalize (pr2 (pr1 O) _ (pr1 (pr2 O))).
    apply hinhfun.
    intros Ho.
    exists (pr1 Ho), (pr1 (pr2 Ho)).
    repeat split.
    + apply (pr2 (neighborhood_isOpen _)).
      * exact (pr2 (pr1 (pr2 (pr2 Ho)))).
      * exact (pr1 (pr1 (pr2 (pr2 Ho)))).
    + apply (pr2 (neighborhood_isOpen _)).
      * exact (pr2 (pr1 (pr2 (pr2 (pr2 Ho))))).
      * exact (pr1 (pr1 (pr2 (pr2 (pr2 Ho))))).
    + exact (pr2 (pr2 (pr2 (pr2 Ho)))).
Qed.
Lemma continuous_pr1 {U V : TopologicalSpace} :
  continuous (U := TopologyDirprod U V) (λ (xy : U × V), pr1 xy).
Proof.
  intros xy P.
  apply hinhuniv.
  intros O.
  simple refine (filter_imply _ _ _ _ _).
  - exact (pr1 (pr1 O)).
  - exact (pr2 (pr2 O)).
  - apply hinhpr.
    use tpair.
    + use tpair.
      * apply (λ xy : U × V, pr1 O (pr1 xy)).
      * intros xy' Oxy.
        apply hinhpr.
        exists (pr1 O), (λ _, htrue).
        repeat split.
        ** exact Oxy.
        ** exact (pr2 (pr1 O)).
        ** exact isOpen_htrue.
        ** intros.
           assumption.
    + repeat split.
      * exact (pr1 (pr2 O)).
      * intros. assumption.
Qed.
Lemma continuous_pr2 {U V : TopologicalSpace} :
  continuous (U := TopologyDirprod U V) (λ (xy : U × V), pr2 xy).
Proof.
  intros xy P.
  apply hinhuniv.
  intros O.
  simple refine (filter_imply _ _ _ _ _).
  - exact (pr1 (pr1 O)).
  - exact (pr2 (pr2 O)).
  - apply hinhpr.
    use tpair.
    + use tpair.
      * apply (λ xy : U × V, pr1 O (pr2 xy)).
      * intros xy' Oxy.
        apply hinhpr.
        exists (λ _, htrue), (pr1 O).
        repeat split.
        ** exact isOpen_htrue.
        ** exact Oxy.
        ** exact (pr2 (pr1 O)).
        ** intros. assumption.
    + repeat split.
      * exact (pr1 (pr2 O)).
      * intros. assumption.
Qed.

Topology in algebraic structures


Definition isTopological_monoid (X : monoid) (is : isTopologicalSpace X) :=
  continuous2d (U := (pr11 X) ,, is)
               (V := (pr11 X) ,, is)
               (W := (pr11 X) ,, is)
               BinaryOperations.op.
Definition Topological_monoid :=
   (X : monoid) (is : isTopologicalSpace X), isTopological_monoid X is.

Definition isTopological_gr (X : gr) (is : isTopologicalSpace X) :=
  isTopological_monoid X is
    × continuous (U := (pr11 X) ,, is)
                 (V := (pr11 X) ,, is)
                 (grinv X).
Definition Topological_gr :=
   (X : gr) is, isTopological_gr X is.

Definition isTopological_rig (X : rig) (is : isTopologicalSpace X) :=
  isTopological_monoid (rigaddabmonoid X) is
  × isTopological_monoid (rigmultmonoid X) is.
Definition Topological_rig :=
   (X : rig) is, isTopological_rig X is.

Definition isTopological_ring (X : ring) (is : isTopologicalSpace X) :=
  isTopological_gr (ringaddabgr X) is
  × isTopological_monoid (rigmultmonoid X) is.
Definition Topological_ring :=
   (X : ring) is, isTopological_ring X is.

Definition isTopological_DivRig (X : DivRig) (is : isTopologicalSpace X) :=
  isTopological_rig (pr1 X) is
  × continuous_on (U := (pr111 X) ,, is)
                  (V := (pr111 X) ,, is)
                  (λ x : X, make_hProp (x != 0%dr) (isapropneg _)) (λ x Hx, invDivRig (x,,Hx)).
Definition Topological_DivRig :=
   (X : DivRig) is, isTopological_DivRig X is.

Definition isTopological_fld (X : fld) (is : isTopologicalSpace X) :=
  isTopological_ring (pr1 X) is
  × continuous_on (U := (pr111 X) ,, is)
                  (V := (pr111 X) ,, is)
                  (λ x : X, make_hProp (x != 0%ring) (isapropneg _))
                  fldmultinv.
Definition Topological_fld :=
   (X : fld) is, isTopological_fld X is.

Definition isTopological_ConstructiveDivisionRig
  (X : ConstructiveDivisionRig)
  (is : isTopologicalSpace X)
  := isTopological_rig X is
       × continuous_on (U := (pr111 X) ,, is)
                       (V := (pr111 X) ,, is)
                       (λ x : X, (x 0)%CDR)
                       CDRinv.

Definition Topological_ConstructiveDivisionRig :=
   (X : ConstructiveDivisionRig) is, isTopological_ConstructiveDivisionRig X is.

Definition isTopological_ConstructiveField
  (X : ConstructiveField)
  (is : isTopologicalSpace X)
  := isTopological_ring X is
       × continuous_on (U := (pr111 X) ,, is)
                       (V := (pr111 X) ,, is)
                       (λ x : X, (x 0)%CF)
                       CFinv.

Definition Topological_ConstructiveField :=
   (X : ConstructiveField) is, isTopological_ConstructiveField X is.